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ABSTRACT

We study the response of an economy to an unexpected epidemic. Households mitigate the spread
of the disease by reducing consumption, reducing hours worked, and working from home.
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immediately. In our calibration, assuming a CFR of 1% and an initial infection rate of 0.1%,
private mitigation reduces the cumulative death rate from 2.5% of the initially susceptible
population to about 1.75%. The planner optimally imposes a drastic suppression policy and
reduces the death rate to 0.15% at the cost of an initial drop in consumption of around 25%.

Callum J. Jones
International Monetary Fund
700 19th St NW
Washington, DC 20431
jonescallum@gmail.com

Thomas Philippon

New York University

Stern School of Business

44 West 4th Street, Suite 9-190
New York, NY 10012-1126
and NBER
tphilipp@stern.nyu.edu

Venky Venkateswaran

Stern School of Business

New York University

7-81 44 West 4th Street

New York, NY 10012

and Federal Reserve Bank of Minneapolis
and also NBER

vvenkate@stern.nyu.edu



1 Introduction

The response to the Covid-19 crisis highlights the tension between health and economic outcomes.
The containment measures that help slow the spread of the virus are likely to reinforce the economic
downturn. Policy makers are therefore faced with a difficult decisions.

We propose a simple extension of the neoclassical model to quantify the tradeoffs and guide policy.
We are particularly interested in understanding the design of the policy response. When will the
private sector engineer the right response, and when is there a need for policy intervention? Which
measures should be front-loaded and which ones should ramp up as the contagion progresses?

Our model has two building blocks: one for the dynamics of contagion, and one for consumption
and production, including mitigation strategies such as the decision to work from home. Our starting
point is the classic STR model of contagion used by public health specialists. Atkeson (2020b) provides
a clear summary of this class of model. In a population of initial size N, the epidemiological state is
given by the numbers of Susceptible (S), Infected (I), and Recovered (R) people. By definition, the
cumulative number of deaths is D = N — S5 — I — R. Infected people transmit the virus to susceptible
people at a rate that depends on the nature of the virus and on the frequency of social interactions.
Containment, testing, and social distancing reduce this later factor. The rates of recovery (transitions
from I to R), morbidity (I becoming severely or critically sick) and mortality (transition form I to
D) depend on the nature of the virus and on the quality of health care services. The quality of health
services depends on the capacity of health care providers (ICU beds, ventilators) and the number of
sick people. The economic side of the model focuses on three key decisions: consumption, labor supply,
and working from home. We use a standard model where members of large households jointly make
these decisions. We make three important assumptions: (i) the consumption of (some) goods and
services increases the risk of contagion; (ii) going to work also increases the risk of contagion; (iii)
working from home involves learning by doing.

We can then study how the private sector reacts to the announcement of an outbreak and how
a government should intervene. Upon learning of the risks posed by the virus, households change
their labor supply and consumption patterns. They cut spending and labor supply in proportion to
the risk of infection, which — all else equal — is proportional to the fraction of infected agents I/N.
Households only take into account the risk that they become infected, not the risk that they infect

others, therefore their mitigation efforts are lower than what would be socially optimal. This infection



externality is well understood in the epidemiology literature. The other important externality is the
congestion externality in the healthcare system. When hospitals are overwhelmed the risk of death
increases but agents do not internalize their impact on the risk of others.

We obtain interesting results when we compare the timing of mitigation. The planner wants to
front load these efforts compared to the private sector. This is especially true with working from
home. Upon learning about the disease, the planner asks people to start working from home so that
mitigation is less costly at the peak of the crisis. The period when I/N is low is a good time to learn
how to work from home. This lowers the cost of social distancing when we reach the peak of contagion
risks.

The contagion and congestion externalities drive a large wedge between private decisions and the
socially efficient allocation. If a private agent knows that she is likely to be infected in the future, this
reduces her incentives to be careful today. We call this effect the fatalism effect. The planner on the
other hand, worries about future infections. When the congestion externality is large, we show that
there can even be a front-running incentive. This happens when the private marginal value of being
infected becomes larger than the private marginal value of being susceptible. A private agent who
thinks that hospitals are likely to be overrun in a few weeks might rationally conclude that it would

be better to become sick sooner rather than later.

Literature. Our paper relates to the literature on contagion dynamics (Diekmann and Heesterbeek,
2000). We refer to the reader to Atkeson (2020b) for a recent discussion. Berger et al. (2020) show
that testing can reduce the economic cost of mitigation policies as well as reduce the congestion in the
health care system. Baker et al. (2020) document the early consumption response of households in the
UsS.

The most closely related papers are Barro et al. (2020), Eichenbaum et al. (2020) and Alvarez et al.
(2020). Barro et al. (2020) and Correia et al. (2020) draw lessons from the 1918 flu epidemic. Barro et al.
(2020) find a high death rate (about 40 million people, 2% of the population at the time) and a large
but not extreme impact on the economy (cumulative loss in GDP per capita of 6% over 3 years). The
impact on the stock market was small. Correia et al. (2020) find that early interventions help protect
health and economic outcomes.

Our model shares with Eichenbaum et al. (2020) the idea of embedding SIR dynamics in a sim-

ple DSGE model. The SIR model is the same, but some differences come from the DSGE model.



