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1. Introduction

There is almost no disagreement among 
economists that the full cost to society 

of burning a ton of carbon is greater than its 
private cost. Burning carbon has an exter-
nal cost because it produces CO2 and other 
greenhouse gases (GHGs) that accumulate 
in the atmosphere, and will eventually result 
in unwanted climate change—higher global 
temperatures, greater climate variability, and 
possibly increases in sea levels. This external 
cost is referred to as the social cost of carbon 
(SCC). It is the basis for taxing or otherwise 

limiting carbon emissions, and is the focus of 
policy-oriented research on climate change.

So how large is the SCC? Here there is 
plenty of disagreement. Some argue that cli-
mate change will be moderate, will occur in 
the distant future, and will have only a small 
impact on the economies of most countries. 
This would imply that the SCC is small, per-
haps only around $10 per ton of CO2. Others 
argue that without an immediate and stringent 
GHG abatement policy, there is a reasonable 
chance of substantial temperature increases 
that might have a catastrophic economic 
impact. If so, it would suggest that the SCC is 
large, perhaps as high as $200 per ton of CO2.1 

1  The SCC is sometimes expressed in terms of dollars 
per ton of carbon. A ton of CO2 contains 0.2727 tons of 
carbon, so an SCC of $10 per ton of CO2 is equivalent to 
$36.67 per ton of carbon. The SCC numbers I present in 
this paper are always in terms of dollars per ton of CO2.
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Might we narrow this range of disagree-
ment over the size of the SCC by carefully 
quantifying the relationships between GHG 
emissions and atmospheric GHG concentra-
tions, between changes in GHG concentra-
tions and changes in temperature (and other 
measures of climate change), and between 
higher temperatures and measures of wel-
fare such as output and per capita consump-
tion? In other words, might we obtain better 
estimates of the SCC by building and simu-
lating integrated assessment models (IAMs), 
i.e., models that “integrate” a description of 
GHG emissions and their impact on temper-
ature (a climate science model) with projec-
tions of abatement costs and a description of 
how changes in climate affect output, con-
sumption, and other economic variables (an 
economic model).

Building such models is exactly what some 
economists interested in climate change pol-
icy have done. One of the first such models 
was developed by William Nordhaus over 
twenty years ago.2 That model was an early 
attempt to integrate the climate science and 
economic aspects of the impact of GHG 
emissions, and it helped economists under-
stand the basic mechanisms involved. Even 
if one felt that parts of the model were overly 
simple and lacked empirical support, the 
work achieved a common goal of economic 
modeling: elucidating the dynamic relation-
ships among key variables, and the implica-
tions of those relationships, in a coherent 
and convincing way. Since then, the develop-
ment and use of IAMs has become a growth 
industry. (It even has its own journal, The 
Integrated Assessment Journal.) The models 
have become larger and more complex, but 
unfortunately have not done much to better 
elucidate the pathways by which GHG emis-
sions eventually lead to higher temperatures, 
which in turn cause (quantifiable) economic 

2  See, for example, Nordhaus (1991, 1993a, 1993b).

damage. Instead, the raison d’etre of these 
models has been their use as a policy tool. 
The idea is that by simulating the models, we 
can obtain reliable estimates of the SCC and 
evaluate alternative climate policies.

Indeed, a U.S. Government Interagency 
Working Group has tried to do just that. It 
ran simulations of three different IAMs, with 
a range of parameter values, discount rates, 
and assumptions regarding GHG emissions, 
to estimate the SCC.3 Of course, different 
input assumptions resulted in different SCC 
estimates, but the Working Group settled 
on a base case or “average” estimate of $21 
per ton, which was recently updated to $33 
per ton.4 Other IAMs have been developed 
and likewise used to estimate the SCC. As 
with the Working Group, those estimates 
vary considerably depending on the input 
assumptions for any one IAM, and also vary 
across IAMs.

Given all of the effort that has gone into 
developing and using IAMs, have they helped 
us resolve the wide disagreement over the 
size of the SCC? Is the U.S. government 
estimate of $21 per ton (or the updated esti-
mate of $33 per ton) a reliable or otherwise 
useful number? What have these IAMs (and 
related models) told us? I will argue that the 
answer is very little. As I discuss below, the 
models are so deeply flawed as to be close to 
useless as tools for policy analysis. Worse yet, 

3  The three IAMS were DICE (Dynamic Integrated 
Climate and Economy), PAGE (Policy Analysis of the 
Greenhouse Effect), and FUND (Climate Framework for 
Uncertainty, Distribution, and Negotiation). For descrip-
tions of the models, see Nordhaus (2008), Hope (2006), 
and Tol (2002a, 2002b).

