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Projections and Uncertainties about Climate Change in an 
Era of Minimal Climate Policies†

By William Nordhaus*

Climate change remains one of the major international environ-
mental challenges facing nations. Up to now, nations have adopted 
minimal policies to slow climate change. Moreover, there has been 
no major improvement in emissions trends as of the latest data. The 
current study uses the updated DICE model to develop new projec-
tions of trends and impacts of alternative climate policies. It also 
presents a new set of estimates of the uncertainties about future cli-
mate change and compares the results with those of other integrated 
assessment models. The study confirms past estimates of likely rapid 
climate change over the next century if major climate-change pol-
icies are not taken. It suggests that it is unlikely that nations can 
achieve the 2°C target of international agreements, even if ambitious 
policies are introduced in the near term. The required carbon price 
needed to achieve current targets has risen over time as policies have 
been delayed. (JEL Q54, Q58)

Climate change remains the central environmental issue of today. While the Paris 
Agreement on climate change of 2015 (UN 2015) has been ratified, it is limited 

to voluntary emissions reductions for major countries, and the United States has 
withdrawn and indeed is moving backward. No binding agreement for emissions 
reductions is currently in place following the expiration of the Kyoto Protocol in 
2012. Countries have agreed on a target temperature limit of 2°C, but this is far 
removed from actual policies, and is probably infeasible, as will be seen below. 
The  reality is that most countries are on a business-as-usual (BAU) trajectory of 
minimal policies to reduce their emissions; they are taking  noncooperative policies 
that are in their national interest, but far from ones which would represent a global 
cooperative policy.

Given actual climate policies, it is critical to determine the trajectory the world 
is on now, or what the BAU involves. The most recent Intergovernmental Plan on 
Climate Change (IPCC) report (Stocker et al. 2013) largely ignores a systematic 
study of no-policy outcomes; instead, it examines stylized trajectories that are only 
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loosely related to actual policies, output, and emissions paths. It would be difficult, 
reading the most recent IPCC reports, to determine the likely outcome for future 
climate change and damages in an unregulated policy space.

The present study attempts to fill this void by investigating in detail the 
 implications of a world in the absence of ambitious climate policies. It does so 
with a newly revised model, the DICE-2016R2 model (DICE stands for Dynamic 
Integrated Model of Climate and the Economy). In addition to standard runs, the 
current study adds a new dimension by investigating the impact of uncertainties 
about several important parameters. The results confirm and even strengthen  earlier 
results,  indicating the high likelihood of rapid warming and major damages if 
 policies continue along the unrestrained path.

The methods here employ an approach known as integrated assessment models 
(IAMs). These are approaches to the economics of climate change that integrate the 
different elements into a single interrelated model. The present study presents the 
results of a fully revised version of the DICE model (as of 2016). This is the first 
major revision of the model following the Fifth Assessment Report of the IPCC. 
This study describes the changes in the model from the last round, presents updated 
estimates of the different variables, and compares the new estimates with other 
 models. In addition, the analysis provides uncertainties in the projections using new 
estimates of the underlying uncertainties of major model parameters.

Overview of Results.—I will not attempt to summarize the entire paper here 
but will instead provide some highlights. The first result is that the revised DICE 
model shows more rapid growth of output in the baseline or “no-policy” path 
 compared to earlier DICE versions and most other models. This is also reflected in 
a major upward revision in the social cost of carbon (SCC) and the optimal carbon 
tax in the current period. For example, the estimate of the SCC has been revised 
upward by about 50 percent since the last full version in 2013. There are several 
 components of this change—some of methods and some of data— but the change is 
not encouraging.

A second result is that the international target for climate change with a limit 
of 2°C appears to be infeasible with reasonably accessible technologies even with 
very ambitious abatement strategies. This is so because of the inertia of the climate 
 system, of rapid projected economic growth in the near term, and of revisions in 
several elements of the model. A target of 2.5°C is technically feasible but would 
require extreme and virtually universal global policy measures in the near future.

A third point is the emphasis on the business-as-usual trajectory, or the one that 
would occur without effective climate policies. The approach of studying business as 
usual has fallen out of favor with analysts, who concentrate on  temperature-limiting 
or concentration-limiting scenarios. A careful study of  minimal-policy  scenarios 
may be depressing, but it is critical in the same way a CT scan is essential for a cancer 
patient. Moreover, notwithstanding what may be called “The Rhetoric of Nations,” 
there has been little progress in taking strong policy measures. For example, of the 
six largest countries or regions, only the European Union has  implemented national 
climate policies, and the policies of the European Union today are very modest 
(about $8/tCO2 in 2017). Moreover, from the perspective of political economy in 
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different countries as of 2017, the prospects of strong policy measures appear to be 
dimming rather than brightening.

The paper also investigates the implications of uncertainty for climate change. 
When uncertainties are accounted for, the expected values of most of the major 
 geophysical variables, such as temperature, are largely unchanged. However, the 
social cost of carbon is higher (by about 10 percent) under uncertainty than in the 
best-guess case because of the asymmetry in the impacts of uncertainty on the 
 damages from climate change. Note as well that even under highly “ optimistic” 
 outcomes (i.e., ones that have the most favorable realizations of the uncertain 
 variables), global temperature increases markedly, and there are significant damages.

An additional important finding is that the relative uncertainty is much higher for 
economic variables than for geophysical variables. More precisely, the  dispersion 
of results (measured, say, by the coefficient of variation, or the standard deviation 
 relative to the mean) is larger for emissions, output, damages, and the SCC than 
for concentrations or temperature. This result is primarily because of the large 
 uncertainty about economic growth. From a statistical point of view, uncertainty 
about most geophysical parameters is a level uncertainty and is roughly constant 
over time; whereas the uncertainty about economic variables is a growth-rate 
 uncertainty and therefore tends to grow over time. By the year 2100, this implies a 
greater uncertainty for economic variables. Note as well that the output uncertainty 
implies a substantial difference between best-guess and uncertain outcomes.

This study makes one further important point about uncertainty. It shows that 
there is substantial uncertainty about the path of climate change and its impacts. 
The  ranges of uncertainty for future emissions, concentrations, temperature, and 
damages are extremely large. However, this does not reduce the urgency of taking 
strong climate change policies today. When taking uncertainties into account, the 
desirable strength of policy (as measured by the social cost of carbon or the optimal 
carbon tax) would increase, not decrease.

As a final point, I emphasize that many uncertainties remain. Analysts do 
not know, and are unlikely soon to know, how the global economy or energy 
 technologies will evolve; or what the exact response of geophysical systems will be 
to  evolving  economic conditions; or exactly how damaging climate change will be 
for the  economy as well as nonmarket and nonhuman systems. We also do not know 
with precision how to represent the different systems in our economic and scientific 
models. The best practices have evolved over time as we learn more about all these 
systems. But we must take stock of what is known as well as the implications of 
our actions. The bottom line here is that this most recent stock-taking has more bad 
news than good news, and that the need for policies to slow climate change is more 
pressing and not less pressing.

I. The Structure of the DICE-2016R2 Model

The analysis begins with a discussion of the DICE-2016R2 model, which is 
a revised version of the DICE-2013R model (see Nordhaus 2014, Nordhaus and 
Sztorc 2013 for a detailed description of the earlier version). It is the latest  version of 
a series of models of the economics of global warming developed at Yale University 
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by Nordhaus and colleagues. The first version of the global dynamic model was 
published in Nordhaus (1992). The discussion explains the major modules of the 
model, and describes the major revisions since the 2013 version.1

The DICE model views climate change in the framework of economic growth 
 theory. In the Ramsey-Koopmans-Cass optimal growth model, society invests in 
 capital goods, thereby reducing consumption today in order to increase  consumption 
in the future. The DICE model modifies the Ramsey model to include climate 
 investments, which are analogous to capital investments in the standard model. The 
model contains all elements, from economics through climate change, to damages 
and abatement, in a structure that attempts to represent simplified best practices in 
each area.

A. Equations of the DICE-2016R2 Model2

Most of the analytical background is similar to that in the 2013R model, and 
for details readers are referred to Nordhaus and Sztorc (2013). Major revisions are 
 discussed as the equations are described. All prices are in 2010 US international 
dollars (purchasing power parity corrected).