Eichenbaum et al. (2020) consider hand-to-mouth households while we use a shopper/worker frame-
work & la Lucas and Stokey (1987). Compared to Eichenbaum et al. (2020) we seem to find that
optimal interventions are more front-loaded. Apart from this difference, we emphasize the role of
learning-by-doing in working from home which adds an important dynamic choice. The planner in-
vests in the new technology to mitigate future disruptions. We also explain the dynamic tension
between the planner and the private sector and we describe a fatalism bias in private incentives.
Alvarez et al. (2020) study a lockdown planning problem under STR dynamics. They assume risk
neutral agents and a linear lockdown technology. They find that the congestion externality plays an
important role in shaping the policy response and that the planner front-loads the effort. Our planner

does something similar but takes into account the desire for consumption smoothing.

2 Benchmark Model

2.1 Households

There is a continuum of mass N of households. Each household is of size 1 and the utility of the

household is

U= B"u(c i, dp)

t=0
where ¢; is per-capita consumption and I; is labor supplied by those who are alive and not sick. The
household starts with a continuum of mass 1 of family members, all of them susceptible to the disease.
At any time t > 0 we denote by s¢, i; and d; the numbers of susceptible, infected and dead people.
The size of the household at time ¢ is therefore 1 — d;. If per capita consumption is ¢; then household
consumption is (1 — d¢) ¢;. Among the i; infected members, ki, are too sick to work. The labor force at
time t is therefore 1 —d; — ki, and household labor supply is (1 — d; — ki) l;. The number of household
members who have recovered from the disease is 74 = 1 — s; — 7y — d;. In the quantitative applications

below, below we use the functional form

ll-i-n

13
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w (e, lyyig, dy) = (1 — dy — Kiy) <log (cr) — ) + riy (log (¢r) — uy) — uqdy

where u, is the disutility from being sick and ug the disutility from death which includes lost con-

sumption and the psychological cost on surviving members.! For simplicity we assume that sickness

'Formally ug = PsyCost —log (cq) where ¢  is the consumption equivalent in death. Technically we cannot set cg = 0
with log preferences but ug is a large number.



does not change the marginal utility from consumption therefore c is the same for all alive members
of the household. The variables s, ¢ and d evolve according a standard SIR model described below.
We use a Lucas and Stokey (1987) approach. At the beginning of time ¢ each household decides how
much to consume ¢; (per capita) and how much each able-bodied member should work l;. We have
normalized the disutility of labor so that [ = ¢ = 1 before the epidemic starts.

Households understand that they can become infected by shopping and by going to work. We
compute infection in two steps. First we define exposure levels for shoppers and for workers. Then
we aggregate these into one infection rate at the household level. Finally we take into account the
stochastic arrival of a vaccine by adjusting the discount factor 5. Formally, we assume an exogenous
arrival rate for a cure to the disease. By a cure we mean both a vaccine and a treatment for the
currently sick. Under this simplifying assumption the economy jumps back to I = ¢ = 1 when a cure
is found. We can therefore focus on the stochastic path before a cure is found. Let 3 be the pure time

discount rate and v the likelihood of a vaccine. We define 3 = 3 (1 — v) along the no-cure path.

2.2 Shopping

Household members can get infected by shopping. We define consumption (shopping) exposure as
ecctCt,

where e¢ measures the sensitivity of exposure to consumption and C} is aggregate consumption, all
relative to a steady state value normalized to one. The idea behind this equation is that household
members go on shopping trips. We assume that shopping trips scale up with consumption and that,
for a given level of aggregate consumption, exposure is proportional to shopping trips. This functional
form captures the notion of crowds in shopping mall as well as in public transportation. We study

heterogeneity across sectors later in the paper.

2.3 Production

Production uses only labor, but a key feature of our model is the distinction between hours supplied

by able bodied workers [; and effective labor supply l; per household. Effective labor supply is

Iy = (1 — dy — i) (lt - % (mt)2)



The first term captures the fact that the number of valid household member is decreased by death and
sickness. The second term captures the cost of implementing mitigation strategies, denoted m; (e.g.,
working from home at least some of the time). The benefit of such strategies is a reduction in the risk

of infection. Exposure at work for household members working is given by
el (1 — mt) lt (1 — Mt) Lt

Working-from-home is subject to learning by doing, so the cost declines with accumulated experience:

where m; is the stock of accumulated mitigation
Myl = My + My.

The function y is positive, decreasing, and convex. In the quantitative analysis, we assume the following

functional form

X () =X (1= Ay (1= ™))

The cost initially is x (0) = x > 0 and then falls over time as people figure out how to work from home.

The aggregate resource constraint is
Y, =C, =L = Ni,

In our basic model, we ignore the issue of firm heterogeneity and market power. Therefore price is
equal to marginal cost

P=W;,=1

where W; is the wage per unit of effective labor, which we normalize to one.



2.4 Income and Contagion

At the end of each period, household members regroup and share income and consumption. Household

labor income is Wtit = Zt and the budget constraint is

b .
(1—dy)cy + 13:1, <b+1
t

Household exposure is
e =€+ (1 - dt) GCCtCt + (1 — dt — Hit) el (1 - mt) lt (1 — Mt) Lt,

where e is baseline exposure, independent of market activities. Contagion dynamics follow a modified
STR model (the benchmark model is explained in the appendix):

t
St4+1 = St — ’YetNSt

. I . .
U+1 = VEtNtSt + (1 — p) iy — S¢kiy
dt+1 — dt + 5t/€it

Tip1 =Ty + piy

where 7y is the infection rate per unit of exposure, p the recovery rate, x the probability of being sick
conditional on infection, and d; the mortality rate of sick patients. In the standard SIR model 7 is
constant. In our model it depends on exposure and therefore on mitigation strategies. The parameter

d¢ increases when the health system is overwhelmed.