4  See Interagency Working Group on Social Cost of 
Carbon (2010). For an illuminating and very readable dis-
cussion of the Working Group’s methodology, the models 
it used, and the assumptions regarding parameters, GHG 
emissions, and other inputs, see Greenstone, Kopits, and 
Wolverton (2011). The updated study used new versions 
of the DICE, PAGE, and FUND models, and arrived at 
a new “average” estimate of $33 per ton for the SCC. See 
Interagency Working Group on Social Cost of Carbon 
(2013).
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their use suggests a level of knowledge and 
precision that is simply illusory, and can be 
highly misleading.

The next section provides a brief overview 
of the IAM approach, with a focus on the 
arbitrary nature of the choice of social wel-
fare function and the values of its parameters. 
Using the three models that the Interagency 
Working Group chose for its assessment of 
the SCC as examples, I then discuss two 
important parts of IAMS where the uncer-
tainties are greatest and our knowledge is 
weakest—the response of temperature to an 
increase in atmospheric CO2, and the eco-
nomic impact of higher temperatures. I then 
explain why an evaluation of the SCC must 
include the possibility of a catastrophic out-
come, why IAMs can tell us nothing about 
such outcomes, and how an alternative and 
simpler approach is likely to be more illumi-
nating. As mentioned above, the number of 
IAMs in existence is large and growing. My 
objective is not to survey the range of IAMs 
or the IAM-related literature, but rather to 
explain why climate change policy can be 
better analyzed without the use of IAMs.

2. Integrated Assessment Models

Most economic analyses of climate change 
policy have six elements, each of which can 
be global in nature or disaggregated on a 
regional basis. In an IAM-based analysis, 
each of these elements is either part of the 
model (determined endogenously), or else is 
an exogenous input to the model. These six 
elements can be summarized as follows:

1.  Projections of future emissions of a CO2 
equivalent (CO2e) composite (or indi-
vidual GHGs) under “business as usual” 
(BAU) and one or more abatement 
scenarios. Projections of emissions in 
turn require projections of both GDP 
growth and “carbon intensity,” i.e., the 
amount of CO2e released per dollar of 

GDP, again under BAU and alternative 
abatement scenarios, and on an aggre-
gate or regionally disaggregated basis.

2.  Projections of future atmospheric CO2e 
concentrations resulting from past, cur-
rent, and future CO2e emissions. (This 
is part of the climate science side of an 
IAM.)

3.  Projections of average global (or 
regional) temperature changes—and 
possibly other measures of climate 
change such as temperature and rain-
fall variability, hurricane frequency, and 
sea level increases—likely to result over 
time from higher CO2e concentrations. 
(This is also part of the climate science 
side of an IAM.)

4.  Projections of the economic impact, 
usually expressed in terms of lost GDP 
and consumption, resulting from higher 
temperatures. (This is the most specu-
lative element of the analysis, in part 
because of uncertainty over adaptation 
to climate change.) “Economic impact” 
includes both direct economic impacts 
as well as any other adverse effects of 
climate change, such as social, politi-
cal, and medical impacts, which under 
various assumptions are monetized and 
included as part of lost GDP.

5.  Estimates of the cost of abating GHG 
emissions by various amounts, both now 
and throughout the future. This in turn 
requires projections of technological 
change that might reduce future abate-
ment costs.

6.  Assumptions about social utility and the 
rate of time preference, so that lost con-
sumption from expenditures on abate-
ment can be valued and weighed against 
future gains in consumption from the 
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reductions in warming that abatement 
would bring about.

These elements are incorporated in the 
work of Nordhaus (2008), Stern (2007), 
and others who evaluate abatement poli-
cies though the use of IAMs that project 
emissions, CO2e concentrations, tempera-
ture change, economic impact, and costs 
of abatement. Interestingly, however, 
Nordhaus (2008), Stern (2007), and oth-
ers come to strikingly different conclusions 
regarding optimal abatement policy and the 
implied SCC. Nordhaus (2008) finds that 
optimal abatement should initially be very 
limited, consistent with an SCC around $20 
or less, while Stern (2007) concludes that 
an immediate and drastic cut in emissions 
is called for, consistent with an SCC above 
$200.5 Why the huge difference? Because 
the inputs that go into the models are so 
different. Had Stern used the Nordhaus 
assumptions regarding discount rates, 
abatement costs, parameters affecting tem-
perature change, and the function deter-
mining economic impact, he would have 
also found the SCC to be low. Likewise, if 
Nordhaus had used the Stern assumptions, 
he would have obtained a much higher 
SCC.6

2.1 What Goes In and What Comes Out

And here we see a major problem with 
IAM-based climate policy analysis: the 
modeler has a great deal of freedom in 
choosing functional forms, parameter val-
ues, and other inputs, and different choices 