B. Economic Sectors

The model optimizes a social welfare function, W, which is the discounted sum of 
the population-weighted utility of per capita consumption. The notation here is that  
V  is the instantaneous social welfare function,  U  is the utility function,  c(t)  is per 
capita consumption, and  L(t)  is population. Time is in five-year periods, so  t = 1  
for 2015 (2013–2017), and so forth. The discount factor on future generational 
 welfare is  R(t) = (1 + ρ )   −t  , where  ρ  is the pure rate of social time preference or 
generational discount rate on welfare;

 (1) W =   ∑ 
t=1

  
 T max  

   V [c (t), L (t)]R (t) =   ∑ 
t=1

  
 T max  

   U [c (t)]L (t)R (t) .

The utility function has a constant elasticity with respect to per capita  consumption 
of the form  U (c) =  c   1−α /(1 − α).  The parameter α is interpreted as generational 
inequality aversion, which measures the relative importance of consumption levels 
of different generations. In the present version, the utility discount rate is 1.5  percent 
per year, and the rate of inequality aversion is 1.45. As described below, these 
 parameters are set to calibrate real interest rates in the model.

Net output is gross output reduced by damages and abatement costs:

 (2) Q (t) = Ω (t)[1 − Λ (t)]Y (t) .

1 The current version of the DICE-2016R2 is available at https://sites.google.com/site/williamdnordhaus/dice-
rice. A discussion of background is available in Nordhaus (2018a).

2 The equations and description in Section I are included so that readers can refer to the latest model version 
and revisions. These have been published in slightly different form in earlier publications, such as Nordhaus (2013, 
2017b). 

https://sites.google.com/site/williamdnordhaus/dice-rice.
https://sites.google.com/site/williamdnordhaus/dice-rice.
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In this specification,  Q(t)  is output net of damages and abatement,  Y(t)  is gross  
output, which is a Cobb-Douglas function of capital, labor, and technology. 
The   variables  Ω(t)  and  Λ(t)  are the damage function and abatement cost and are 
defined below. Total output is divided between total consumption and total gross 
investment. Labor is proportional to population, while capital accumulates  according 
to an optimized savings rate.

The current version develops global output in greater detail than earlier versions. 
The global output concept is purchasing power parity (PPP) as measured by the 
International Monetary Fund. The growth concept is the weighted growth rate of 
real GDP of different countries, where the weights are the country shares of world 
nominal GDP using current international US dollars. I constructed a new version of 
world output, and this corresponds closely to the IMF estimate of the growth of real 
output in constant international PPP dollars. The earlier model used the World Bank 
growth figures, but the World Bank growth rates by region could not be replicated.

The present version substantially updates both the historical growth estimates and 
the projections of per capita output growth. Future growth is based largely on a  survey 
of experts conducted by Christensen, Gillingham, and Nordhaus (2018). Growth in 
per capita output over the 1980–2015 period was 2.2 percent per year. Growth in 
per capita output from 2015 to 2050 is now projected at 2.1 percent per year, while 
that to 2100 is projected at 1.9 percent per year. The revisions now  incorporate the 
latest output, population, and emissions data and projections. Population data and 
projections through 2100 are from the United Nations. CO2 emissions are from the 
Carbon Dioxide Information Analysis Center (CDIAC), and updated using various 
sources. Non-CO2 radiative forcings (that is, the impact of other gases on warming) 
for 2010 and projections to 2100 are from projections prepared for the IPCC Fifth 
Assessment.

The additional variables in equation (2) above are  Ω(t)  and  Λ(t) , which  represent 
the damage function and the abatement-cost function, respectively. The  abatement 
cost function,  Λ(t)  in equation (2) above, is the fraction of output devoted to  reducing 
CO2 emissions ( perhaps 3 percent). It was recalibrated to the abatement cost func-
tions of other IAMs as represented in the modeling uncertainty project (MUP) 
study (Gillingham et al. forthcoming). The resulting abatement function has slightly 
higher costs than earlier estimates. The abatement-cost function takes the form  
 Λ (t) =  θ 1   (t)μ  (t)    θ 2    ,  where  θ1(t) = 0.0741 × 0.090 4   (t−1)   and θ2 = 2.6. The 
 interpretation here is that at zero emissions for the first period, abatement is 7.41 
percent of output. That percentage declines at 2 percent per year. The abatement-cost  
function is highly convex, reflecting the sharp diminishing returns to reducing 
emissions.

The model assumes the existence of a “backstop technology,” which is a 
 technology that produces energy services with zero greenhouse gas (GHG) emis-
sions  (μ = 1) . The backstop price in 2020 is $550 per ton of CO2-equivalent, and 
the backstop cost declines at 1/2 percent per year. Additionally, it is assumed that 
there are no “negative emissions” technologies initially, but that negative emissions 
are available after 2150. The existence of negative-emissions technologies  (μ > 1)  
is critical to reaching low-temperature targets, as described below.
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The damage function is defined as Ω(t) = 1 − D(t), where3

 (3) D (t) =  ψ 1    T AT   (t) +  ψ 2   [ T AT   (t) ]   2  .

Equation (3) describes the economic impacts or damages of climate change. 
The DICE-2016R2 model takes globally averaged temperature change  (TAT)  as a 
 sufficient statistic for damages. Equation (3) assumes that damages can be reason-
ably well approximated by a quadratic function of temperature change. The esti-
mates of the coefficients of the damage function are explained below.

Uncontrolled industrial CO2 emissions are given by a level of carbon intensity 
or the CO2-output ratio,  σ(t) , times gross output. Total CO2 emissions,  E(t) , are 
equal to uncontrolled emissions reduced by the emissions-reduction rate,  μ(t) , plus 
 exogenous land-use emissions:

 (4) E (t) = σ (t)[1 − μ (t)]Y (t) +  E Land   (t) .

The model has been revised to incorporate a more rapid decline in the CO2-output 
ratio (or what is called decarbonization) to reflect the last decade’s observations. 
The decade through 2010 showed relatively slow global decarbonization, with the 
global CO2-output ratio changing at −0.8 percent per year. However, the most recent 
data indicate a sharp downward tilt, with the global CO2/GDP ratio changing at 
−2.1 percent per year over the 2000–2015 period (preliminary data). It appears that 
changes in the global decarbonization rate are largely driven by China’s  performance 
rather than any significant change in the rest of the world.4 For the DICE model, it 
is assumed that the rate of decarbonization going forward is −1.5 percent per year 
(using the IMF output concept). Figure 1 shows the global trend in the CO2-GDP 
ratio since 1960. Note the steeper slope (increased rate of decarbonization) in the 
last few years.

C. Geophysical Sectors

The next set of equations represents the linkage between the economy and 
 climate change. The geophysical equations link greenhouse gas emissions to the 
carbon cycle, radiative forcings (defined below), and climate change. Equation (5) 
represents the equations of the carbon cycle for three reservoirs:

 (5)  M j   (t) =  ϕ 0 j   E (t) +   ∑ 
i=1

  
3

     ϕ i j    M i   (t − 1) .

3 In early approaches, the damage function was  Ω(t) = D(t)/[1 + D(t)] . This earlier specification ensured that 
damages never exceeded output. However, the damage ratio does not approach 1 in the current projections, so the 
quadratic specification is preferred. 

4 Based on preliminary data, the rate of decarbonization of the world-less-China has not changed appreciably 
over the last three decades. However, when China is included, the global CO2-output ratio has declined more 
sharply in 2010–2016 relative to the earlier decade. The reliability of the Chinese output and emissions data are 
likely to be low relative to other major countries, so the impact of the Chinese data on the global total should be 
treated with reservations. 
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The three reservoirs are j = AT, UP, and LO, which are the atmosphere, the 
upper oceans and biosphere, and the lower oceans, respectively. The parameters   
ϕ i  j    represent the flow parameters between reservoirs per period. All emissions flow 
into the atmosphere. The 2016 version incorporates new research on the carbon 
cycle. Earlier versions of the DICE model were calibrated to fit the short-run carbon 
cycle (primarily the first 100 years). Because the new model is in part designed to 
calculate long-run trends, such as the impacts on the melting of large ice sheets, it 
was decided to change the calibration to fit the atmospheric retention of CO2 for 
periods up to 4,000 years. Based on studies of Archer et al. (2009), the 2016 version 
of the three-box model does a much better job of simulating the long-run behavior 
of larger models with full ocean chemistry. This change has a major impact on the 
long-run carbon concentrations.