2.5 Market Clearing and Aggregate Dynamics

Infection dynamics for the the entire population are simply given by the SIR system above with
aggregate variable I; = Ni;, and so on. The aggregate labor force is N (1 — kiy —dy)l; and total

consumption is N (1 — d;) ¢;. The market clearing conditions are
(1—di)er = Zt,

and for the bond market



Finally the mortality rate is described by an increasing function:

515 =0 (I{It)

3 Decentralized equilibrium

3.1 Equilibrium Conditions

Since our model reduces to a representative household model and since b = 0 in equilibrium, we simply

omit b from the value function. The household’s recursive problem is

Vi (ig, 8¢, di, my) = max (¢t g5 ig, di) 4+ BVigr (g1, digt, Se41, Mig1)
Ct bt , TNt

where M1 = my + my and

1
[

u (Ct,lt;’it,dt) = (1 — dt) log (Ct) — (1 — dt — I{’L't) — ’LL,,;K/Z't — Uddt

t
1+mn

where effective labor is

I = (1—dy — i) (lt p (;nt) (mt)2>

X () =X (1= Ay (1—e™))

The Lagrangian is then:

; 7 b
Vi = (er bz, dp) + BVigr + A <lt +b—(1—dy)cr — 1 f:;t>

+/\et

)

(et & — (1—dy)ee,Cy — (1 —dy — rig) et (1 —my) I (1 — M) Lt)
+ )\z,t (Zt—i-l ’yet—st (1 — p) it + 5t/€it>
I
+ Asit <St+1 — 8¢+ WGtNtSt)

+ Aat (g1 — dy — Oykiy)

We highlight in red the externalities, from infection and from congestion. The first order conditions

for consumption and labor are then



Ct . Ct_l =\ + /\eﬂgecC’t
oo 17 =X — Aege (1 —my) (1 — M) Ly

Vi
my s Ay = % + Aeelly (1= My) Ly

The remaining first order conditions are

1
€t - )\e,t = ()\i,t - )\s,t) ’YNtSt

Gyl Nig = =BVt
St41: Agp = — Vi 141

dit1: Mg = —BVai1

The envelope conditions are

[ Xt (me)? I
V;;’t = Hl T 7 — RUg — K)\t lt — T + )‘e,tﬁe (1 — mt) lt (1 — Mt) Lt — (1 — p) )\Lt + (5t/€ ()‘iyt — )\dﬂg)

I
Vet = (Ast — i) ’Yetﬁt — Ast

1+n

_ 4
1+n
Ving = BVime41 + Mo (1 — dy — Kiy) %Axemt (me)?

Vd,t — IOg (Ct) — Uq — )\t (lt — Xt (mt)2 — Ct) + )\e,t (CCCtCt + el (1 — mt) lt (1 — Mt) Lt> — )\d,t

3.2 Equilibrium with Exogenous Infections

To simplify the notation, we normalize N = 1, so we should think of our values as being per-capita
pre-infection. When there is no risk of contagion — i, = 0, A\c; = 0 and Vj 141 = 0 — then we have

m; = 0 and from the optimal consumption and labor supply



Since m = 0 we have [; = I; so market clearing is simply
Ct = lt.

Combining these two conditions we get

Ct:ltzl

The pre-infection economy is always in steady state.

Consider now an economy with exogenous SIR dynamics: e¢ = ¢! = 0. This implies m; = 0 and

Market clearing requires

(1 —dt) Ct = (1 —dt —I{’L't) lt

therefore
/ﬁlit
t + 1-— dt — /ﬁlit
The labor supply of valid workers increases to compensate for the reduced productivity of the sick.

Per capita consumption is
n

1—d; T T
“T <m>
As long as n > 0 consumption per capita decreases. Aggregate GDP decreases because of lost labor
productivity and deaths.
The STR system is independent from the economic equilibrium. As described in the Appendix, the
share of infected agents I; increases, reaches a maximum and converges to 0 in the long run. Assuming

a constant ¢, the long run solution solves
o Soo _ e 1- Sy
*\1-1,) " pros\" N )

0k
< Sk+p

and

(1_500)-

When the congestion externality arises and ¢; increases, then we cannot obtain a closed-form solution

for the long run death rate but the qualitative results are unchanged. The following proposition

10



summarizes our results.

Proposition 1. When contagion does not depend on economic activity (eC =e = O), the share of

infected agents I increases, reaches a maximum and converges to 0 in the long run. The long run

death rate is given by Doo = égj_p (1 — Sx) where the long run share of uninfected agents solves
log (15};0) = —p:fm (1_]\5;"0). Along the transition path, labor supply of able-bodied workers follows the

n
. . . . . . . . . _ K1 14n
infection rate while per-capita consumption moves in the opposite direction as ¢; = (1 — 1_2t>

3.3 Private Incentives for Mitigation

The key object that summarizes mitigation incentives is the shadow value of exposure:

I

I
Aet = (Nt — Ast) vlsi =8 (Vg1 — Vigs1) TN

N 5t

Thus, mitigation incentives are the product of two terms — the marginal value of avoiding infection
today 8 (Vs441 — Vit+1) and the current infection risk from exposure, ’y%st. The current infection risk

is straightforward to understand. We use an approximation to analyze the first term. First, note that