5  In an updated study, Nordhaus (2011) estimates the 
SCC to be $12 per ton of CO2.

6  Nordhaus (2007), Weitzman (2007), Mendelsohn 
(2008), and others argue (and I would agree) that the Stern 
study (which used a version of the PAGE model) makes 
assumptions about temperature change, economic impact, 
abatement costs, and discount rates that are generally 
outside the consensus range. But see Stern (2008) for a 
detailed (and very readable) explanation and defense of 
these assumptions.

can give wildly different estimates of the 
SCC and the optimal amount of abatement. 
You might think that some input choices 
are more reasonable or defensible than oth-
ers, but no, “reasonable” is very much in 
the eye of the modeler. Thus these models 
can be used to obtain almost any result one 
desires.7

There are two types of inputs that lend 
themselves to arbitrary choices. The first 
is the social welfare (utility) function and 
related parameters needed to value and 
compare current and future gains and losses 
from abatement. The second is the set of 
functional forms and related parameters that 
determine the response of temperature to 
changing CO2e concentrations and (espe-
cially) the economic impact of rising temper-
atures. I discuss the social welfare function 
here, and leave the functional forms and 
related parameters to later when I discuss 
the “guts” of these models.

2.2 The Social Welfare Function

Most models use a simple framework for 
valuing lost consumption at different points 
in time: time-additive, constant relative risk 
aversion (CRRA) utility, so that social wel-
fare is 

(1)  W =   1 _ 
1 − η

     0   ∫  
0
  
∞

   C  t  1−η   e −δt  dt,

where η is the index of relative risk aver-
sion (IRRA) and δ is the rate of time pref-
erence. Future consumption is unknown, 
so I included the expectation operator , 
although most IAMs are deterministic in 
nature. Uncertainty, if incorporated at all, 
is usually analyzed by running Monte Carlo 
simulations in which probability distributions 

7  A colleague of mine once said “I can make a model tie 
my shoe laces.”
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are attached to one or more  parameters.8 
Equation (1) might be applied to the United 
States (as in the Interagency Working Group 
study), to the entire world, or to different 
regions of the world.

I will put aside the question of how mean-
ingful equation (1) is as a welfare measure, 
and focus instead on the two critical param-
eters, δ and η. We can begin by asking what is 
the “correct” value for the rate of time pref-
erence, δ? This parameter is crucial because 
the effects of climate change occur over very 
long time horizons (50 to 200 years), so a 
value of δ above 2 percent would make it hard 
to justify even a very moderate abatement 
policy. Financial data reflecting investor 
behavior and macroeconomic data reflecting 
consumer and firm behavior suggest that δ is 
in the range of 2 to 5 percent. While a rate 
in this range might reflect the preferences 
of investors and consumers, should it also 
reflect intergenerational preferences and 
thus apply to time horizons greater than fifty 
years? Some economists (e.g., Stern 2008 
and Heal 2009) have argued that on ethical 
grounds δ should be zero for such horizons, 
i.e., that it is unethical to discount the wel-
fare of future generations relative to our own 
welfare. But why is it unethical? Putting aside 
their personal views, economists have little 
to say about that question.9 I would argue 
that the rate of time preference is a policy 
parameter, i.e., it reflects the choices of pol-
icy makers, who might or might not believe 

8 A recent exception is Cai, Judd, and Lontzek (2013), 
who developed a stochastic dynamic programming version 
of the Nordhaus DICE model. Also, Kelly and Kolstad 
(1999) show how Bayesian learning can affect policy in a 
model with uncertainty.

9 Suppose John and Jane both have the same incomes. 
John saves 10 percent of his income every year in order to 
help finance the college educations of his (yet-to-be-born) 
grandchildren, while Jane prefers to spend all of her dis-
posable income on sports cars, boats, and expensive wines. 
Does John’s concern for his grandchildren make him more 
ethical than Jane? Many people might say yes, but that 
answer would be based on their personal values rather than 
economic principles.

(or care) that their policy decisions reflect 
the values of voters. As a policy parameter, 
the rate of time preference might be posi-
tive, zero, or even negative.10 The problem 
is that if we can’t pin down δ, an IAM can’t 
tell us much; any given IAM will give a wide 
range of values for the SCC, depending on 
the chosen value of δ.

What about η, the IRRA? The SCC that 
comes out of almost any IAM is also very 
sensitive to this parameter. Generally, a 
higher value of η will imply a lower value 
of the SCC.11 So what value for η should be 
used for climate policy? Here, too, econo-
mists disagree. The macroeconomics and 
finance literatures suggest that a reasonable 
range is from about 1.5 to at least 4. As a 
policy parameter, however, we might con-
sider the fact that η also reflects aversion to 
consumption inequality (in this case across 
generations), suggesting a reasonable range 
of about 1 to 3.12 Either way, we are left with 
a wide range of reasonable values, so that any 
given IAM can give a wide range of values 
for the SCC.