The next relationship is between GHG accumulations and increased radiative 
forcing. Radiative forcing is the heat received at the earth’s surface. Increased radi-
ative forcing is the result of higher accumulations of greenhouse gases, as is shown 
in equation (6):

 (6) F (t) = η  { log 2   [ M AT   (t)/ M AT   (1,750)]}  +  F EX   (t) .

Here, F(t) is the change in total radiative forcings from anthropogenic sources 
such as CO2; FEX(t) is exogenous forcings, and the first term is the forcings due to 
 atmospheric concentrations of CO2.

Forcings lead to warming according to a simplified two-level global climate 
model:

 (7)   T AT   (t) =  T AT   (t − 1)

 +  ξ 1    {F (t) −  ξ 2    T AT   (t − 1) −  ξ 3   [ T AT   (t − 1) −  T LO   (t − 1)]}  ,

 (8)  T LO   (t) =  T LO   (t − 1) +  ξ 4   [ T AT   (t − 1) −  T LO   (t − 1)] .

29 
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In these equations,  TAT(t)  is the global mean surface temperature and  TLO(t)  is the 
mean temperature of the deep oceans. Large-scale ocean circulation models show 
that there is substantial thermal inertia in the oceans, which means that the warming 
of the deep oceans lags hundreds of years behind warming at the surface.

The climate module has been revised to reflect recent earth system models. The 
equilibrium climate sensitivity (ECS) is based on the analysis of Olsen et al. (2012). 
The reasons for using this approach are provided in Gillingham et al. (2018). The 
final estimate is a mean warming of 3.1°C for an equilibrium CO2 doubling. The 
 transient climate sensitivity or TCS (sometimes called the transient climate response) 
is adjusted to correspond to models with an ECS of 3.1°C, which  produces a TCS 
of 1.7°C.

The treatment of discounting is identical to that in earlier versions of the DICE 
model. I distinguish between the welfare discount rate  (ρ)  and the goods discount 
rate  (r) . The welfare discount rate applies to the well-being of different genera-
tions, while the goods discount rate applies to the return on capital investments. 
The  former is not observed, while the latter is observed in markets. When the term 
“discount rate” is used without a modifier, this will always refer to the discount rate 
on goods.

The economic assumption behind the DICE model is that the goods discount rate 
should reflect actual economic outcomes. This implies that the assumptions about 
model parameters should generate savings rates and rates of return on capital that 
are consistent with observations. With the current calibration, the discount rate (or 
equivalently, the real return on investment) averages 4.25 percent per year over the 
period to 2100. This is the global average of a lower figure for the United States and 
a higher figure for other countries, and is consistent with estimates in other studies 
that use US data.

This specification used in the DICE model is sometimes called the “descriptive 
approach” to discounting. The alternative approach, used in the Stern Review and 
elsewhere, is called the “prescriptive discount rate” (Stern 2006). Under this  second 
approach, the discount rate is assumed on a normative basis and determined largely 
independently of actual market returns on investments. A full discussion of the 
issues of discounting is contained in Gollier (2012), with the justification for the 
DICE-model treatment described in Nordhaus (2008).

D. Impacts of Revisions

The DICE model has changed substantially since its development in Nordhaus 
(1992). In a parallel study, I have investigated the impacts of model and data 
 revisions over the last quarter century (Nordhaus 2018b). That study found that the 
major  revisions are due to changes in the economic sectors of the model, whereas 
the  geophysical changes have been much smaller. Particularly sharp revisions have 
occurred for global output, damages, and the social cost of carbon. These results 
suggest that the economic projections are the least precise parts of integrated 
 assessment models and deserve much greater study than has been the case up to 
now, especially careful studies of long-run economic growth (to 2100 and beyond).  
This point has been emphasized in a recent report of the National Academy of 
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Sciences (Committee on Assessing Approaches to Updating the Social Cost of 
Carbon 2017).

II. Approach to Estimating Uncertainties

A. Background

The “standard DICE model” uses the expected values (or what I refer to as the 
“best guess” or BG) of parameters such as productivity growth or equilibrium 
 temperature sensitivity. The present study augments that approach with estimates of 
the uncertainties about major results looking at parametric uncertainties.

Developing reliable estimates that incorporate uncertainty has proven extremely 
challenging on both methodological and empirical grounds. Two major sources of 
uncertainty are “model uncertainty” and “structural uncertainty.” The difference 
across models is called model uncertainty. This approach, also known as ensem-
ble uncertainty, is convenient for estimating uncertainty because the “data,” which 
are results of different models, are readily collected and validated. The concern is 
that the ensemble approach is conceptually incorrect, and that there is a degree of 
 arbitrariness concerning the selection of studies to include in the ensemble.5

Structural or parameter uncertainty, which refers to uncertainty within  models, 
arises from imprecision in knowledge of parameters and variables as well as 
 uncertainty about model structure. For example, climate scientists are unsure 
about the response of climate to increasing greenhouse gas forcings. The present 
study chiefly examines structural uncertainty focusing only on uncertainties about 
parameters.

It will be helpful to explain the structure of the current approach analytically. 
The model can be represented as a mapping from exogenous and policy variables 
and parameters to endogenous outcomes. A model can be written symbolically as 
follows:

(9)  Y = H (z, α, u) .

In this schema, Y is a vector of model outputs; z is a vector of exogenous and policy 
variables;  α  is a vector of model parameters; u is a vector of uncertain parameters 
to be investigated; and H represents the model structure (described above for the 
DICE model).

The first step is to select the uncertain parameters for analysis. For the 
 present study, I have selected five variables: equilibrium temperature  sensitivity 
(ETS),  productivity growth, the damage function, the carbon cycle, and the 
rate of  decarbonization. Each has a probability density function (PDF) with a 
joint  distribution as  g( u 1  ,  u 2  ,  u 3  ,  u 4  ,  u 5  ) . For the present study, the  distributions 
are assumed to be  independent and are denoted as   f i   ( u i  ) , which implies that  

5 Ensemble uncertainty is analytically incorrect because it calculates the dispersion as the difference in the mean 
values of outcomes or parameters across models. To see this point, assume that models use the same data and their 
structures are identical. They will have zero ensemble uncertainty even though the actual uncertainty may be large. 
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 g( u 1  ,  u 2  ,  u 3  ,  u 4  ,  u 5  ) =  f 1  ( u 1  )  f 2  ( u 2  )  f 3  ( u 3  )  f 4  ( u 4  )  f 5  ( u 5  ) .6 The distribution of the 
 uncertain parameters is then mapped into the distribution of the output variables, 
given schematically by  h(Y  )  as follows based on (9):

(10)  h  (Y  ) = H [z, α,  f 1   ( u 1  )  f 2   ( u 2  )  f 3   ( u 3  )  f 4   ( u 4  )  f 5   ( u 5  )] .

I note that the discount rate is not included as an uncertain variable. The reason 
is, as explained above, that the discount rate reflects preferences (through the rate 
of time preference and inequality aversion). It might be thought that generational 
 preferences are uncertain and might evolve differently over time. Uncertainties about 
preferences pose philosophical difficulties that are not easily represented in economic 
growth models and are therefore excluded here. However, the  present approach does 
allow uncertainty about real interest rates since these are the  endogenous outcomes 
of shocks such as productivity.

A critical decision involves how actually to calculate the mapping in  equation (10) 
for complex systems. One standard approach is a Monte Carlo sampling of the 
 uncertain variables. This was attempted but cannot be implemented on a scale 
that produces reliable estimates.7 I have therefore discretized the distributions and 
 performed a complete enumeration of the states of the world (SOW), as defined 
by the above parameters. More precisely, each of the distributions of the uncertain 
 variables is separated into quintiles. The expected values of the uncertain variables 
are next  calculated for each quintile, obtaining discrete values for each variable 
of  { u i   (1),  u i   (2),  u i   (3),  u i   (4),  u i   (5)}, where   u i   (k)  is the kth quintile of uncertain  
variable i.

