
Online Appendix:

The Environmental Bias of Trade Policy

Joseph S. Shapiro
UC Berkeley and NBER

joseph.shapiro@berkeley.edu

A1

mailto:joseph.shapiro@berkeley.edu


Contents

A Data Details 3
A.1 Concordances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
A.2 Global Input-Output Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
A.3 Political Economy Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
A.4 Trade Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
A.5 Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B Implicit Carbon Tariffs: Sensitivity Analyses 10

C Informal Discussion of Trade Policy Theories 13

D General Analytical Model 15

E Quantitative General Equilibrium Model 17

A2



A Data Details

A.1 Concordances

The paper uses several concordances across definitions and years of industry and product
codes. As a general guide, raw data on traded goods, tariffs, and NTBs are at the level of
a 6-digit harmonized system (HS) code. Raw U.S. data are at the level of a 6-digit North
American Industry Classification System (NAICS) code. Exiobase uses industry codes based
on the International Standard Industrial Classification, version 3.1. WIOD also uses its own
industry codes. I use published concordances between these various industry codes. I use
weighted concordance files when possible, i.e., which express the share of an industry’s output
in one classification which corresponds to each possible industry in a different classification.
Ultimately, I concord raw data to the industry definition of the relevant analysis (Exiobase,
U.S., or WIOD).

Concording Exiobase files are fairly straightforward. Exiobase industries were constructed
to closely reflect ISIC industries, so I construct a concordance by matching names between
these two industry classifications.

Linking U.S. industry codes is more complicated. A few concordances link 2007 NAICS
codes to other industry codes. Some of the U.S. political economy explanations are from
the May 2007 Current Population Survey, which defines industries using 2007 U.S. census
codes (i.e., the codes defined for use in the 2007 U.S. Economic Census, which is distinct
from the decennial population census; these codes differ from NAICS codes). I use Census
Bureau files to link these census industries to 2007 NAICS industries.1 The unionization
coverage data I use as one political economy explanation use industry codes from the 2000
U.S. census, so I use the same concordance file to link these to 2007 NAICS codes. One
sensitivity analysis aggregates the U.S. data to 21 ISIC industries; I link NAICS to ISIC
codes using a Census concordance.2

Another set of concordances links U.S. industry codes for other years. The 2006 MECS
data are at the level of 2002 NAICS codes, so I also link these to ISIC codes using U.S.
Census Bureau files.3 U.S. input-output tables use an input-output industry classification
which is similar but not identical to NAICS. I use a file that is part of the 2007 input-output
table which contains a concordance between 2007 input-output codes and 2012 NAICS codes.
I concord 2012 NAICS codes to 2007 NAICS codes using a concordance file from the U.S.
Census Bureau which includes industry shares (file EC1200CBDG1). The PAC contributions
data are at the level of 1987 Standard Industrial Classifications (SIC); I link these to NAICS
codes using a concordance from the NBER-CES Manufacturing Industry database (Becker
et al. 2013). A few datasets report NAICS codes for some observations at 2, 3, 4, or 5 digits;
for these more aggregated values, I construct concordances at this more aggregated level and
then translate industry codes appropriately.

1Downloaded from https://www.census.gov/people/io/files/IndustryCrosswalk90-00-02-07-12.xls, visited
8/18/2017.

2Downloaded from https://www.census.gov/eos/www/naics/concordances/concordances.html, visited
8/8/2017.

3Downloaded from https://www.census.gov/eos/www/naics/concordances/concordances.html, visited
8/8/2017.
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A.2 Global Input-Output Data

I use Exiobase (specifically, version 2.2.2, industry-by-industry, fixed product sales assump-
tion) because it distinguishes 48 countries and 163 industries, about 50 of which are in
manufacturing. Five of the “countries” are actually aggregates that include all countries in
a given region that are not separately identified in the data, such as the aggregate, “Rest
of Asia.” Exiobase is supported by the European Union. Other global multi-region input-
output tables, like the World Input-Output Database (WIOD), typically distinguish only
20-60 industries, only 15-20 of which are tradable manufacturing industries.

Much of the global value chain literature uses the World Input Output Database (WIOD)
and related multi-region input-output tables. I focus on Exiobase, which I believe has not
been used in this literature, since it has far richer industry detail than WIOD and related
datasets. Exiobase is widely used in industrial ecology research (e.g., Tukker et al. 2013;
Moran and Wood 2014; Wood et al. 2015). I report some sensitivity analyses using WIOD
(Timmer et al. 2015).