Disagreement over δ and η boils down to 
disagreement over the discount rate used to 

10 Why negative? One could argue, perhaps based on 
altruism or a belief that human character is improving over 
time, that the welfare of our great-grandchildren should be 
valued more highly than our own.

11 The larger is η, the faster the marginal utility of con-
sumption declines as consumption grows. Since consump-
tion is expected to grow, the value of additional future 
consumption is smaller the larger is η. But η also measures 
risk aversion; if future consumption is uncertain, a larger 
η makes future welfare smaller, raising the value of addi-
tional future consumption. Most models show that unless 
risk aversion is extreme (e.g., η is above 4), the first effect 
dominates, so an increase in η (say from 1 to 4) will reduce 
the benefits from an abatement policy. See Pindyck (2012) 
for examples.

12 If a future generation is expected to have twice the 
consumption as the current generation, the marginal util-
ity of consumption for the future generation is 1/2  η as 
large as for the current generation, and would be weighted 
accordingly in any welfare calculation. Values of η above 
3 or 4 imply a relatively very small weight for the future 
generation, so one could argue that a smaller value is more 
appropriate.
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put gains and losses of future consumption 
(as opposed to utility) in present value terms. 
In the simplest (deterministic) Ramsey 
framework, that discount rate is R = δ + ηg, 
where g is the real per capita growth rate of 
consumption, which historically has been 
around 1.5 to 2 percent per annum, at least 
for the United States. Stern (2007), citing 
ethical arguments, sets δ ≈ 0 and η = 1 , so 
that R is small and the estimated SCC is very 
large. By comparison, Nordhaus (2008) tries 
to match market data, and sets δ = 1.5 per-
cent and η = 2, so that R ≈ 5.5 percent  and 
the estimated SCC is far smaller.13 Should 
the discount rate be based on “ethical” 
arguments or market data? And what ethi-
cal arguments and what market data? The 
members of the Interagency Working Group 
got out of this morass by focusing on a mid-
dle-of-the-road discount rate of 3 percent, 
without taking a stand on whether this is the 
“correct” rate.

3. The Guts of the Models

Let’s assume for the moment that econo-
mists could agree on the “correct” value for 
the discount rate R. Let’s also assume that 
they (along with climate scientists) could also 
agree on the rate of emissions under BAU 
and one or more abatement scenarios, as 
well as the resulting time path for the atmo-
spheric CO2e concentration. Could we then 
use one or more IAMs to produce a reliable 
estimate of the SCC? The answer is no, but 
to see why, we must look at the insides of the 
models. For some of the larger models, the 
“guts” contain many equations and can seem 
intimidating. But in fact, there are only two 
key organs that we need to dissect. The first 

13  Uncertainty over consumption growth or over the 
discount rate itself can reduce R, and depending on the 
type of uncertainty, lead to a time-varying R. See Gollier 
(2013) for an excellent treatment of the effects of uncer-
tainty on the discount rate. Weitzman (2013) shows how 
the discount rate could decline over time.

translates increases in the CO2e concentra-
tion to increases in temperature, a mecha-
nism that is referred to as climate sensitivity. 
The second translates higher temperatures 
to reductions in GDP and consumption, i.e., 
the damage function.

3.1 Climate Sensitivity

Climate sensitivity is defined as the tem-
perature increase that would eventually result 
from an anthropomorphic doubling of the 
atmospheric CO2e concentration. The word 
“eventually” means after the world’s climate 
system reaches a new equilibrium following 
the doubling of the CO2e concentration, a 
period of time in the vicinity of fifty years. 
For some of the simpler IAMs, climate sensi-
tivity takes the form of a single parameter; for 
larger and more complicated models, it might 
involve several equations that describe the 
dynamic response of temperature to changes 
in the CO2e concentration. Either way, it can 
be boiled down to a number that says how 
much the temperature will eventually rise if 
the CO2e concentration were to double. And 
either way, we can ask how much we know 
or don’t know about that number. This is an 
important question because climate sensi-
tivity is an exogenous input into each of the 
three IAMs used by the Interagency Working 
Group to estimate the SCC.