I I
Vst+1 = Bvi,t-i-f)/et—i-l%l + <1 — Yet+1 %) BVs 42

-1
B L1~ s (7 Iiv14r Tit1ys
= 5Vi,t+27€t+1T + ; B 71;[0 1 —vetp14r N Vet+ls— Vit+1+s

i.e. the marginal utility of staying susceptible (relative to a fully recovered) is simply the expected

discounted value of being infected in the future. The marginal utility of infection is

2 147
m l
Vitr1 = =K |Ux + Mg <lt+1 - Xt+l2( J ) - ;_T_ln + Aeprre! (L —myp1) i (1= M) L
+0t416BVa o + B (1 — p— 6t11K) Vipyo (1)

The term in square brackets reflects the effects of being sick in period ¢ 4+ 1 — the direct costs (u,),
the net cost of not being able to work and reduction in exposure risk. The d;11x8V4ocaptures the

expected cost of mortality in ¢t + 1. The marginal utility of a dead member (again, relative to a fully

11



recovered)

Vi, = —us— |1 _ lt1+n _ ﬁ 2 . c 1 _ _
1t = —uqg— |log (c;) 1+T,+/\t ly 5 (me)” —ct) — e (€“ctCr + € (1 —my) by (1 — M) Ly ) | +BVa 441

(2)
Now, if uy is large (as will turn out to be the case in our calibration), it will dominate the other
terms in the marginal utility expressions (1) - (2). In other words, the marginal utility of death is well

approximated by:
Uq

Vae ~ —

and that of infection by,

Bugk

1-p

‘/i,t-‘,-l ~ -

00 s—1
01 + Z B* <H (1-p— 5t+1+r/f)) 5t+s] (3)
s=1

7=0

To simplify this even further, we abstract from congestion effects, i.e. if ;4 = d. In this case, V; ;41is

well approximated by a constant,

—BoKkug
_ *
Vitr1 = =V

(1=8)(1=5(1~-p—25r)))

Under this approximation, the marginal utility of remaining susceptible becomes

00 s—1
Iiq s Iiv14r Ii1ys
Vstt1 = [’761&—1—1% +Sz::lﬁ (TI;IO <1—7€t+1+7 tJ;VJr >) Vettits tJ;VJr BV;

Note that the term inside square brackets becomes larger when the risk of future infection, ves114 1”1\1,“ ,

goes up. Since V; is constant (and negative), this implies that the risk of future infection reduces
Vist41 — Viig1, i.e. the private value of avoiding infection today is decreasing in the risk of future
infection. In other words, anticipation of larger infection risks in the future creates perverse incentives
for private agents. Why bother mitigating today if we are likely to become infected in the future? We
term this the fatalism effect.

What happens with congestion effects, i.e. §’ (kl;) > 07 Now, higher infections in the future push
future mortality risk higher, which increases the disutility of getting infected today. However, the
congestion effect has an even greater effect on the value of remaining susceptible. To put it differently,
avoiding infection today is much less attractive if the healthcare system is expected to be congested in

the future. This force, which we term the front running effect, also creates perverse incentives for

12



mitigation strategies in a laissez-faire equilibrium.

4 Planner’s Problem

We normalize N = 1 for simplicity. The planner solves

max U = Z Bu (Cy, Ly; I, Dy)

t=0
subject to
Ll-i—n
u (Ct,Lt; —[t7-Dt) = (1 — Dt) log (Ct) — (1 — Dt — H[t) 1 :_ n — UHHIt — Uth
and

x (M,
(1 - Dt) Ct = (1 - Dt - I{It) (Lt - (2 t) (Mt)z) .
The first order conditions for consumption and labor are then (highlighted in red are the differences

with the decentralized equilibrium)

Cy: C7l = M\ 42X 1e°Cy

Lt : L? == )\t - 2)\6,1&/6[ (1 - ]\41‘/)2 Lt

/BVJ\Z,t-H

M; : xyiMy = —————
t t Xt V1t 1— Dy — rl,

+ 2 g€ (1 — My) L?

The marginal utilities of the planner with respect to exposure are twice as high as those of the private
sector because of the contagion externalities: private agents only care about how their behavior affect
their own infection risk. They do not care about how their behavior affects the infection risk of others.

The envelope condition that changes (relative to the equilibrium) is the one with respect to the

number of infected people:

L1+77
— Kt — ke (L — xeMP) + Aegre! (1 — Mp)? L7 — (1 — p) iy

Vii= ¢
Lt H1+77

—yerSihie — (0 + 01”1t) (Mae = Ai)

13



4.1 Social Incentives to Mitigate

Let us now consider the planner’s incentives to undertake mitigation today, summarized by the mul-
tiplier Ac¢. As in equilibrium, this is the product of the current infection risk from exposure and the

value of avoiding infection today.

I
Aet = B(Vsir1 — Vi) ’YNtSt

As before, we focus on the empirically relevant region where the cost of death parameter, uy is large.

Then, the planner’s marginal utility of today infection is

Bug
Vigsr = 13 (6041 + 0/, 1 ki
e ) s—1
+ Z B* <H (1 —p+veti14rSit14r — Opq14r — t’+1+—r’f[t+r)) (5t+1+s + 5t/+1+5/dt+1+s)
s=1 7=0

(4)

Comparing this to the private value of infection in 3 reveals the effect of the externalities. The
Yerr14++St+14+ term reflects the risk of a newly infected person spreading the disease to others in the
future (intuitively, from the planner’s perspective, the effective recovery rate is not p, but p — ve;Sy).
This risk (increasing in the number of susceptible agents) makes the planner dislike current infection
more than private agents do. The congestion externality ¢, ;, ;14145 also pushes up the social cost of
current infections relative to the private costs. These two forces more than offset the fatalism and front
running effects, causing the planner to mitigate aggressively when she perceives high risk of infections
in the future.