There are two adjustments of the discrete distributions for present purposes. First, 
the middle quintile is set equal to the expected value of the parameter. This is done 
so that the median and mean outcomes can be easily compared. Secondly, because 
the first adjustment changes the means and standard deviations for the uncertain 
variables, the quintile values are adjusted so that the means and standard deviations 
are preserved. This second step involves small adjustments in the noncentral quintile 
values.

While the algorithm for estimating uncertainty is computationally efficient, 
an important question involves its accuracy. If the model in (10) is linear in the 
 uncertain parameters, the approach is exact. However, to the extent that (10) is 

6 With five uncertain variables, there are ten potential correlations. Six correlations can be set to zero by first 
principles. These are the correlations between economic uncertainties and geophysical uncertainties. For example, 
there is no reason to assume that the equilibrium climate sensitivity is correlated with productivity growth. The 
covariance between carbon and temperature is highly complex but has been captured in the calibration of the 
 climate model. The three remaining covariances are among damages, TFP, and decarbonization. I find a very small 
negative correlation between TFP growth and decarbonization in the historical record, but there are no reliable data 
on the correlation between damages and the other variables. Evaluating the impact of variable correlation is on the 
agenda for future research. 

7 The constraints are that the modeling should be replicable on a PC and use the GAMS code. A single run takes 
about five seconds. I estimate that it would require a sample of about 10 million runs to get reliable  estimates using 
Monte Carlo techniques. GAMS software does not allow this to be done easily, and using the standard code would 
require about three months of computer time. Moving to other platforms would clearly speed up the  computations, 
but this would make replication and use by other scholars more difficult. The online Appendix  examines an 
 alternative approach using a response surface method. 
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 nonlinear in the parameters, the algorithm may provide biased estimates of the 
variability. I have tested the accuracy using an alternative approach that involves a 
response surface function (or RSF). The basic idea is to fit a polynomial function 
of the uncertain variables to the 3,125 grid points using a response surface function 
(RSF), and then  estimate the distribution of the output variables using a Monte Carlo 
 simulation. These estimates indicate that the discretized probability  distributions 
provide an accurate representation of the distributions of the uncertain variables. 
The use of response surface functions is widespread in engineering systems and has 
been applied to complex econometric problems. For a further discussion of the RSF 
and the results of that analysis, see online Appendix materials, particularly part A, 
Table A-1.

The actual computations involved a complete enumeration of the 55 = 3,125 
combinations of uncertain parameters for each state of the world. This took about 
one hour on a high-end PC workstation.

B. Determination of the Probability Distributions

Five probability distributions were selected based on earlier work that suggests 
the most important uncertain variables (see the extensive discussion in Nordhaus 
1994, 2008) as well as those in the MUP study for comparison (Gillingham et al. 
2018). This section describes the derivation of the distributions.

Equilibrium Temperature Sensitivity (ETS ).—The distribution for ETS adopts 
the approach used in the MUP study. The primary estimates are from Olsen et al. 
(2012). This study uses a Bayesian approach, with a prior based on previous studies 
and a likelihood based on observational or modeled data. The best fitting  distribution 
is a log-normal PDF. The parameters of the log-normal distribution fit to Olsen 
et al. are  μ = 1.107  and  σ = 0.264 . The major summary statistics of the  reference 
 distribution in the study are the following: mean = 3.13, median = 3.03, and 
standard deviation = 0.843.

Productivity Growth.—The scholarly literature on uncertainties about long-run 
economic growth is sparse. The specification relied on an analysis conducted by 
a team at Yale University led by Peter Christensen (Christensen, Gillingham, and 
Nordhaus 2018). The survey utilized information drawn from a panel of experts to 
characterize uncertainty in estimates of global output for the periods 2010–2050 and 
2010–2100. Growth was defined as the average annual rate of growth of global real 
per capita GDP, measured in purchasing power parity terms.

The resulting estimates of growth were best fit using a normal distribution. The 
resulting combined normal distribution had a mean growth rate of 2.1 percent per 
year and a standard deviation of the growth rate of 1.1 percent per year over the 
period 2010–2100. The procedures and estimates will shortly be available in a 
working paper, and a short description is in Gillingham et al. (2018). An alternative 
 low-frequency approach developed by Müller and Watson (2016) gives a significantly 
lower dispersion at long horizons (a standard deviation of approximately 0.8 percent 
per year for 2010–2100). For the calculations, I used the estimate from the survey.
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Decarbonization.—The DICE model has a highly condensed representation of 
the energy sector. The most important parameters are the level and trend of the 
global ratio of uncontrolled CO2 emissions to output,  σ(t) , as shown in equation (4).  
This is modeled as an initial growth rate with a slow decline over time. While there are 
several studies that include something like this ratio (often modeled as  autonomous 
energy efficiency improvement, or AEEI), there are no consensus  estimates about its 
uncertainty because of the differences in IAM specifications.

There are two alternative approaches to estimate uncertainty. The first  examined 
was a time-series approach. For this, I reviewed historical data on the global 
 emissions/output ratio. The simplest approach is to estimate an OLS regression, 
using data from 1960 to 2015, and then look at the forecast error for 2100. If an 
AR1 term is included in the equation, the standard error of the forecast for 2100 is 
13.5 percent of the logarithm of  σ(t) . This implies an annual uncertainty of 0.149 
percent per year. However, a unit root of  σ(t)  cannot be rejected, so this estimate is 
biased downward.

An alternative approach is to examine the variation in models. This approach 
examined the standard deviation of the growth of  σ(t)  in the six MUP models for the 
uncontrolled run. This produced a much higher divergence, 0.32 percent per year 
from 2010 to 2100.

For the uncertainty estimates, I chose a normal distribution using the results from 
the MUP differences. This produces an uncertainty of the annual growth of  σ(t)  
of 0.32 percent per year. This is higher than the time-series numbers, but seems 
to capture the errors. The major advantage is that it is conceptually the correct 
approach and contains structural elements. The major shortcoming is that it may 
 underestimate the uncertainty as many ensembles do, but it seems less prone to 
clustering than other variables.

Carbon Cycle.—The carbon cycle has several parameters, but the most  important 
one is the size of the intermediate reservoir (biosphere and upper level of the oceans). 
Changes in this have major impacts on atmospheric retention over the medium term 
(a century or more), while the other parameters affect primarily either the very short 
run or the very long run.

Since IAMs generally have primitive carbon cycles, I examined model 
 comparisons of carbon cycles. A study by Friedlingstein et  al. (2014) examined 
alternative  predictions of 11 earth system models (ESMs) by calculating different 
emission-driven simulations of concentrations and temperature projections. These 
used the IPCC high emissions scenario (RCP 8.5). When forced by RCP 8.5 CO2 

emissions, models simulate a large spread in atmospheric CO2 concentrations, with 
2100 concentrations ranging between 795 and 1,145 parts per million volume (ppm). 
The standard deviation of the 2100 concentrations (conditional on the  emissions 
trajectory) is 97 ppm. According to the study, differences in CO2 projections are 
mainly attributable to the response of the land carbon cycle, which suggests that 
the size of the intermediate reservoir is the uncertain parameter to adjust. While the 
ensemble standard deviation is not conceptually appropriate, as mentioned above, it 
is a useful benchmark for the purposes at hand. The final estimate uses a log-normal 
distribution for the carbon-cycle parameter.
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C. Damage Function: Core Estimates

The damage function was revised in the 2016 DICE version to reflect new 
 findings. The 2013 version relied on estimates of monetized damages from the Tol 
(2009) survey, but it has since been determined that the Tol survey contained several 
numerical errors (see Journal of Economic Perspectives 2015).