Here is the problem: the physical mech-
anisms that determine climate sensitiv-
ity involve crucial feedback loops, and the 
parameter values that determine the strength 
(and even the sign) of those feedback loops 
are largely unknown, and for the foresee-
able future may even be unknowable. This is 
not a shortcoming of climate science; on the 
contrary, climate scientists have made enor-
mous progress in understanding the physical 
mechanisms involved in climate change. But 
part of that progress is a clearer realization 
that there are limits (at least currently) to our 
ability to pin down the strength of the key 
feedback loops.
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The Intergovernmental Panel on Climate 
Change (2007) (IPCC) surveyed twenty-two 
peer-reviewed published studies of climate 
sensitivity and estimated that they implied 
an expected value of 2.5º C to 3.0º C for cli-
mate sensitivity.14 Each of the individual 
studies included a probability distribution 
for climate sensitivity, and by putting the dis-
tributions in a standardized form, the IPCC 
created a graph that showed all of the dis-
tributions in a summary form. A number of 
studies—including the Interagency Working 
Group study—used the IPCC’s results to 
infer and calibrate a single distribution for 
climate sensitivity, which in turn could be 
used to run alternative simulations of one or 
more IAMs.15

Averaging across the standardized distri-
butions summarized by the IPCC suggests 
that the 95th percentile is about 7º C, i.e., 
there is roughly a 5 percent probability that 
the true climate sensitivity is above 7º C. But 
this implies more knowledge than we prob-
ably have. This is easiest to see in the rela-
tively simple climate model developed by 
Roe and Baker (2007). Using their notation, 
let  λ 0  be climate sensitivity in the absence of 
any feedback effects, i.e., absent feedback 
effects, a doubling of the atmospheric CO2e 
concentration would lead to an increase in 
radiative forcing that would in turn cause a 
temperature increase of Δ T 0  =  λ 0 º C. But as 
Roe and Baker explain, the initial tempera-
ture increase Δ T 0  “induces changes in the 
underlying processes . . . which modify the 
effective forcing, which, in turn,  modifies 

14 The IPCC also provides a detailed and readable 
overview of the physical mechanisms involved in climate 
change, and the state of our knowledge regarding those 
mechanisms.

15 Newbold and Daigneault (2009) and Pindyck (2012) 
(who fit a gamma distribution to the IPCC’s summary 
graph) used the distribution to infer the implications of 
uncertainty over climate sensitivity for abatement policy. 
But as discussed below, they probably underestimated the 
extent of the uncertainty.

ΔT.” Thus the actual climate sensitivity is 
given by 

(2)  λ =   
 λ 0  _ 

1 − f
   ,

where f (0 ≤  f ≤ 1) is the total feedback fac-
tor (which in a more complete and complex 
model would incorporate several feedback 
effects).

Unfortunately, we don’t know the value 
of f. Roe and Baker point out that if we 
knew the mean and standard deviation of f, 
denoted by  

_
 f   and  σ f  respectively, and if  σ f  is 

small, then the standard deviation of λ would 
be proportional to  σ f   /(1 −  

_
 f   ) 2  . Thus uncer-

tainty over λ is greatly magnified by uncer-
tainty over f, and becomes very large if f is 
close to 1. Likewise, if the true value of f is 
close to 1, climate sensitivity would be huge.

As an illustrative exercise, Roe and Baker 
assume that f is normally distributed (with 
mean   

_
 f   and standard deviation  σ f ), and 

derive the resulting distribution for λ, cli-
mate sensitivity. Given their choice of   

_
 f   and  

σ f  , the resulting median and 95th percentile 
are close to the corresponding numbers that 
come from averaging across the standardized 
distributions summarized by the IPCC.16

The Interagency Working Group cali-
brated the Roe–Baker distribution to fit 
the composite IPCC numbers more closely, 
and then applied that distribution to each 
of the three IAMs as a way of analyzing the 

16 The Roe–Baker distribution is given by:

g (λ;  
_
 f  ,  σ f  , θ) =   1 _ 

 σ f    √ 
_

 2π    z 2 
   exp  [ −   1 _ 

2
     (   1 −  

_
 f   − 1/z
 _  σ f 

   )  
2

  ] ,
where z = λ + θ. The parameter values are  

_
 f   = 0.797,  

σ f  = 0.0441, θ = 2.13. This distribution is fat-tailed, i.e., 
declines to zero more slowly than exponentially. Weitzman 
(2009) has shown that parameter uncertainty can lead to a 
fat-tailed distribution for climate sensitivity, and that this 
implies a relatively high probability of a catastrophic out-
come, which in turn suggests that the value of abatement 
is high. Pindyck (2011a) shows that a fat-tailed distribution 
by itself need not imply a high value of abatement.
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 sensitivity of their SCC estimates to uncer-
tainty over climate sensitivity.

Given the limited available information, 
the Interagency Working Group did the best 
it could. But it is likely that they—like oth-
ers who have used IAMs to analyze climate 
change policy—have understated our uncer-
tainty over climate sensitivity. We don’t know 
whether the feedback factor f is in fact nor-
mally distributed (nor do we know its mean 
and standard deviation). Roe and Baker simply 
assumed a normal distribution. In fact, in an 
accompanying article in the journal Science, 
Allen and Frame (2007) argued that climate 
sensitivity is in the realm of the “unknowable.”