Exiobase is built from several primary data sources (Wood et al. 2015). Exiobase com-
bines supply and use output tables for the EU27 via Eurostat, and for 16 other countries that
together cover over 90 percent of global GDP. It measures trade using BACI, which is based
on the UN’s Comtrade database, and using the UN’s services trade databases. To harmonize
data across countries, Exiobase also uses data from FAO and the European AgroSAM, the
IEA, and other data sources. National fossil fuel use comes from IEA sources, while some
industry detail comes from Pulles et al. (2007).

Like all global multi-region input-output tables, Exiobase applies statistical algorithms
to harmonize these different datasets. National input-output tables also do this; Horowitz
and Planting (2006) describe the process. The final data must satisfy many accounting
identities; for example, imports must equal exports, subject to trade imbalances; industry-
specific values must add up to national values; the value of intermediate goods plus value
added must equal gross output; etc. Harmonization also expresses all countries in the same
industries and using the same price concepts.

How does Exiobase compare to other multi-region input-output tables? Several stud-
ies compare Exiobase to WIOD and Eora. These studies find that the numbers in these
databases are not especially sensitive to the different algorithms used to construct these
tables (Geschke et al. 2014), that consumption-based CO2 accounts (sometimes called a
country’s “carbon footprint”) or raw materials that each country consumes generally differ
by less than 10-15 percent across these databases (Moran and Wood 2014; Giljum et al. 2019),
and that disaggregation to more industry detail, which is Exiobase’s focus, tends to produce
more accurate analysis of CO2 (Steen-Olsen et al. 2014; de Koning et al. 2015). The Global
Trade and Analysis Project (GTAP), which constructs another multi-region input-output
table, is widely used in computable general equilibrium (CGE) analyses in part since it in-
corporates a ready-made CGE model, simplified coding language, online support services,
and hundreds of parameters. GTAP, however, also includes only around 20 manufacturing
industries, and its data construction are less well documented than some other input-output
tables. WIOD is generally seen as having higher data quality, which may be because it
has fewer countries (43 in WIOD versus 190 in Eora), which lets WIOD rely on data from
higher-quality statistics agencies and require less imputation for the additional countries.
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Exiobase covers 43 countries plus five rest-of-world aggregates, which is similar to WIOD.
The possibility of measurement error in these data is one reason why I report results from
three separate input-output tables – Exiobase, WIOD, and U.S. national data – and also ob-
tain completely independent measures of CO2 emissions for use as an instrumental variable
in the U.S. data.

Comparing the U.S. and Exiobase data is complicated by the fact that U.S. NAICS
industry codes and Exiobase industry codes do not easily concord to each other and require
applying multiple many-to-many concordances. To provide such a comparison while limiting
additional measurement error, I select the 30 Exiobase manufacturing industries that have
a one-to-one or one-to-many mapping to 4- or 6-digit NAICS codes (thus excluding those
with many-to-many links). For these 30 Exiobase industries, I then calculate the mean total
emissions rate from the U.S. data (weighting across 6-digit U.S. NAICS industries within
an Exiobase industry by the value of shipments). In logs, a regression of the U.S. CO2

rate calculated from Exiobase data on this rate calculated from U.S. data gets a regression
coefficient of 1.035 (robust standard error 0.020), with an R-squared of 0.989. In levels,
this regression coefficient is 0.801 (0.210), with an R-squared of 0.56. These are strong
correlations, though for a focused sample; since Exiobase is constructed from national input-
output tables it is perhaps unsurprising that its patterns for the U.S. are similar to those of
the national U.S. input-output table.

I calculate gross output in Exiobase 2.2 (which does not directly report it) as follows.
Gross output Y equals the sum of intermediate inputs I and factor payments L, where
factor payments are defined to include payments to labor, payments to capital including
profits (i.e., including markups), and taxes:

Y = I + L (1)

To measure intermediate inputs I in millions of Euros for each country×industry, I take
the sum across rows (within each column) of the Exiobase Use table. To measure factor
payments per gross output L/Y , I use the Exiobase Factor Inputs table and exclude entries
recording employment in hours per million Euros or in workers per million Euros. I then
calculate L/Y as the sum across rows (within each column) of this table. Finally, simple
manipulation of (1) shows that gross output for each country×industry is

Y =
I

1− L
Y

where I and L/Y are calculated from the Use table and Factor Inputs table as described
above.