The current version of the DICE model continues to rely on existing damage 
studies. The method for estimating the damage function was the following: the new 
estimates started with a survey of damage estimates by Nordhaus and Moffat (2017). 
The underlying damage estimates were identified and collected. The survey turned 
up 27 studies, which contained 36 useable damage estimates. For example, a recent 
version of the PAGE model estimated that the impact of a 4°C warming would be to 
lower global output by 2.9 percent. Using those 36 estimates as data points, we then 
fitted a number of different specifications to the estimates. The  central  specification 
was a one-parameter quadratic equation with a zero intercept and no linear term 
and was therefore a one-parameter function. (The weighted OLS version had the 
 highest damage parameter; it was followed by the weighted median regression that 
is used; while the unweighted least squares and unweighted median regressions have 
the smallest estimated damage coefficients. “Largest” here means most  negative.) 
Because the studies generally included only a subset of all potential impacts, we 
added an adjustment of 25 percent of quantified damages for omitted sectors and 
nonmarket and catastrophic damages, as explained in Nordhaus and Sztorc (2013). 
Including all factors, the damage equation in the model assumes that damages are 
2.1 percent of global income at 3°C warming and 8.5 percent of income at 6°C 
warming. A full discussion of the estimates and statistical analysis are available in 
Nordhaus and Moffat (2017).

The parameter used in the model was an equation with a parameter of  
0.227 percent loss in global income per degrees Celsius squared with no linear term. 
This leads to a damage of 2.0 percent of income at 3°C, and 7.9 percent of global 
income at a global temperature rise of 6°C. This coefficient is slightly smaller than 
the parameter in the DICE-2013R model (which was 0.267 percent of income per 
degrees Celsius squared). The change from the earlier estimate is due to corrections 
in the estimates from the Tol numbers, inclusion of several studies that had been 
omitted from that study, greater care in the selection of studies to be included, and 
the use of weighted regressions. Note also that the revised damage coefficient is the 
only change from the 2016R model used in Nordhaus (2017).

D. Damage Function: Uncertainties

The other key question is the uncertainty about the damage function to be used in 
the uncertainty analysis. One approach would be the standard error of the coefficient 
in the preferred equation above. The standard error from the preferred regression 
(including the 25 percent premium for omitted damages) is 0.0303 percent loss 
in global income per degrees Celsius squared (Y/°C2) for a central coefficient of 
0.236%Y/°C2. This corresponds to a t-statistic on the estimated coefficient of 7.8, 
so it is apparently extremely well determined.
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However, this estimate does not reflect specification uncertainty, uncertainty 
about the studies to be included, or study dependence. A broader approach to 
estimating the uncertainty can be taken by taking the calculated damages for all 
specifications of the damage function (both linear and quadratic, weighted and 
unweighted, and with different temperature thresholds), at a temperature increase of 
6°C. This yields an uncertainty of 0.14%Y/°C2. Yet another estimate of uncertainty 
takes the standard deviation of the damage coefficients of the three models used by 
the Interagency Working Group, or IAWG (DICE, FUND, and PAGE); this yields a 
standard deviation of the damage coefficient of 0.15%Y/°C2.

Given the different approaches, I settled on a value for the uncertainty of the dam-
age parameter, which is one-half the mean value of the parameter. More precisely, 
the distribution is assumed to be normal, with a standard deviation of 0.118%Y/°C2. 
This reflects the great divergence today among different studies.

Table 1 shows the major assumptions of the model.

III. Major Results for DICE-2016R2

A. Central or Best-Guess Estimates

It will be useful to begin with results for the central values from the revised 
model. For this section, I use a best-guess approach, which has been the standard for 
the DICE model, most integrated assessment models, and virtually all earth-systems 
models. I use the term “best guess” to designate estimates in which the values of 
uncertain parameters and exogenous variables are set at their mean values. All prices 
are in 2010 US international dollars.

Table 1—Key Assumptions for DICE-2016R2 Model for Best-Guess Case

2015–2050 2050–2100

Economic variables
 Output growth (percent per year) 2.97 1.92
 Population growth (percent per year) 0.80 0.25
 Output per capita growth (percent per year) 2.15 1.67
 Decarbonization rate (percent per year) −1.49 −1.42

2015 2100

 Real interest rate (percent per year) 5.1% 3.6%
 Price of backstop technology (2010$/tCO2) 550 357 

Parameter value

Geophysical variables
 Equilibrium temperature sensitivity (°C) 3.1
 Transient temperature sensitivity (°C) 1.7
 Average carbon retention rate (percent) 67

Notes: Output is world output in constant 2010 US international dollars. Decarbonization rate 
is base CO2 emissions per real dollar output. Real interest rate is the rate of return on capital 
(percent per year). Price of backstop technology is the price at which CO2 emissions are zero. 
Equilibrium temperature sensitivity is the equilibrium rise in global mean surface temperature 
for a doubling of atmospheric CO2 concentrations. Transient temperature sensitivity is the rise 
in global mean surface temperature for a doubling of atmospheric CO2 concentrations after 
70 years. Average carbon retention rate is the percentage of cumulative CO2 emissions that 
remains in the atmosphere for emissions between 2010 and 2100.
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Figures 2 through 4 show the projections of emissions, concentrations, and 
 temperature increase for four scenarios with best-guess parameters. The four 
 scenarios are the business as usual (BAU) or baseline (“Base”), which is the  central 
version of no climate policy studied here; the cost-benefit economic optimum 
(“Opt”), which optimizes climate policy over the indefinite future; a path that limits 
temperature to 2.5°C (“T < 2.5”); and a policy with an extremely low discount rate 
as advocated by the Stern Review (“Stern”).

This analysis emphasizes the “baseline” or “no-policy” scenario. The baseline 
path takes current policy as of 2015, which I estimate to be the equivalent of a 
 carbon price of $2 per ton of CO2, and projects this price forward at 2 percent 
per year. Figure 2 shows the paths of emissions under the four scenarios. The 
 baseline has  rising emissions (although the path is flatter than most other IAMs). 
The two  ambitious paths require zero emissions of CO2 by mid-century, which is an 
extremely sharp break in trend. Both have emissions reductions that are far sharper 
than are consistent with the policies of any major region. The optimal policy has a 
flat trajectory for the next half-century.

Figure 3 shows the CO2 concentrations paths for the four policies. The  interesting 
feature is that the two ambitious paths require stabilization at close to today’s level 
of 400 ppm. The low levels of concentrations are the result of zero-emissions 
 trajectories in the near future, yet still have high CO2 concentrations because of the 
inertia in the carbon cycle.

Figure 4 shows the temperature trajectories of the scenarios. The Stern and limit 
scenario asymptote to 2.5°C by the end of the twenty-first century. The other paths 
grow sharply, either because of no controls (“Base”) or due to inertia even with the 
adoption of strong policies (“Opt”). Again, the difficulty of limiting the temperature 
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Figure 2. Actual and Projected Emissions of CO2 in Different Scenarios

Note: The two most ambitious scenarios require zero emissions before mid-century.
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increase to 2°C comes because policies have been deferred for so many years, and 
because of the great inertia in the carbon cycle and the climate system.

A surprising difference found when comparing the current and earlier versions of 
the DICE model is that the optimal trajectory is now closer to the base than to the 
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Note: The two most ambitious scenarios require concentrations emissions close to current 
levels.

Figure 4. Temperature Change in Different Scenarios

Note: The two most ambitious scenarios cannot limit temperature to 2.5°C in the best-guess 
projections.
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ambitious scenarios. This is due to a combination of factors, such as climate-system 
inertia and the high costs of the limiting scenarios.

Table 2 shows the overall economic impact of different policies for the  best-guess 
parameters. The first column is the objective function, using first-period  consumption 
as the numeraire. This is then compared with the sum of abatement costs and 
 damages. The last two columns show the difference of each policy from the base 
(no-policy) case. The net effects are in discounted trillions of US  international 
 dollars. The objective function is approximately the present value of consumption 
at a constant 4.4 percent per year discount rate (although the actual discount rate 
declines over time). As can be seen, the optimal case raises discounted world income 
by $30 trillion, or a little less than 1 percent of discounted consumption. The other 
policies (Stern and temperature-limit) lower discounted world income because they 
front-load the abatement relative to the optimal case.

It should be noted that the optimal policy depends crucially on the assumed 
 damage function. If the damage function shows higher costs, or has sharp curvature 
at or around 2°C, as is implicitly assumed in international policies that have a 2°C 
target, then the revised optimal policy would have much higher abatement, and the 
temperature-limit and Stern policies would be much more economically attractive. 
However, current damage studies do not at present display either of these features 
(see Nordhaus and Moffat 2017).