3.2 The Damage Function

When assessing climate sensitivity, we at 
least have scientific results to rely on, and can 
argue coherently about the probability dis-
tribution that is most consistent with those 
results. When it comes to the damage func-
tion, however, we know almost nothing, so 
developers of IAMs can do little more than 
make up functional forms and corresponding 
parameter values. And that is pretty much 
what they have done.

Most IAMs (including the three that were 
used by the Interagency Working Group to 
estimate the SCC) relate the temperature 
increase T to GDP through a “loss func-
tion” L(T ), with L(0) = 1 and  L′ (T ) < 0. 
Thus GDP at time t is GD P t  = L( T t )GD P  t  ′  , 
where GD P  t  ′   is what GDP would be if 
there were no warming. For example, the 
Nordhaus (2008) DICE model uses the fol-
lowing inverse-quadratic loss function: 

(3)  L = 1/[1 +  π 1  T +  π 2 (T ) 2 ].

Weitzman (2009) suggested the exponential-
quadratic loss function: 

(4)  L(T) = exp[−β (T ) 2 ],

which allows for greater losses when T is 
large. But remember that neither of these 

loss functions is based on any economic (or 
other) theory. Nor are the loss functions that 
appear in other IAMs. They are just arbi-
trary functions, made up to describe how 
GDP goes down when T goes up.

The loss functions in PAGE and FUND, 
the other two models used by the Interagency 
Working Group, are more complex but 
equally arbitrary. In those models, losses 
are calculated for individual regions and (in 
the case of FUND) individual sectors, such 
as agriculture and forestry. But there is no 
pretense that the equations are based on any 
theory. When describing the sectoral impacts 
in FUND, Tol (2002b) introduces equations 
with the words “The assumed model is:” 
(e.g., pages 137–39, emphasis mine), and at 
times acknowledges that “The model used 
here is therefore ad hoc” (142).

The problem is not that IAM developers 
were negligent and ignored economic the-
ory; there is no economic theory that can tell 
us what L(T ) should look like. If anything, 
we would expect T to affect the growth rate 
of GDP, and not the level. Why? First, some 
effects of warming will be permanent; e.g., 
destruction of ecosystems and deaths from 
weather extremes. A growth rate effect 
allows warming to have a permanent impact. 
Second, the resources needed to counter the 
impact of warming will reduce those avail-
able for R&D and capital investment, reduc-
ing growth.17 Third, there is some empirical 
support for a growth rate effect. Using data 

17 Adaptation to rising temperatures is equivalent to 
the cost of increasingly strict emission standards, which, 
as Stokey (1998) has shown with an endogenous growth 
model, reduces the rate of return on capital and low-
ers the growth rate. To see this, suppose total capital 
K =  K p  +  K a (T), with  K  a  ′  (T ) > 0, where  K p  is directly pro-
ductive capital and  K a (T ) is capital needed for adaptation 
to the temperature increase T (e.g., stronger retaining 
walls and pumps to counter flooding, more air condi-
tioning and insulation, etc.). If all capital depreciates at 
rate  δ K ,    ̇  K  p  =   ̇  K  −    ̇  K  a  = I −  δ K K −  K  a  ′  (T )  ̇  T , so the rate of 
growth of  K p  is reduced. See Brock and Taylor (2010) and 
Fankhauser and Tol (2005) for related analyses.
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on temperatures and precipitation over fifty 
years for a panel of 136 countries, Dell, 
Jones, and Olken (2012) have shown that 
higher temperatures reduce GDP growth 
rates but not levels. Likewise, using data for 
147 countries during 1950 to 2007, Bansal 
and Ochoa (2011, 2012) show that increases 
in temperature have a negative impact on 
economic growth.18

Let’s put the issue of growth rate versus 
level aside and assume that the loss function 
of eqn. (3) is a credible description of the 
economic impact of higher temperatures. 
Then the question is how to determine the 
values of the parameters  π 1  and  π 2 . Theory 
can’t help us, nor is data available that could 
be used to estimate or even roughly cali-
brate the parameters. As a result, the choice 
of values for these parameters is essentially 
guesswork. The usual approach is to select 
values such that L(T ) for T in the range of 
2º C to 4º C is consistent with common wis-
dom regarding the damages that are likely to 
occur for small to moderate increases in tem-
perature. Most modelers choose parameters 
so that L(1) is close to 1 (i.e., no loss), L(2)  
is around 0.99 or 0.98, and L(3) or L(4) is 
around 0.98 to 0.96. Sometimes these num-
bers are justified by referring to the IPCC 
or related summary studies. For example, 
Nordhaus (2008) points out that the 2007 
IPCC report states that “global mean losses 
could be 1–5 percent GDP for 4º C of warm-
ing” (51). But where did the IPCC get those 
numbers? From its own survey of several 
IAMs. Yes, it’s a bit circular.