Given this measure of gross output, I follow Antràs et al. (2012) and Antràs and Chor
(2018) in calculating upstreamness. In the raw Exiobase input-output table, each row is an
origin country×sector and each column is a destination country×sector. Each entry in this
table is in terms of Euros of inputs per Euro of output (i.e., the table is in coefficient form).
I convert this to Euros by multiplying each entry by the gross output of the destination
country×sector. I calculate total international exports Xij from domestic industry i to
foreign buyers of industry j as the sum of this table across columns (within a row), excluding
columns with the same origin and destination country. I calculate total international imports
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Mij from foreign industry i to domestic industry j as the sum of this table across rows (within
a column) which have the same origin and destination country.

The main results use CO2 emissions from fossil fuel combustion, which is the best-
measured and accounts for most greenhouse gas emissions. I also report results using other
greenhouse gas emissions. I incorporate two corrections for outliers in the raw data. First,
for each greenhouse gas separately, I replace emissions from nitrogen fertilizer production
with emissions from phosphorus fertilizer emissions from the same country. Second, for the
crude oil extraction industry, I replace non-combustion methane emissions with combustion
methane emissions. In both cases, raw data from Exiobase are outliers and exceed estimates
from other sources. For similar reasons, in regressions including non-manufacturing goods, I
exclude one mining industry with outlier values of emissions rates, “Extraction, liquefaction,
and regasification of other petroleum and gaseous materials,” which is distinct from crude
oil or natural gas extraction.

The quantitative model requires data on CO2 emissions from production of each fossil
fuel in each country. I obtain these data from reports using the International Energy Agency
containing data from the year 2007 (IEA 2009b,a), which list the physical units of each fossil
fuel produced in each country. I convert these into CO2 using standard conversion rates
of physical units of fossil fuel (i.e., tons or terajoules) to metric tons of CO2 from the U.S.
Energy Information Agency.

In the sensitivity analysis using WIOD, I measure environmental outcomes using data on
total CO2 emissions. I replace the roughly 5 percent of WIOD country×industry observations
which have missing CO2 values to instead have the mean global CO2 emissions rate for that
industry, multiplied by the country×industry’s reported gross output. If a country×industry
reports zero output, I set CO2 emissions for that country×industry also to equal zero. To aid
computation, I replace the roughly 2 percent of country×industry observations that report
zero output to have output 10−7. Because WIOD does not separately distinguish types of
mining, in the WIOD estimates all mining activities are combined into one sector, and both
electricity generation and transportation are combined into the “other industries” sector.
A few WIOD international flows are negative, primarily representing gross fixed capital
formation and changes in inventories and valuables. In WIOD estimates that aggregate
over industry categories or countries and use trade values as weights in this aggregation, I
assume these negative flows instead have values of zero. As with Exiobase, I exclude the five
countries missing NTB data (Bulgaria, Cyprus, Malta, Slovak Republic, and Taiwan).

A.3 Political Economy Variables

I group the political economy variables into those reflecting the demand for versus supply
of protection. The global data come from Exiobiase, but the U.S.-specific data with greater
industry detail come from a range of sources. Optimal tariffs are perhaps the simplest. I
use estimates of the export supply elasticity for the U.S. at the 10 digit harmonized system
code level from Soderbery (2015); the results are qualitatively similar using estimates from
Broda and Weinstein (2006).

A few variables reflect demand for low protection from customers. Industries may lobby
for low protection on goods they use as inputs. Industries with a large share of intra-industry
trade, i.e., where both exports and imports are common, may have less trade protection since
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importers lobby for protection while exporters (who are concerned with retaliation) lobby

against protection. I measure intra-industry trade using the common measure 1 − |xi−mi|
xi+mi

,
where xi and mi represent total exports and imports in industry i (Krugman 1981). These
data come from the Census Bureau’s Imports and Exports of Merchandise data series.

Another set of political economy variables reflects an industry’s demand for protection on
its own goods. Declining or “sunset” industries may obtain more government support since
sunk costs prevent entry and incentivize incumbents to lobby to protect remaining rents.
I calculate the change in the value of shipments for each industry between the years 1977
and 2007, adjusted by industry-specific output deflators, using data from the NBER-CES
Manufacturing Industry Database. Industries more exposed to foreign trade have more to
gain from protection. I measure the import penetration ratio as log of the total imports
divided by the value of shipments, in levels for the year 2007 and as a trend over the
period 2002-2007, using data from the NBER-CES database for gross output and Imports of
Merchandise for imports. Industries with more workers have more stakeholders potentially
benefiting from protection; I calculate each industry’s labor share as total workers divided by
the value of shipments, using data from the NBER-CES database. Industries with a large
share of low skill or low wage workers may obtain protection as a tool for redistribution,
either out of general concern for equity or as an alternative to other transfers. I measure
mean wages and the share of workers with some college education, using data from the May
2007 Current Population Survey Annual Social and Economic Supplement (CPS-ASEC).4