The tension between the fatalism and precautionary effects might explain the Florida spring break
controversy. As news about high future I;4,, private citizens chose to enjoy their spring break, arguing
that if they were going to catch the virus, now would be as good a time as later, while public officials

worried about hospitals being overwhelmed.

14



5 Calibration

The lack of reliable data to calibrate the contagion model creates a serious challenge and an important

limitation. Atkeson (2020a) discusses these difficulties. We calibrate our model at the weekly frequency.

Contagion The SIR block of the model is parameterized as follows. The recovery parameter is set
to p = 0.35. The fraction of infected people who are sick is £ = 0.15. We normalize & + e + ¢! = 1.

In our baseline calibration, we set the exposure loading parameters e¢ = el = %

which is consistent
with the estimation in Ferguson (2020). These parameters imply e = 1 at the pre-pandemic levels of
consumption and labor (the calibration of production and utility parameters will be described later).
The parameter « is then chosen to target the basic reproduction number (i.e. the average number
of people infected by a single infected individual) of R = 2, yielding an estimated value of v = 0.7.
Finally, to parameterize the fatality rate and the congestion effects, we adopt the following functional

form for 6 (-) :
) (K,It) = 5 + exp ((b[t) -1

where the parameter ¢ indexes the strength of the congestion externality. We set § and ¢ to match two
targets for the case fatality rate: a baseline value (i.e. the fraction of infected people who die even in the
absence of congestion) of 1% and an ‘extreme’ value (the fraction of people who die kI = 0.15(0.2), i.e.

3% of the population requires medical attention) of 5%. This procedure yields § = 0.023 and ¢ = 3.15.

Preferences and technology The utility parameter uy is set to a baseline value of 2. This implies
a flow disutility from death that is roughly 7 times per capita income. Such large non-monetary costs
associated with loss of life are consistent with estimates in the literature and with values used by
government entities like the EPA. For example, Greenstone and Nigam (2020) use an estimated value
of a statistical life of $11.5 million (in 2020 dollars) to the household from death. Assuming a rate of
return of 5%, this translates into an annual flow value of $575,000, or roughly 10 times per capita GDP.
The flow disutility from sickness wuis set to equal one-fourth of ug, i.e. a value of 0.5. To calibrate the
working-from-home technology, we make use of preliminary estimates for the effect of the lockdown
in February and March on the Chinese economy. Recent data suggest a 25% fall in Industrial Value
Added during the month of February. Assuming near complete lockdown, i.e. m = 1, this gives us
an upper bound for y, which indexes the initial productivity loss, of 0.5. Finally, for the long-run loss

parameter, A,, we rely on Dingel and Neiman (2020), who estimate that roughly one-third of the jobs

15



in the US can be done from home. Guided by this estimate, we set A, = 0.34. We assume that the

cumulation of learning depreciates very slowly m;11 = 0.99m; + my.

Initial Conditions, Vaccine, and Robustness A time period is interpreted as a week. The
discount factor 8 captures both time discounting and the discovery of a cure/vaccine. We assume for
simplicity that a cure and a vaccine arrive randomly together with a constant arrival rate. This is
then exactly equivalent to adjusting 5. We take a relatively pessimistic case as our baseline, where the
combined effect of time discounting and the vaccine is to yield an annual 8 of 0.8 and a weekly beta
of = (0.8)% = 0.9957.

The initial infection rate (the fraction of the infected people at time 0) is ig = 1% in our baseline.
We run two robustness experiments, one with ig = 0.1%, one with § (kI;) /10 to capture the uncertainty

described in Atkeson (2020a).

6 Quantitative Results

Our benchmark exercise uses a large initial infection rate of 79 = 1% because it makes the figures easier
to read, but it is important to keep in mind that this is a large shock. It seems likely that agents
and policy makers become aware of the epidemic much earlier so we also report simulations starting

at ig = 0.1%.

Private Response The figures show the results of simulations. We start with the decentralized
solution. Figure 1 and Figure 2 show the behavior of the contagion and macro variables in the
decentralized equilibrium, under 3 different assumptions about exposure and mitigation strategies. The
blue line solid shows a situation where infection rates are exogenous, i.e. do not vary with the level of
economic activity. Since infection is assumed to be exogenous, agents do not engage in mitigation, i.e.,
they ignore the pandemic. In fact, labor input rises (the solid line, top left panel in Figure 2), while
per-capita consumption falls by about 2.5% (the dashed line), as able-bodied workers work harder to
compensate for the workers who are sick. This is of course not a realistic assumption, but it serves as a
useful benchmark for the worst case scenario. In this scenario, eventually about 80% of the population
is infected and about 2.5% of the population succumbs to the virus (bottom, left panel in Figure 1).
The case mortality rate peaks at 4% roughly 15 weeks after the initial infection because, at the peak,

about 15% of the population is infected and the healthcare system is overwhelmed.
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The red line describes the case where exposure is endogenous (i.e. varies with consumption and
labor) but there is effectively no work-from-home (WFH) technology, i.e, the only ways for the house-
hold to reduce exposure are to cut back on its consumption and labor supply. As we would expect,
this leads to a sharp reduction in economic activity (top, left panel in Figure 2) by about 10%. Impor-
tantly, however, the reduction is gradual, tracking the overall infection rate (it takes almost 17 weeks
for consumption and labor to hit their trough). Intuitively, when the fraction of infected people is low
(as is the case in the early stages), a reduction in exposure has a small effect on future infection risk,
relative to the resulting fall in consumption. And since each household does not internalize the effect
it has on the future infection rate, it has little incentive to indulge in costly mitigation early on. This
dynamic is reflected in the hump-shaped pattern in A, (the bottom, middle panel in Figure 2). As we
will see, this is drastically different in the planner’s problem. The mitigation behavior does lower the
cumulative infection and death rates (relative to the exogenous infection risk) down do about 2%.