The bottom line here is that the damage 
functions used in most IAMs are completely 
made up, with no theoretical or empirical 
foundation. That might not matter much if 

18 See Pindyck (2011b, 2012) for further discussion and 
an analysis of the policy implications of a growth rate ver-
sus level effect. Note that a climate-induced catastrophe, 
on the other hand, could reduce both the growth rate and 
level of GDP.

we are looking at temperature increases of 2 
or 3º C, because there is a rough consensus 
(perhaps completely wrong) that damages 
will be small at those levels of warming. The 
problem is that these damage functions tell 
us nothing about what to expect if tempera-
ture increases are larger, e.g., 5º C or more.19 
Putting T = 5 or T = 7 into equation (3) or 
(4) is a completely meaningless exercise. And 
yet that is exactly what is being done when 
IAMs are used to analyze climate policy.

I do not want to give the impression that 
economists know nothing about the impact 
of climate change. On the contrary, consider-
able work has been done on specific aspects 
of that impact, especially with respect to 
agriculture. One of the earliest studies of 
agricultural impacts, including adapta-
tion, is Mendelsohn, Nordhaus, and Shaw 
(1994); more recent ones include Deschenes 
and Greenstone (2007) and Schlenker and 
Roberts (2009). A recent study that focuses 
on the impact of climate change on mortal-
ity, and our ability to adapt, is Deschenes and 
Greenstone (2011). And recent studies that 
use or discuss the use of detailed weather 
data include Dell, Jones, and Olken (2012) 
and Auffhammer et al. (2013). These are just 
a few examples; the literature is large and 
growing.

Statistical studies of this sort will surely 
improve our knowledge of how climate 
change might affect the economy, or at least 
some sectors of the economy. But the data 
used in these studies are limited to relatively 
short time periods and small fluctuations in 
temperature and other weather variables—
the data do not, for example, describe what 

19 Some modelers are aware of this problem. Nordhaus 
(2008) states: “The damage functions continue to be a 
major source of modeling uncertainty in the DICE model” 
(51). To get a sense of the wide range of damage numbers 
that come from different models, even for T = 2 or 3º C, 
see table 1 of Tol (2012). Stern (2013) argues that IAM 
damage functions ignore a variety of potential climate 
impacts, including possibly catastrophic ones.
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has happened over twenty or fifty years fol-
lowing a 5º C increase in mean tempera-
ture. Thus these studies cannot enable us 
to specify and calibrate damage functions of 
the sort used in IAMs. In fact, those damage 
functions have little or nothing to do with the 
detailed econometric studies related to agri-
cultural and other specific impacts.

4. Catastrophic Outcomes

Another major problem with using IAMs 
to assess climate change policy is that the 
models ignore the possibility of a cata-
strophic climate outcome. The kind of out-
come I am referring to is not simply a very 
large increase in temperature, but rather 
a very large economic effect, in terms of a 
decline in human welfare, from whatever cli-
mate change occurs. That such outcomes are 
ignored is not surprising; IAMs have nothing 
to tell us about them. As I explained, IAM 
damage functions, which anyway are ad hoc, 
are calibrated to give small damages for small 
temperature increases, and can say nothing 
meaningful about the kinds of damages we 
should expect for temperature increases of 
5º C or more.

4.1 Analysis of Catastrophic Outcomes

For climate scientists, a “catastrophe” usu-
ally takes the form of a high temperature out-
come, e.g., a 7º C or 8º C increase by 2100. 
Putting aside the difficulty of estimating the 
probability of that outcome, what matters in 
the end is not the temperature increase itself, 
but rather its impact. Would that impact be 
“catastrophic,” and might a smaller (and 
more likely) temperature increase be suffi-
cient to have a catastrophic impact?

Why do we need to worry about large tem-
perature increases and their impact? Because 
even if a large temperature outcome has 
low probability, if the economic impact of 
that change is very large, it can push up the 
SCC considerably. As discussed in Pindyck 

(2013a), the problem is that the possibility of 
a catastrophic outcome is an essential driver 
of the SCC. Thus we are left in the dark; 
IAMs cannot tell us anything about cata-
strophic outcomes, and thus cannot provide 
meaningful estimates of the SCC.