One additional variable measures the “local” air pollution for each industry. I combine
the six major air pollutants that the Clean Air Act targets and that are typically mea-
sured: carbon monoxide (CO), nitrogen oxides (NOx), particulate matter smaller than 2.5
micrometers (PM2.5), particulate matter smaller than 10 micrometers (PM10), sulfur dioxide
(SO2), and volatile organic compounds (VOC). I measure emissions of each pollutant from
the year 2008 data of the National Emissions Inventory (NEI), a national dataset created by
the Environmental Protection Agency that measures the tons of pollution emitted from each
plant or other source. The costs of these emissions vary over space and across pollutants.
To provide a scalar measure of these costs, I use a measure of the marginal damage for each
pollutant in each U.S. county, from Muller and Mendelsohn (2012). These damages reflect
leading estimates of how air pollution affects health, agriculture, amenities, etc. For each
industry, I calculate the damage rate as emissions per industry×pollutant×county times
damages per pollutant×county, summed across counties and pollutants, and divided by the
industry’s revenues.

A separate set of variables reflects the cost of organizing an industry to lobby for pro-
tection, i.e., the supply of protection. A challenge in lobbying is overcoming the free-riding
problem within each industry to pay for the costs of lobbying (Olson 1965). Concentrated
industries or industries with a few larger firms can better overcome the challenge. I measure

4A worker’s industry is defined from her current job for employed workers, or the most recent job for
workers who are unemployed or not in the labor force. I measure the share of workers with at least some
college education. For wages, I measure the hourly wage for the Outgoing Rotation Group if it is reported.
Otherwise I calculate hourly wages as total wage and salary income for the previous calendar year, divided
by the product of weeks worked last year and usual hours worked per week last year. I calculate wages
using the individual (earnings) survey weights, and calculate education using the standard individual survey
weights.
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industry concentration as the share of an industry’s output accounted for by the four largest
firms, using data from the Economic Census (specifically, the Census of Manufacturers).
I calculate mean firm size as the total value of shipments for the industry divided by the
total number of establishments in the industry, also using data from the Economic Census.
Using the same data, I calculate the standard deviation of firm size (Bombardini 2008).
Since capital intensity tends to increase concentration, and is also a primary determinant
of comparative advantage and U.S. imports, I also measure the capital share as the value
of the capital stock divided by gross output, using the NBER-CES database. High trans-
port costs and geographic dispersion make an industry less geographically or economically
concentrated, so more difficult to organize. I measure shipping costs per dollar×kilometer,
using data from the U.S. Imports of Merchandise series and CEPII’s measure of geographic
distance between countries. I measure geographic dispersion as entropy across states, using
data from County Business Patterns.5 Disadvantaged industries, including those with a high
share of workers who are unemployed, may have greater incentive to lobby since their oppor-
tunity cost of doing so is lower. I measure unemployment rates of workers where industry is
defined according to the current or most recent industry worked, using data from the May
2007 CPS. Unions provide an organized association to lobby for protection, so I measure
unionization rates using processed values from the May 2007 CPS (Hirsch and MacPherson
2003). I also use one direct though incomplete measure of lobbying on contributions to
Political Action Committees (PACs), using data from the Center for Responsive Politics.

Upstreamness turns out to be the most relevant of these variables. Formally, for a closed
economy with S industries, upstreamness is U = [I−dijYj/Yi]−11. Here, U is an S×1 column
vector where each entry is the upstreamness value for one industry, I is the S × S identity
matrix, dij is the input-output coefficient (i.e., the dollars of sector i goods needed to produce
a dollar of industry j goods), Yi is the output of industry i, and 1 is a vector of ones. The
term dijYj/Yi represents an S × S matrix where each entry equals the share of output from
industry i that industry j purchases. Antràs et al. (2012) show that this measure, originally
from Fally (2012), is analytically equivalent to the upstreamness measure described in Antràs
and Chor (2013). Versions of these definitions for global multi-region input-output tables
are similar, though each observation is an industry×country rather than just an industry
(Antràs and Chor 2018).