Finally, the yellow line shows the effect of the WFH technology. This allows the household to reduce
exposure without sacrificing consumption — now, the peak loss in consumption is 7.5% (compared to
10% without the WFH option), even as the exposure falls by more (0.8 compared to 0.92, bottom
left panel in Figure 2). The fraction of time spent working from home (top, left panel in Figure 2) is
hump-shaped, peaking at 20% at roughly the same time as the fraction of infected rate. This additional
flexibility also lowers cumulative fatalities to 1.75%. However, the timing of mitigation strategies is
mostly unchanged — households in the decentralized economy do not find it optimal to front-load their

mitigation efforts.

Optimal Response We now turn to the planner’s solution, depicted in Figures 3 and 4. As before,
the blue, red and yellow lines show the cases of exogenous infection, mitigation without WFH and
mitigation with WFH respectively. As the yellow and red curves in Figure 3 clearly show, the planner
finds it optimal to “flatten the curve” rather dramatically. The peak infection and mortality rates
are only slightly higher than their initial levels and well below the decentralized equilibrium levels,
as are cumulative fatalities (approximately 0.6%, compared to 1.75% in the decentralized equilibrium
with WFH). To achieve this, the planner has to reduce exposure drastically by more than 40% (recall
that, in the decentralized equilibrium, exposure bottomed out at 0.8), keeping the basic reproduction
number R from rising much above 1. Of course, this pushes the economy into a deep recession with

consumption falling by as much as 40% in the case without WFH (top left panel in Figure 4). More
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interestingly, perhaps, the planner chooses to step on the brakes almost immediately, rather wait for
infection rates to rise. In fact, the shadow value of exposure (bottom middle panel in Figure 4) spikes
upon impact and then slowly decays over time, as the number of susceptible people declines.

The availability of the WFH technology ameliorates the economic impact of the planner’s sup-
pression strategy, but does not significantly alter the contagion dynamics. Intuitively, fatalities are so
costly that the planner aggressively suppresses the infection even in the absence of the WFH option:
access to WFH simply allows the planner to achieve the same exposure outcomes at a lower cost.
Notice also that the planner’s incentives to use the WFH technology are much stronger than that of
private agents in a decentralized equilibrium: partly because her shadow value of exposure is higher,
but also because she attaches a greater value to the future benefit from learning-by-doing. As a result,
m rises to as high as 0.5 relatively quickly. In other words, as along as a vaccine is not available, the

planner requires 40% of the population to work from home.

Smaller initial shock What is the value of an early warning? Suppose agents become aware of the
disease at ig = 0.1%. The private sector response, because it still follows the infection curve, barely
changes. Private agents do not have the proper incentives to use the early warning. The planner, on
the other hand, continues to front-load her effort and achieves a much better outcome in that case.

The cumulative fatality rate is only 0.15%.

Lower fatality As we discussed earlier, there is little agreement in the literature on the mortality of
Covid-19, with Atkeson (2020a) suggesting that the range of plausible values could be as wide as 0.1%
to 1%. To explore the effect of this uncertainty, we repeat our analysis of the planner’s problem with
mortality rates that are a tenth of our baseline values, i.e. probability of death (conditional on being)
is now given by %(5 (k). The results are presented in Figures 9 and 10. As expected, the overall
number of fatalities are much lower, but the overall profile of the planner’s solution is unchanged: she
still finds it optimal to front load her intervention. The economic cost, however, is much lower and the

lockdown finishes earlier to let the economy recover.

Congestion externality Next, to isolate the role of the congestion externality, we repeat our anal-
ysis of the planner’s solution with the parameter ¢ set to 0. The results, shown in Figures 9 and 10,
display a similar pattern as Figures 3 and 4, but with a less severe contraction. Intuitively, a healthcare

system with sufficient slack capacity allows the planner to achieve similar outcomes in terms of fatali-
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ties with modestly higher infection rates or equivalently, a higher level of exposure through economic
activity (top, left panel in Figure 10). Accordingly, the recession is slightly less deep and much less

persistent than in the baseline.

Fatalism and Front-running Figure 11 illustrates the perverse effects of fatalism and front-running
on private incentives. In equilibrium (the two left panels), the onset of the pandemic pushes reduces the
value of avoiding infection (V;; — V;;). This is particularly striking with congestion in the healthcare
system (the bottom left panel), where V; is lower than V;; early on. In other words, private agents
might prefer to get infected today rather than remain vulnerable to infection at a future date. The
corresponding plots for the planner (the two panels on the right) paint a very different picture —
V1,4 drops dramatically upon impact, reflecting the infection and congestion externalities imposed by
current infections. The value of remaining susceptible drops too, but much more modestly. This

explains the planner’s aggressive suppression of the disease right from the start.