B. Comparison with Other Studies

The results of the DICE best-guess approach can be compared with other models 
and studies. Figure 5 shows the projected industrial emissions of CO2 over the com-
ing century for baseline or no-policy scenarios. DICE-2016R2 is at the low end of 
different projections after mid-century. The reason (as explained above) is that the 
projected rate of decarbonization is higher than in earlier versions or other models. 

Table 2—Abatement, Damages, and Net Impacts of Different Policy Scenarios, Best-Guess 
Parameters

Difference from base

Scenario Objective Damages
Abatement 

cost

Damages 
plus 

abatement Objective

Damages 
plus 

abatement 

Base or business as usual 4,491.07 134.2 0.4 134.6 0.0 0.0

Optimal controls 4,520.56 84.6 20.1 104.7 29.5 29.9

2.5 degree maximum 
 Maximum 4,441.32 43.1 134.6 177.8 −49.7 −43.2
 Max for 100 years  4,456.81 45.7 117.6 163.3 −34.3 −28.8

Stern Review abatement 46.2 155.7 201.9 na −67.3

Notes: All figures are trillions of US international dollars in 2010 prices. The estimates in the last two columns 
 represent the present value of the difference in the scenario from the base or business as usual case. The present 
values for damages and abatement use the discount factors from the base case. For this reason, the differences from 
base in the last two columns differ slightly for alternative scenarios. Note that the objective function for the Stern 
case is not applicable (NA) because the preference parameters in that case differ from the other cases.
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The lower emissions trend is reflected in the 2016 DICE version but not in most 
other model projections, which are often from models constructed several years ago.

Figure 6 shows the projected temperature trajectories in five different approaches. 
The IAMs project a temperature increase in the range of 3.3 to 4.2°C by the year 
2100. The results for DICE-2016R2 are at the higher end of comparable studies. 
The DICE results are above those of the EMF-22 modeling exercise, as well as the 
central projections from the MUP project (Gillingham et al. 2015). The top line is 
the ensemble average from Stocker et al. (2013) for the IPCC RCP 8.5  scenario, 
which assumes high energy demand and GHG emissions in the absence of climate 
change policies. The RCP 8.5 projection has a higher radiative forcing than the 
 baseline DICE-2016R2 model. In summary, the DICE temperature projection is 
slightly lower than the last version, is higher than most other IAMs for a baseline 
scenario, and is consistent with (although a little lower) than the IPCC RCP 8.5 
ensemble average.

C. Social Cost of Carbon8

A key finding from IAMs concerns the social cost of carbon, or SCC. This term des-
ignates the economic cost caused by an additional ton of CO2 emissions or its equiv-
alent. More precisely, it is the change in the discounted value of economic  welfare 
from an additional unit of CO2-equivalent emissions. The SCC has become a central 
tool used in climate-change policy, particularly in the determination of  regulatory 

8 A full discussion is contained in Committee on Assessing Approaches to Updating the Social Cost of Carbon 
(2017) and Nordhaus (2014). The discussion in this section draws upon Nordhaus (2017). 

Figure 5. Projected Industrial CO2 Emissions in Baseline Scenario, Alternative 
Models

Notes: The figure compares the projections of the most recent DICE models and two model 
comparison exercises. The estimates from the MUP project are from Gillingham et al. (2018), 
while the EMF-22 estimates are from Clarke et al. (2009).
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policies that involve greenhouse gas emissions. Estimates of the SCC are necessarily 
complex, because they involve the full range of impacts from emissions, through the 
carbon cycle and climate change, as well as including the economic  damages from 
climate change. At present, there are few established integrated  assessment models 
(IAMs) which are available for the estimation of the entire path of cause and effect 
and can therefore calculate an internally consistent SCC. The DICE model is one of 
the major IAMs used by scholars and governments for estimating the SCC.

Table 3 shows alternative estimates of the SCC. The central estimate from the 
BG approach is $30/tCO2 for 2015. Other estimates show the SCC for temperature 
 limits and for different discount rates. We can also compare these estimates with 
those of the US government made by the Interagency Working Group on Social 
Cost of Carbon (IAWG 2015). The IAWG’s concept is conceptually comparable to 
the baseline in the first row of Table 3. Nordhaus (2017) shows that, at  comparable 
 discount rates, the DICE-2016R2 estimate would be roughly twice that of the 
IAWG. This difference can be explained by the IAWG’s use of an earlier version of 
the DICE model, which was then blended with two other models, both of which had 
lower SCCs than the earlier DICE model.

IV. Uncertainties about Climate Change and Policies

A. Results for Baseline Run

This section presents the results of the uncertainty analysis. To reiterate the 
approach, the analysis began with five uncertain parameters. It then divided the 

Figure 6. Global Mean Temperature Increase as Projected by IPCC Scenarios and 
Integrated Assessment Economic Models

Note: The figure compares the projections of the most recent DICE models, the IPCC high 
 scenario (RCP 8.5), and two model comparison exercises.
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PDFs for each uncertain variable into quintiles, and then took the expected value 
of the parameter in each quintile. Asymmetrical PDFs were transformed slightly to 
preserve the means and standard deviations. It then took a full enumeration of all   
5   5  = 3,125  equally probable states of the world. Table A-2 in the online Appendix 
shows the means, standard deviations, and quintile values for the  uncertain 
parameters.

Table 4 shows key statistics for major variables. There are three statistics for 
 central values, and three for uncertainty. Look first at the estimates of the  temperature 
increase for 2100 for the baseline in panel A of Table 4. The best guess for DICE 
is 4.10°C, while the mean is higher at 4.17°C, and the median is lower at 4.08°C. 
These suggest that the distribution is close to slightly skewed, and that the BG 
slightly underestimates the estimates with uncertainty.

Other variables display considerable asymmetry in the distributions. The SCC 
for 2015 has a mean of $33.6/tCO2, whereas the BG is about 10 percent lower at  
$30.0/tCO2. Most variables are similarly skewed. Note that the central value of 
output is hugely underestimated in the best-guess case because of the skewed nature 
of output (i.e., since the growth rate is a normal variable, output is a log-normal 
 variable). The question as to whether the BG is a reasonable approximation is 
important, because its use vastly simplifies analysis. The answer is sometimes yes, 
sometimes no. Online Appendix Table A-3 provides a tabulation of variables and 
the bias from using the best-guess approach. Note the major bias in output and 
emissions over the longer run, which results from the high degree of uncertainty 

Table 3—Global Social Cost of Carbon under Different Assumptions for  
Best-Guess Parameters

Scenario 2015 2020 2025 2030 2050 

Base parameters 
 Baseline a 30.0 35.7 42.3 49.5 98.3
 Optimal controls b 29.5 35.3 41.8 49.2 99.6

2.5 degree maximum 
 Maximumb 184.1 229.0 284.0 351.0 1,008.4
 Max for 50 yearsb 147.2 183.2 227.2 280.4 773.5

Stern Review discounting 
 Uncalibrated b 256.5 299.6 340.7 381.7 615.6

Alternative discount ratesa

 2.5% 111.1 133.4 148.7 162.3 242.6
 3% 71.6 85.3 94.4 104.0 161.7
 4% 34.0 39.6 44.5 49.8 82.1
 5% 18.9 21.7 24.8 28.1 48.4

Notes: The social cost of carbon is measured in 2010 international US dollars. The years at 
the top refer to the date at which emissions take place. Therefore, $30.0 is the marginal cost of 
emissions in 2015 in terms of consumption in 2015. 

a  Calculation along the reference path with current policy. In the baseline calculation, 
 welfare is maximized as in (1) when damages are set to zero for the optimization but 
included in the ex post calculation. 

b  Calculation along the optimized emissions path. Note that for the temperature ceilings, 
the damages are included. By putting a cap on temperature, this implicitly assumes that 
the damages are infinite beyond that limit.
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about productivity as well as the heavy-tailed nature of the log-normal distribution 
of output.