For the U.S. data, I measure upstreamness using the 2007 U.S. input-output table after
redefinitions. Appendix Figure 1, Panel D, plots upstreamness separately for all global
production and for U.S. production. In all these graphs, the most upstream industries
are on the left and the most downstream industries are on the right. The full measure of
upstreamness in Panel D ranges from 5 (most upstream) to 1 (most downstream)

5Formally, the analysis defines geographic dispersion as
∑

j yij lnyij , where yij ≡ Yij/Yi, and where Yij is
output of state j and Yi is total output. In County Business Patterns, each observation lists total employment
in a given state×industry. Some values are suppressed due to confidentiality, but identified as falling in one
of twelve employment size bins (1 to 19; 20 to 99; etc.). I impute these values as the midpoint of each bin,
and impute the top bin (>100,000) as 125,000.
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A.4 Trade Policy

Most of the trade policy data are straightforward. The NTB values exclude five countries
that are in Exiobase but that I hence exclude from much of the analysis: Bulgaria, Cyprus,
Malta, Slovakia, and Taiwan. In cases where tariff data are missing for Luxembourg, I
replace them with tariffs for Belgium. The country-by-country map in Figure 5 shows values
for many individual countries that are part of regional aggregates like “Rest of Europe” or
“Rest of Asia”

The NTB data have some limitations. Unlike tariffs, they are the result of calculations
and are not raw data. At the same time, they are widely used in research on trade policy
(Irwin 2010; Limão and Tovar 2011; Novy 2013; Handley 2014); Bagwell and Staiger (2011,
p. 1250) describe them as “the best [NTB] measures that are available.” These data differ
by importer and 6-digit HS code, though not by importer-exporter pair.

The time coverage of the NTB data precedes recent policy changes. Between 2009 and
2016, temporary trade barriers including antidumping policies, countervailing duties, and
safeguards increased on high income economies’ intermediate goods imports from China.
These patterns have been less pronounced for final goods trade with China, trade with
other countries, or emerging economies (Bown 2018). The U.S. has also increased tariffs in
its 2018-2019 trade war on a wide range of goods—initially on intermediate goods, though
eventually covering much trade with China. I report some results analyzing these recent
changes in tariffs.

One sensitivity analysis compares cooperative and non-cooperative tariffs for the U.S.,
China, and Japan. The U.S. applies non-cooperative tariffs to Cuba and North Korea. China
applies non-cooperative tariffs to Andorra, the Bahamas, Bermuda, Bhutan, the British
Virgin Islands, the British Cayman Islands, French Guiana, Palestinian Territory (West Bank
and Gaza), Gibraltar, Monserrat, Nauru, Aruba, New Caledonia, Norfolk Island, Palau,
Timor-Leste, San Marino, the Seychelles, Western Sahara, and Turks and Caicos Islands.
Japanese non-cooperative tariffs apply to Andorra, Equatorial Guinea, Eritrea, Lebanon,
North Korea, and Timor-Leste (Ossa 2014).

Appendix Figure 1, Panel A, plots the density of tariffs, excluding the top 1% for visual
clarity. The mean global tariff is three to five percent, while the 99th percentile globally
is sixty percent. U.S. import tariffs are lower, with mean and median around two percent
and the 99th percentile at nearly fifteen percent. Appendix Figure 1, Panel B, plots the
density of NTBs. For all global trade, tariffs and NTBs have somewhat similar values; for
U.S. imports, average NTBs exceed average tariffs.

A.5 Emissions

Most emissions data are described in the main text. All tons in this paper refer to metric tons.
All discussion of CO2 refers to CO2 from fossil fuel combustion, which is best measured and
accounts for a large majority of CO2 emissions, except one sensitivity analysis that includes
CO2 from process emissions and other greenhouse gases.

CO2 accounts for roughly 76 percent of global greenhouse gas emissions, methane (CH4)
accounts for 16 percent, nitrous oxide (N2O) for 6 percent, and fluorinated gases like hy-
drofluorocarbons (HFCs) for 2 percent (IPCC 2014). CO2 accounts for 82 percent of U.S.
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greenhouse gas emissions (USEPA 2019). Methane is emitted from extraction, transporta-
tion, and processing of coal, oil, and natural gas, in addition to coming from agriculture
and landfills. Researchers have a general consensus on the magnitude of CO2 emissions, but
are still debating and improving measurement of methane emissions, particularly from fossil
fuels (e.g., Alvarez et al. 2018).