It is difficult to see how our knowledge of 
the economic impact of rising temperatures 
is likely to improve in the coming years. 
More than temperature change itself, eco-
nomic impact may be in the realm of the 
“unknowable.” If so, it would make little 
sense to try to use an IAM-based analysis to 
evaluate a stringent abatement policy. The 
case for stringent abatement would have to 
be based on the (small) likelihood of a cata-
strophic outcome in which climate change is 
sufficiently extreme to cause a very substan-
tial drop in welfare.

4.2 What to Do?

So how can we bring economic analysis 
to bear on the policy implications of possi-
ble catastrophic outcomes? Given how little 
we know, a detailed and complex modeling 
exercise is unlikely to be helpful. (Even if we 
believed the model accurately represented 
the relevant physical and economic relation-
ships, we would have to come to agreement 
on the discount rate and other key parame-
ters.) Probably something simpler is needed. 
Perhaps the best we can do is come up with 
rough, subjective estimates of the probability 
of a climate change sufficiently large to have 
a catastrophic impact, and then some distri-
bution for the size of that impact (in terms, 
say, of a reduction in GDP or the effective 
capital stock).

The problem is analogous to assessing the 
world’s greatest catastrophic risk during the 
Cold War—the possibility of a U.S.–Soviet 
thermonuclear exchange. How likely was 
such an event? There were no data or models 
that could yield reliable estimates, so analy-
ses had to be based on the plausible, i.e., on 
events that could reasonably be expected to 
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play out, even with low probability. Assessing 
the range of potential impacts of a thermo-
nuclear exchange had to be done in much 
the same way. Such analyses were useful 
because they helped evaluate the potential 
benefits of arms control agreements.

The same approach might be used to assess 
climate change catastrophes. First, consider 
a plausible range of catastrophic outcomes 
(under, for example, BAU), as measured by 
percentage declines in the stock of produc-
tive capital (thereby reducing future GDP). 
Next, what are plausible probabilities? 
Here, “plausible” would mean acceptable 
to a range of economists and climate scien-
tists. Given these plausible outcomes and 
probabilities, one can calculate the present 
value of the benefits from averting those out-
comes, or reducing the probabilities of their 
occurrence. The benefits will depend on 
preference parameters, but if they are suffi-
ciently large and robust to reasonable ranges 
for those parameters, it would support a 
stringent abatement policy. Of course this 
approach does not carry the perceived preci-
sion that comes from an IAM-based analysis, 
but that perceived precision is illusory. To 
the extent that we are dealing with unknow-
able quantities, it may be that the best we 
can do is rely on the “plausible.”

5. Conclusions

I have argued that IAMs are of little or 
no value for evaluating alternative climate 
change policies and estimating the SCC. 
On the contrary, an IAM-based analysis sug-
gests a level of knowledge and precision that 
is nonexistent, and allows the modeler to 
obtain almost any desired result because key 
inputs can be chosen arbitrarily.

As I have explained, the physical mecha-
nisms that determine climate sensitiv-
ity involve crucial feedback loops, and 
the parameter values that determine the 
strength of those feedback loops are largely 

unknown. When it comes to the impact of 
climate change, we know even less. IAM 
damage functions are completely made up, 
with no theoretical or empirical foundation. 
They simply reflect common beliefs (which 
might be wrong) regarding the impact of 2º C 
or 3º C of warming, and can tell us nothing 
about what might happen if the tempera-
ture increases by 5º C or more. And yet those 
damage functions are taken seriously when 
IAMs are used to analyze climate policy. 
Finally, IAMs tell us nothing about the like-
lihood and nature of catastrophic outcomes, 
but it is just such outcomes that matter most 
for climate change policy. Probably the best 
we can do at this point is come up with plau-
sible estimates for probabilities and possible 
impacts of catastrophic outcomes. Doing 
otherwise is to delude ourselves.

My criticism of IAMs should not be taken 
to imply that, because we know so little, noth-
ing should be done about climate change 
right now, and instead we should wait until 
we learn more. Quite the contrary. One can 
think of a GHG abatement policy as a form 
of insurance: society would be paying for a 
guarantee that a low-probability catastrophe 
will not occur (or is less likely). As I have 
argued elsewhere, even though we don’t 
have a good estimate of the SCC, it would 
make sense to take the Interagency Working 
Group’s $21 (or updated $33) number as a 
rough and politically acceptable starting 
point and impose a carbon tax (or equivalent 
policy) of that amount.20 This would help to 
establish that there is a social cost of carbon, 
and that social cost must be internalized in 
the prices that consumers and firms pay. 
(Yes, most economists already understand 
this, but politicians and the public are a dif-
ferent matter.) Later, as we learn more about 
the true size of the SCC, the carbon tax could 
be increased or decreased accordingly.

20 See Pindyck (2013b). Litterman (2013) and National 
Research Council (2011) come to a similar conclusion.
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