Table 4 also shows three measures of uncertainty: the standard deviation, the 
interquartile range (IQR), and the coefficient of variation (CV). Perhaps the most 
useful of these is the CV. The interesting feature here is that the CV is relatively 
low for geophysical variables such as the 2100 temperature increase and carbon 
 concentrations, but much higher for economic variables such as output, damages, 
and the SCC. The high uncertainty about economic variables is primarily due to 
the high output uncertainty. The long lags in geophysical variables plus the lower 
 uncertainty about geophysical parameters produces lower uncertainty in those 
variables.

We show box plots for several variables in the next figures. Figure 7A is 
 temperature, 7B is CO2 concentrations, 7C is the damage ratio, and 7D is the social 
cost of carbon. Notably, even at the low bar (which is approximately 1/2 percent of 
outcomes), there is substantial climate change.

B. Brief Note on Uncertainty in Optimal Runs and the 2°C Limit

The present study is primarily about the results of uncertainty for a baseline 
 scenario. The results for the optimal run are broadly parallel, with the central  optimal 
result shown above, and the uncertainties largely similar. Panel B of Table 4 shows 
the basic outcomes. One interesting result is that the SCC for the uncertain and BG 
cases are closer in the optimal than in the baseline case. This arises because  policy 
can adapt to SOWs with higher damages, reducing the SCC in extreme SOWs. 
Online Appendix Tables A-4 and A-5 show the averages for the baseline and  optimal 
runs by period.

Table 4—Statistics for Major Variables

Variable Mean
DICE 

best guess
Fiftieth 

percentile SD
IQ 

range
Coef. 
of var.

Panel A. Results for baseline scenario
SCC, 2015 33.6 30.0 24.5 30.6 30.2 0.91 
Temperature, 2100 (°C) 4.17 4.10 4.08 0.99 1.39 0.24 
Carbon concentrations, 2100 (ppm) 926.8 826.6 839.9 307.1 394.7 0.33 
World output, 2100 (trillions, 2010$) 1,140 759 766 1,009 875 0.88 
Emissions 2100 102.4 70.9 71.2 86.2 104.5 0.84 
Damages, 2100 (percent output) 4.1 3.8 3.2 3.3 3.8 0.80 
Real interest rate, 2100 (percent/yr) 3.6 3.6 3.6 1.3 1.6 0.36 
Objective (trillions, 2010$) 4,029 4,491 4,513 2,493 2,727 0.62 

Panel B. Results for optimal scenario
SCC, 2015 31.7 29.6 24.2 26.7 28.7 0.84 
Temperature, 2100 (°C) 3.49 3.50 3.44 0.71 0.94 0.20 
Carbon concentrations, 2100 (ppm) 666.3 633.1 629.4 161.5 170.0 0.24 
World output, 2100 (trillions, 2010$) 1,178 766 772 1,054 873 0.89 
Emissions 2100 21.6 14.1 12.5 31.0 28.3 1.43 
Damages, 2100 (percent output) 2.6 2.8 2.4 1.4 2.0 0.54 
Real interest rate, 2100 (percent/yr) 3.7 3.6 3.7 1.4 1.6 0.38 
Objective (trillions, 2010$) 4,066 4,519 4,533 2,499 2,697 0.61 

Notes: The table shows statistics for major variables from the discretized uncertainty analysis for baseline and 
 optimal scenarios. For a more complete tabulation, see online Appendix tables. “DICE best guess” sets the  uncertain 
parameters at their expected value.
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Figure 7A. Boxplots for Major Uncertain Variables in DICE Uncertainty Runs

Notes: The interpretation is that the line in the middle of the box is the median, while the 
shaded region around the line is the standard error of the median. The dot is the mean. The 
box shows the interquartile range, IQR (= Q3 − Q1), while the fences (upper and lower bars) 
are at Q1 + 1.5 × IQR and Q3 − 1.5 × IQR. For a normal distribution, the fences contain 
99.2 percent of the distribution.

Figure 7B. Boxplots for Major Uncertain Variables

Note: For interpretation, see Figure 7A.
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One other interesting run concerns the potential for limiting temperature in the 
uncertain runs. We have estimated the distribution of outcomes where abatement 
is at its maximum (30 percent in the 2015 period, 70 percent in the 2020 period, 
and 100 percent after that). This is the outer limit of what would be feasible with 
maximum abatement, and is unrealistic given the policies of major countries. The 
probability that the temperature increase in 2100 would be less than 2°C is about 
40  percent for the maximum-effort case (see online Appendix Table A-6 for the 
results on this run).

One of the major findings of the present study is that even with ambitious  abatement 
efforts, it will be difficult to attain the 2°C target that is the goal of  international 
agreements (such as United Nations 2015). As just noted, there is an estimated 
40 percent chance of staying in the 2°C limit with the maximum abatement scenario. 
Is this finding consistent with the findings of other IAMs? To answer this question, 
I examined the results of the Modeling Uncertainty Project (Gillingham et al. 2018), 
which examined the projections of six models with harmonized  policy assumptions. 
The “policy” run involved a rapidly rising carbon price over the coming century, 
with a price (per ton of CO2) of $18 in 2015 and rising to $520 in 2100. While not 
impossibly high, these are extremely ambitious targets given that the actual level in 
2015 is perhaps one-tenth of the target. The projected temperature in the six models 
averaged of 2.8°C in 2100, and it was rising. The lowest 2100 temperature was the 
GCAM model with a 2100 temperature of 2.2°C. These results indicate that the 
DICE model results reported here are representative of major integrated assessment 
models.

C. Contributions of Individual Variables

Table 5 shows the contribution of the different variables to the overall  uncertainty. 
These are calculated in two ways. Panel A starts from zero uncertainty, and 
 introduces each uncertain variable one at a time. Panel B starts from full uncertainty, 
and reduces the uncertainty one variable at a time.

The importance of different variables differs for the endogenous variable at hand. 
The most important uncertainty across the board is the growth rate of productivity, 
and this affects virtually every variable in an important way.

The impact of productivity growth is generally clear, but paradoxical at times. 
The major paradoxes arise because of the effect of productivity growth on the 
real interest rate. In the Ramsey-Koopmans-Cass model, the real interest rate  
(or  discount rate on goods) is endogenous. With the current parameters, a higher rate 
of productivity growth leads to a higher discount rate. This of course implies that 
SOWs with higher productivity growth have higher emissions, higher temperature 
increases, and higher damages. However, because the discount rate is higher, higher 
productivity growth instead leads to a lower social cost of carbon, and conversely 
lower productivity growth implies a higher social cost of carbon. For example, if 
productivity growth is in the highest quintile, global temperature in 2100 is 5.3°C, 
the 2100 discount rate is 5.5 percent per year, and the 2015 SCC is $24/tCO2. With 
low productivity growth, global temperature in 2100 is 3.4°C, the 2100 discount rate 
is 1.7 percent per year, and the 2015 SCC is $50/tCO2.
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As a central way to view uncertainty, the most useful variable is the SCC. This is 
important because it indicates how stringent policy should be today, whereas many 
other variables relate more closely to the distant future. For the SCC, three  variables 
are important. The most significant is the damage coefficient. The other two, 
roughly equally significant, are productivity growth and the equilibrium  temperature 
 sensitivity. The carbon cycle and the emissions intensity are relatively unimportant 
for uncertainty about the SCC. It may be surprising that the uncertainty about  carbon 
intensity has little effect on many variables, particularly the SCC. This result arises 
because changes in carbon intensity affect marginal damages and marginal costs 
almost equally and in opposite directions, so the two changes largely offset each 
other.

D. Comparisons with Other Estimates

There are several other estimates of uncertainty in IAMs. The most convenient 
comparison is with the estimates from the MUP project (Gillingham et al. 2015). The 
MUP project presented the results of the first comprehensive study of  uncertainty 
in climate change using multiple integrated assessment models, examining model 
and parametric uncertainties for population, total factor productivity, and climate 
sensitivity. The study also estimated the PDFs of key output variables, including 
CO2 concentrations, temperature, damages, and the social cost of carbon. A key 
feature of the study was that the PDFs of the uncertain variables were standardized, 
while the models themselves (and the means of all driving variables) were left at the 
modelers’ baselines.