For analyses of the U.S. only, the paper uses four other CO2 datasets. One is the U.S. de-
tailed benchmark input-output table after redefinitions for 2007, produced by the Bureau of
Economic Analysis. For this purpose, I use the industry-by-industry total requirements table.
The second data source is the U.S. Manufacturing Energy Consumption Survey (MECS),
which reports physical quantities of fossil fuels combusted for a large sample of manufactur-
ing plants in the year 2006. (MECS is only conducted every few years.) The third dataset
is the Census of Manufactures (CM), which reports expenditure on electricity and on total
fossil fuels for each 6-digit NAICS industry in the year 2007. Because MECS is a sample of
only 10,000 plants, I use MECS to measure each industry’s tons of CO2 emissions per dollar
of fossil fuel expenditure, and multiply this by the CM data on each industry’s total fossil
fuel expenditure. The fourth is U.S. emissions coefficients reporting mean national tons of
CO2 emitted per dollar of coal, oil, and natural gas input, obtained from the U.S. Energy
Information Agency and Environmental Protection Agency.

For the analysis of the U.S. input-output table, I measure price per BTU produced of
each fossil fuel (coal, crude oil, and natural gas) from the Energy Information Agency’s
year 2016 Annual Energy Review, and I measure metric tons of CO2 per BTU using EPA
emissions factors.6 Analysis of the U.S. data excludes observations with missing emissions
or trade policy data.

I use the publicly available version of MECS. In measuring energy consumption as fuel in
trillion BTU, I assume that suppressed values less than 0.5 (denoted with an asterisk) equal
zero. For withheld cells (denoted by Q or W), I impute the value as manufacturing’s overall
share of BTU from a fuel, multiplied by the industry’s total BTUs.

The paper’s main approach to measuring total emissions involves inverting an input-
output table. The diagonal of an input-output table, which generally has the largest values
in an input-output table, describes outputs from an industry that are used to produce output
in the same industry. This implies that fossil fuels which are used to produce fossil fuels
(e.g., oil used to power a drill that is used to extract oil) are captured in this approach since
they appear on the diagonal of the input-output table.

Appendix Figure 1, Panel C, plots the density of these total CO2 emission rates, sepa-
rately for all global trade and for all U.S. imports. For U.S. and global trade, the median
CO2 emission rate is 0.5 to 1.0 tons CO2 per thousand dollars of output. Emissions rates for
the U.S. have a longer right tail since the U.S. data have more industry detail.

B Implicit Carbon Tariffs: Sensitivity Analyses

Appendix Table 1 reports numerous other estimates of the implicit CO2 subsidies. Row 1
repeats the main estimates from Tables 2 and 3. Row 2 reports marginal effects from a tobit,

6Data from https://www.epa.gov/sites/production/files/2018-03/documents/emission-
factors mar 2018 0.pdf, visited 11/19/2019.
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since some industries have zero tariffs or NTBs. Row 3 reports an instrumental variables
tobit where direct CO2 intensity is the instrument for total CO2 intensity. Row 4 clusters
standard errors by the importing country.

Rows 5-7 report estimates that allow for nonlinear effects of CO2. Row 5 estimates the
dependent and independent variable in logs, and so estimates an elasticity. This specification
excludes observations with zero tariff or NTB. Row 6 specifies the CO2 rate as a quadratic
polynomial, and reports estimates of the slope ∂t/∂E at the 10th, 50th, and 90th percentile
of the distribution of CO2 values. Row 7 estimates a nonparametric regression (a third-order
B-spline) and reports the average marginal effect.

Rows 8-15 report other ways of cleaning and aggregating data. Row 8 replaces the
bottom and top percent of the dependent and independent variables as equal to the 1st and
99th percentile values. Row 9 includes non-manufactured goods (agriculture and mining),
alongside the manufactured goods analyzed in most of the paper. Row 10 uses a dataset
defined at the level of a bilateral trading pair and industry (i×j×s rather than j×s). Row
11 uses the same approach but adds exporter fixed effects.7 Row 12 aggregates to one
industry per observation. Row 13 includes intra-national trade (i = j) in the measurement
of emissions rates, with an intra-national tariff and NTB rate of zero.

Rows 14-16 use other measures of emissions. Row 14 considers only direct emissions,
measured from the input-output table. Row 15 includes both the direct and total emissions,
both measured from the input-output table. Row 16 uses data on all greenhouse gases and
sources in Exiobase, including nitrous oxide (N2O), methane (CH4), and emissions of each
greenhouse gas from non-combustion processes.