Altruistic households Finally, we consider the possibility that households partly internalize their
effects on the aggregate outcome. Formally, we assume that households incorporate externalities with a
weight 7 while making their consumption, labor and mitigation decisions. The laissez-faire equilibrium
and the planner’s optimum are obtained as special cases by setting 7 = 0 and 7 = 1 respectively. If
7 = 0.33, the death rate is 1.4% (only slightly lower than the 1.7% under 7 = 0). If 7 is assumed to be
0.5, i.e. households place equal weight on private and social incentives, the cumulative death rate falls
to 1.25% (roughly a third of the gap between the laissez-faire equilibrium and the planner’s optimum).
These results show that for private decisions to be close to that of the planner requires a very large

degree of altruism.

7 Conclusions

We propose an extension of the neoclassical model to include contagion dynamics, to study and quantify
the tradeoffs of policies that can mitigate the Covid-19 pandemic. Our model reveals two key insights.
First, that relative to the incentives of private agents, a planner wishes to significantly front-load
mitigation strategies. Second, in our calibrated model, the prospect of mitigation together with the
possibility of agents working from home gives quantitatively meaningful reductions in the spread of a

disease and the economic costs.
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As we write the first draft of this paper, there is much uncertainty about the parameters of the
disease, and yet decisions must be made. Some of our results speak directly to this dilemma. Atkeson
(2020a) points out that, when one does not know the initial number of active cases, it is difficult “to
distinguish whether the disease is deadly (1% fatality rate) or milder (0.1% fatality rate).” In our
simulations we have considered a deadly disease with a low initial infection rate of ig = 0.1%, and a
milder disease with a high initial infection rate of ig = 1%. Interestingly, in both cases, the planner
should implement immediately a strong suppression policy. The main difference is that in the mild
case it is optimal to release the lockdown sooner. Thus, faced with large uncertainty about the fatality
rate, the planner could impose a strong suppression policy and wait for more data. Assuming data
available 20 weeks after the outbreak allows her to precisely estimate the fatality rates, this strategy
would allow the planner to implement the optimal response, despite the initial uncertainty about a
key parameter.

Extensions of our baseline setup would yield a fruitful laboratory to study other policy-relevant
questions. For instance, the production-side of the economy could be enriched to multiple and hetero-
geneous sectors, to provide additional margins to mitigate exposure and economic hardship. A richer

model will also help to give sharper quantitative estimates on the costs of mitigation strategies.
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Figure 7: Planner Solution: Contagion Dynamics with Reduced &
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Figure 11: Fatalism and Front-running
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Appendix

A Planner’s Problem

The planner understands that the dynamics follow

Sty1 =S¢ — ver ISy
I = ver Sy + (1 — p) It — (k1) k1,
Dt+l = Dt + 1) (K,It) liit

Riy1 = Ry + ply

We normalize N = 1 for simplicity.

max U = Z B'u (Cy, Ly; I, Dy)

t=0
subject to
Ll-i—n
u (Ct,Lt; [t7Dt) = (1 - Dt) IOg (Ct) — (1 — Dt — H[t) 1 :_ n — UHKJIt — Uth
and

(1 — Dt) Ct = (1 — Dy — I{It) (Lt _ X (;\Zt) (Mt)2)

The Lagrangian is

Vi (I, Sp, Dy, My) =up + BVig1 + Ay ((1 — Dy — kly) (Lt —x (I1,) (Mt)z) —(1-D) ct>
X (o0 = 8= (1= D) e"CE = (1= Dy = kly) e (1 - M) L)
+ Nit (Lep1 — veely St — (1 — p) I + 6 (k1) K1})
+ Aot (Sp1 — St + verI1St)

+ )\dﬂg (Dt—l—l — Dt -0 (K/It) K/It)

The first order conditions for consumption and labor are then (highlighted in red the difference with

the decentralized equilibrium)
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The marginal utilities of the planner with respect to exposure are twice as high as those of the private
sector because of the contagion externalities: private agents only care about how their behavior affect
their own infection risk. They do not care about how their behavior affects the infection risk of others.

The remaining first order conditions are the same as those of the private sector

et Aet = (Nip — Ao t) Vs
LIipq i Nig = =BVt
Str1 1 At = —BVs 141

Diy1: Mgy = —BVpy1

The envelope conditions are

LH" Xt I 2
1 :_ ; — KU, — KAt <Lt - EME) + Aetre' (1 — My) Lf —(1—=p)Aip

VI,t =K
_'\/fftStAi,t — ((Stlﬁl + 52/12175) ()\d,t — )\i,t)

VS,t = _)\s,t — el ()\i,t - )\s,t)

1+
Vs = 2 tog ()~ ua - Ay (L= X () — ) 4 e (5 + ¢ (1 )* 1) — Ay
) 1+77 2 ) t t )

V]\Zf,t = BV]\Z/,H—I + )\t (1 - Dt - K,It) %AXeMt (Mt)2

B Properties of Contagion Dynamics

B.1 Definitions

We start with the most basic concept in epidemiology, the basic reproduction number, which we denote

by R because the usual notation “R_not” is terribly confusing. R is the expected number of cases
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directly generated by one case when everyone else is susceptible. The most basic model is to assume

that when someone is infected there are three stages
1. a latency period T7 when the individual is not yet infectious
2. infectious period 1o — T
3. recovered period after T, when the individual is not infectious anymore

If the contact rate (exposure) is e and the probability of infection conditional on contact is ~, the

expected number of secondary cases per primary case in a fully susceptible population is therefore
R = e (Tg - Tl)

In our notations, e is the number of people that one individual meets per unit of time and ~ is
the probability of transmitting the disease conditional on a meeting between one infectious and one

susceptible agent.