Table 6 shows comparisons of means, standard deviations, and coefficients 
of   variation for major variables between the current study and the MUP study. 

Table 5—Impact on Uncertainty of Individual Uncertain Variables

Fraction (if only uncertainty)
SCC, 
2015

Temp, 
2100

CO2 
conc., 
2100

Output, 
2100

Emissions, 
2100

Damage 
fraction, 

2100

Interest 
rate, 
2100

Global 
income 
(PV)

Panel A. From zero uncertainty
Productivity 40% 68% 82% 61% 69% 41% 78% 109%
Damage 58% 1% 1% 3% 1% 63% 7% 3%
Equil. temp. sens. 37% 69% 1% 2% 1% 39% 5% 2%
Carbon cycle 6% 26% 19% 1% 0% 15% 1% 1%
Emissions intensity 0% 19% 23% 1% 23% 11% 2% 1%
All 100% 100% 100% 100% 100% 100% 100% 100%

Panel B. From full uncertainty
Fraction (if only uncertainty reduced)
Productivity 17% 26% 71% 97% 78% 17% 90% 95%
Damage 45% 0% 0% 0% 0% 40% 0% 0%
Equil. temp. sens. 20% 25% 0% 0% 0% 9% 0% 0%
Carbon cycle 2% 4% 2% 0% 0% 3% 0% 0%
Emissions intensity 0% 2% 4% 0% 3% 1% 0% 0%

Notes: The table shows the contribution (as fraction of total uncertainty) for each uncertainty. Panel A starts from 
zero uncertainty and then introduces the impact of adding the uncertainty about a single variable from a base of no 
uncertainty (one at a time). Panel B shows the reduction in uncertainty starting from full (five-variable) uncertainty 
and eliminating the uncertainty about a single variable (one at a time).
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Note that the DICE model used in that study was DICE-2013R, whereas the model 
used here is DICE-2016R2. As noted above, there have been several important 
changes in the specifications between the two versions of the DICE model, so for 
DICE there are both methodological differences and model differences between this 
study and the MUP study.

The most useful statistic to examine is the coefficient of variation (CV) in the 
bottom panel of Table 6. For the DICE model, the CVs are similar in the two  studies 
with the exception being the SCC. We can also examine the model differences in 
panel C of Table 6. The striking feature is the large differences in CVs across  models. 
The CVs differed by a factor of 1-1/2 to almost 3 among the six models.

The key finding of the present and earlier studies is striking: the uncertainties of 
geophysical variables such as CO2 concentrations and temperature are relatively 
low, in the order of one-fifth of their best-guess values. However, the uncertainties 
of economic variables are much larger, with CVs around 70 percent for emissions, 
damages, output, and the SCC.

E. Timing of Information and Optimal Climate Policy

Although the future is uncertain, we will eventually learn which path we are on—
whether damages are high or low, and whether temperature sensitivity is high or 
low. For the baseline path, with minimal climate policies, the timing of our learning 
is unimportant because it is assumed not to affect policy. However, for the optimal 
case, policy will depend upon the scenario, and it is necessary to consider what we 
know and when we know it.

The optimal policy described up to now assumes a “learn, then act,”  structure 
of decisions. In other words, the analysis implicitly assumes that the uncertainties 
about the future are resolved at the beginning, and climate policy is then decided on 
a state-contingent basis. With high damages, carbon prices are high, and  conversely 

Table 6—Comparative Statistics from Current Study and Other Models from Multi-model 
Comparison

This study
Variable DICE-2016 DICE-2013 FUND GCAM IGSM MERGE WITCH Average

Panel A. Mean of variable
SCC, 2015 33.62 21.87 2.75 NA NA NA 15.47 13.36
Temperature, 2100 (°C) 4.17 3.88 3.72 3.94 3.60 4.31 3.75 3.87
Carbon concentrations, 2100 (ppm) 926.8 939.3 906.9 860.7 810.8 998.6 854.1 895.1
Emissions 2100 102.4 127.7 142.7 90.2 71.3 168.7 90.5 115.2

Panel B. Standard deviation of variable
SCC, 2015 30.63 15.25 2.17 NA NA NA 4.46 7.30
Temperature, 2100 (°C) 0.99 1.10 0.77 1.02 0.81 1.01 0.73 0.91
Carbon concentrations, 2100 (ppm) 307.1 318.3 353.8 222.1 130.9 325.1 134.2 247.4
Emissions 2100 86.2 92.5 145.8 52.7 29.8 130.0 34.6 80.9

Panel C. Coefficient of variation of variable
SCC, 2015 0.91 0.70 0.79 NA NA NA 0.29 0.55
Temperature, 2100 (°C) 0.24 0.28 0.21 0.26 0.23 0.23 0.19 0.23
Carbon concentrations, 2100 (ppm) 0.33 0.34 0.39 0.26 0.16 0.33 0.16 0.28
Emissions 2100 0.84 0.72 1.02 0.58 0.42 0.77 0.38 0.70
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with low damages carbon prices are high. Of course, this approach is unrealistic 
since uncertainties are only gradually resolved over time. The alternative approach, 
“act, then learn,” provides a more realistic approach to decisions—one in which, for 
example, abatement or carbon prices are determined without knowledge of the dam-
age function. For an early  path-breaking approach to a decision-theoretic approach 
in which the structure of learning is  examined, see Manne and Richels (1992).

The act-then-learn approach to decisions cannot be fully incorporated into the 
current DICE uncertainty structure in the GAMS framework, because in the full 
model it requires 3,125 parallel states of the world, and is computationally infeasible 
without an alternative algorithmic approach. Alternative techniques using recursive 
methods have made substantial progress in studying decisions with slowly resolved 
uncertainties (see Lemoine and Rudik 2017), but they do not incorporate the full 
DICE-model structure.

I have undertaken a small test case which examines the impact of learning that 
is delayed until 2050. For this analysis, I took the two extreme quintiles for each 
uncertain variable (so this involves 25 = 32 states of the world, rather than 3,125 
in the full uncertainty model). I then estimated the optimal carbon prices,  assuming 
a learn-then-act approach similar to the approach used for the full model. For the 
 act-then-learn example, I assumed that the optimal carbon prices for each year are 
not state-contingent (i.e., are the same in each year in all SOW) through 2050, 
and then are state-contingent after 2050. So, this alternative approach assumes no 
 learning until 2050 and then complete learning after 2050.

The results of this simplified example indicate that policies are relatively 
 insensitive to late learning, although there is substantial value of learning. 
The  optimal  carbon price in the act-then-learn approach is about 6 percent higher 
than for that of  learn-then-act ($36.1/tCO2 rather than $34.2/tCO2 in 2015, see 
online Appendix Table A-7). However, there is substantial value of early  information, 
with the  discounted value of consumption $3.7 trillion higher when information 
is  available in 2015 rather than in 2050. This example indicates that using the 
learn-then-act approach to policy is reasonably accurate in the DICE model with 
 uncertainty. However, if major structural changes are introduced (particularly sharp 
 discontinuities), then this result would need to be revisited.

V. Conclusion

The present study presents updated results on the prospects for climate change 
using a revised integrated assessment model, DICE-2016R2. It also develops a new 
and simplified method for determining the uncertainties associated with  climate 
change, and the extent to which simplified best-guess techniques provide an  accurate 
representation of the revised and more complex model with uncertainty.

The results pertain primarily to a world without climate policies (business 
as usual), which is reasonably accurate for virtually the entire globe today. The 
results show rapidly rising CO2 concentrations, temperature changes, and damages. 
Moreover, when the major parametric uncertainties are included, there is virtually 
no chance that the rise in temperature will be less than the target 2°C even with 
immediate, universal, and ambitious climate change policies.
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It is worth emphasizing one further point about the impact of uncertainty 
on policy. The future is highly uncertain for virtually all variables, particularly 
 economic variables such as future output, damages, and the social cost of carbon. 
It might be tempting to conclude that nations should wait until the uncertainties 
are resolved, or at least until the fog has lifted a little. The present study finds the 
opposite result. To reiterate, by taking uncertainties into account, the strength of 
policy (as measured by the social cost of carbon or the optimal carbon tax) would 
increase, not decrease.
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