Rows 17-19 consider other ways of measuring the emissions rate of energy-consuming
durable goods. The baseline regressions ignore emissions from goods that are complements
or substitutes with the focal good. For example, changing tariffs on cereal might change
consumption of milk, but the energy intensity of cereal in this analysis does not account
for the energy intensity of milk. While estimating a flexible demand system of many cross-
elasticities across goods in the global economy is beyond the scope of this paper, measuring
emissions from consumption is potentially most important for durable goods that require
energy to operate, including transportation goods like cars and appliances like air condi-
tioners.8 For these goods especially, abstracting from the energy that is complementary to
consuming these goods provides an incomplete picture of the emissions due to trading these
goods. This is relevant because energy-consuming durables are relatively downstream and
are relatively clean according to the approach of this paper.

Rows 17-19 take two approaches for energy-consuming durables. Row 17 excludes energy-
consuming durable household goods from the analysis, including machinery and equipment

7One alternative candidate explanation for tariff escalation is that countries offer preferential market
access to developing countries, which specialize in upstream goods. Under this explanation, controlling for
exporter fixed effects would attenuate both tariff escalation and implicit tariffs. The estimates of row 11,
which include these fixed effects, are actually larger in absolute value than the estimates of row 10, which
do not use these fixed effects, which could suggest that this candidate explanation is not the predominant
driver of tariff escalation or of the environmental bias of trade policy.

8The question of how to account for emissions from consumption versus production of international
services trade, such as international airplane flights, is also important. Because tariffs do not apply to trade
in services, and because the Kee et al. (2009) data I use on NTBs cover goods and not services, I leave the
analysis of NTBs involving services and the environment to future research.
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not elsewhere classified (a category including appliances), motor vehicles, trailers, semi-
trailers, and other transport equipment. Row 18 assumes that the emissions rate for these
durable goods is an unweighted average of the emission rate for these durable goods and the
emission rate for energy in the importing country. Row 19 assumes that the emission rates
for these goods is a weighted average of the emission rate for these goods and for energy in
the importing country, with weights of 5 percent and 95 percent, respectively. The emission
rate for energy averages over petroleum refining, natural gas extraction, and all forms of
electricity production, where weights equal the gross output of each industry in the importing
country. These different weighting schemes reflect evidence on the importance of emissions
from manufacturing versus operation for these goods (Union of Concerned Scientists 2013;
Nahlik et al. 2015; Amienyo et al. 2016).

Rows 20 through 25 show other sensitivity analyses. Row 20 shows the reverse regression
of emissions rates E on trade policy t. Row 21 replaces the usual tariff measure on goods,
dt, with a life cycle measure (I − A)−1dt. This accounts for tariffs on inputs, and inputs to
inputs, etc. Row 22 estimates the regression without importer fixed effects. Row 23 uses
data from the World Input Output Dataset (WIOD). Row 24 adds industry fixed effects.
Row 25 excludes manufactured agricultural goods and manufactured food products.

Most results in Appendix Table 1 are similar to the main estimates, though some vary in
their magnitudes. I highlight some of the more important differences here. Tobit estimates
obtain larger estimates of implicit subsidies for NTBs but not tariffs, since more observa-
tions have zero NTBs. The estimates that allow for nonlinearity in CO2 rates generally find
negative slope, though the magnitude differs across the support of CO2 rates—the quadratic
estimates in row 6, for example, imply a wide range of estimated global subsidies, while
nonparametric estimates in row 7 imply a global subsidy of about $100/ton. Incorporating
intra-national trade (row 13) modestly increases the weighted but decreases the unweighted
estimates in absolute value. Direct emissions have a similar association with trade policy
as total emissions do; when a regression includes both, the coefficient on total emissions
accounts for more of the total subsidy, though neither estimate is precise, perhaps in part
due to multicollinearity. Excluding energy-consuming durable goods from the analysis or
adjusting emission rates of these goods to account for energy used in their consumption does
not substantially change the estimated subsidy in absolute value. The reverse regression has
smaller coefficients since it reverses the dependent and independent variables. The WIOD
data still imply subsidies but are imprecise, partly because they only have 15 tradable man-
ufacturing industries. Adding industry fixed effects nearly eliminates the implicit subsidy.
This is perhaps unsurprising since industry-level estimates in row 12 are similar to baseline
estimates in row 1, though this does suggest that whatever economic forces create these sub-
sidies operate at the industry level and are similar within an industry and across countries.
Excluding agricultural and food manufactured products produces smaller estimates of the
implicit subsidies.