B.2 SIR Model

The STR model builds on this idea. We define the length of one period so that 77 = 1. If someone
is infected in period ¢, then she will start spreading the disease in period t 4+ 1. Let I; be the number
of infected individuals and S; the number of susceptible individuals at the beginning of time ¢ in a
population of size N. Each infected agent meets e people. We assume that the meetings are random
and that the population is always evenly mixed, therefore the probability of meeting a susceptible
person is S/N. The number of meetings between infected and susceptible agents is therefore eI S/N
and the total number of new infections is yelt%. In our macro model e is an endogenous variable but
we take it as a constant for now. We assume that recovery follows a Poisson process with intensity p.
The infection equation is then

S
Iy = el + (1= p) I (5)

Consider a population of size N (large) of initially susceptible individuals (Sop = N). If one individual

is infected, the total number of secondary infections from that individual is

R=3qe(t—p =2 (6)
7=0
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Note that R is a number, not a rate per unit of time. The model has a steady state at I =0and S =1
but it is unstable in the sense that if one individual gets infected the system converges to a different

steady state. In general we can write

I S,

1, N 7

When S/N ~ 1, the number infected people evolves exponentially as Itl—tl ~1+~ve—p. If Ry <1 then
a small infection disappears exponentially. If Ry > 1 then there is an epidemic where [ initially grows
over time. The growth continues as long as ’ye% > p. Eventually the number of susceptible people
decreases and growth slows down or reverses, depending on how we close the model.

There are two ways to close the model. The simpler one, called the SIS model, assumes that
recovered agents pl go back to the pool of susceptible agents. This is the model used to study the

common cold. In that case N = S; + I; and the equation becomes

t
1—p)]1

Iy = el

and the steady state infection rate is % = max (0; 1-— %)
The other way is to introduce a population of recovered agents R who are not susceptible anymore.
This model — called STR — is used for flu epidemics, among others. In the simple model, R is an

absorbing state. The system becomes

St+1 — St = —’}/EIt— (7)
Riy1 — Ry = ply (8)
and of course N = S; + I; + R;. Note that S is (weakly) decreasing and R is (weakly) increasing,

therefore their limits exist. Since N = S; + I; + R; so does the limit of I. For R and S to be constant

it must be that I tends to zero. Therefore

lim I; =0

t—00

That is the first simple property of the solution. Second, since S is decreasing, I must be (at most)

single-peaked. If Iy is small and R, > 1 then I; must grow, reach a maximum, and then decrease
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towards zero. This is the typical shape of the curves found in the literature. Harko et al. (2014)
provide an analytical solution to the differential equations (in continuous time).

Let us now study the long run behavior of S and R. Combining equations (7) and (8) we get

St41— St
Ryt — Ry = —-N 21—t
ye St
This equation is simpler to write in continuous time
§  reR
S  pN

and to integrate the solution:
S, Ri— R
log ( 2L) = _Je (it o
So p N
This equation holds along any transition path without exogenous shocks. In the limit, since S+ Roo =

1 we have the transcendental equation

Soo ve (1 -S4 — Rg

The long run steady state (S, R ) depends on the initial conditions as well at the basic reproduction
number R. We can summarize our discussion in the following Lemma.

Lemma. The SIR model is fully characterized by R = %and the initial conditions (So, Ro). If
R < 1, infections die out without epidemic. If R > 1, a small infection Iy creates an epidemic: Iy
rises, reaches a maximum in finite time before declining towards zero: I, = 0. The long run limits
Soo and R exist and satisfy Soo + Roo = 1 and log (%") =-R (%)

The complete model takes into account that some individuals will die from the disease. We assume
that a fraction x of infected agents become (severely) sick and a fraction ¢ of the sick patients die.

Hence we have another absorbing state, D. The system of equation of the STRD model becomes

S,
Iy = ’YItNt + (1 —p—0k) 1
S,
Ster =5 — Iy
Ry = Ry + ply

Dt+1 = Dt + (5H,It
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The number of sick people is «I; and determines the pressure on the health care system. From the
perspective of the epidemic we could aggregate D and R into one absorbing state: R = D + R such

that Rt+1 = Rt + (p+ 6k) I;. The long run solution is

1 S;.O _ e 1—S. — Ry
e\ )~ p+ oK N

and ROO =1— Sy while Dy, = Dy + (Sg—ip (Roo — I%0>. From an economic and social perspective we

need to keep track of D and R separately in any case.

B.3 SIR model with exogenous birth and death

The path dependence of the long run steady state is a somewhat artificial consequence of the lack
of entry and exit. Suppose that e¢/N people are both in state S each period, and also that there is a

constant exogenous death rate €. The system is

S
It+1 = ’ye[tﬁt + (1 —p— 6) It
St
Sir1=(1—¢€) S — veltﬁ +eN

Rt+1 = (1 — E) Rt + pIt
Note that population is constant: Sy41 + ;41 + Riy1 = N. Now the steady state requires

’ye%[z[(e—i—p)
yel%ze(N—S)

pl = €eR

Since I > 0 we can easily solve for the unique steady state

E_e—kp
N e

1 1=
~ —¢

N e+p
R_1-%2
N_pe—i-p
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And now we can take the limit as ¢ — 0 to get % =0, % = % =R~! and % :1—% =1-RL
Adding a small amount of exogenous birth and death renders the long run steady state independent

of initial conditions.
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