Appendix Table 1, rows 26-27, focus on the recent trade war by analyzing U.S. import
tariffs at the end of 2018. Row 26 estimates the implicit subsidy for U.S. import tariffs using
tariff data from 2017, as in Figure 2. Row 27 augments these data with the sum of five rounds
of tariffs imposed in 2018, which targeted washers, solar panels, aluminum, and Chinese
imports. I measure these tariffs using data from Fajgelbaum et al. (2020). Unweighted
estimates show a modest decrease in trade policy’s environmental bias, of nearly a dollar a
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ton, while weighted estimates show a smaller increase. These estimates are mixed because
while much attention focused on dirty goods like aluminum or steel, the most CO2-intensive
goods like refined petroleum and cement did not experience tariff changes in this time period.
Some goods with larger increases in tariffs in this period, like semiconductor manufacturing
or laundry equipment manufacturing, are not especially CO2-intensive.

C Informal Discussion of Trade Policy Theories

This Appendix informally discusses how theories of trade policy might rationalize the paper’s
findings. It is useful to distinguish two reasons why countries choose trade policy. One is
to exploit market power and terms-of-trade externalities. Another is to satisfy domestic
industries which lobby for high tariffs on their output.

Some trade policy instruments, like NTBs and non-cooperative tariffs, are chosen inde-
pendently by countries and are typically not negotiated with other countries. In theories of
explaining such non-cooperative trade policy (Grossman and Helpman 1994; Goldberg and
Maggi 1999), both the terms-of-trade externality and political economy forces determine
tariffs. In these frameworks, governments value the welfare of their citizens, which decreases
overall with protection, but governments also value campaign contributions and other sup-
port from industry, which increases with the protection industries receive. These frameworks
can accommodate industries’ lobbying for low tariffs on industries they use as intermediate
inputs (Gawande et al. 2012). The finding of implicit carbon subsidies in non-cooperative
policy instruments, and the empirical relevance of upstreamness, are consistent with these
theories.

Other trade policy instruments, like most tariffs, are cooperatively chosen by countries
through negotiation. Research has provided two broad explanations for why countries coop-
erate on trade policy (Grossman and Helpman 1994; Maggi and Rodŕıguez-Clare 1998, 2007).
One is that cooperation helps decrease terms of trade externalities, though not necessarily
the political economy components of trade policy. A second explanation for cooperation is
that governments understand the political pressure of trade lobbies and the welfare costs of
protection. In this explanation, governments commit to free trade agreements in order to
tie their hands and obtain a more efficient domestic allocation of resources across industries,
while limiting the resulting political cost.

In all these cooperative theories, political economy motives like lobbying for low upstream
tariffs potentially remain an important determinant of non-cooperative and cooperative trade
policy. In Grossman and Helpman (1995), cooperation does not change political economy
motives for trade policy. In the commitment theory, negotiation may attenuate but not elim-
inate political economy’s effects on trade policy. These interpretations suggest that lobbying
competition between upstream and downstream industries may occur in both cooperative
and non-cooperative policies, and extends beyond any single model.

Another general interpretation of this is as follows. A goal of cooperative trade policy
negotiation (e.g., through the World Trade Organization) is to eliminate one externality
– the terms-of-trade motive for trade policy – which leaves political economy motives re-
maining. This paper highlights that those negotiations, however, leave a second externality
untouched—an environmental externality which arises from political economy forces behind
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trade policy.
To be concrete about why counter-lobbying might create tariff escalation, consider the

example of a fairly upstream industry like steel and a fairly downstream good like cigarette
manufacturing. Many industries use steel as an input, either directly (they purchase steel)
or indirectly through global value chains (they purchase goods which use steel as an input,
or goods which use inputs which use steel as an input, etc.). Hence, many industries will
lobby for low tariffs and low NTBs on steel. By contrast, few industries use cigarettes as an
input, and hence few industries will lobby for low tariffs or low NTBs on cigarettes. Final
consumers might prefer low tariffs and low NTBs on both steel and cigarettes, but final
consumers are less well organized than industries, and hence have less lobbying influence.
Thus, countries end up with lower tariffs or NTBs on steel, and higher tariffs or NTBs on
tobacco products.9

Finally, it is worth discussing one potential explanation from public finance. Diamond
and Mirrlees (1971) consider commodity taxation in a general setting. Even in a second-best
world where the government uses (distortionary) linear commodity taxes, which imply that
the first-best Pareto optimal outcome is infeasible, they show that the optimal tax system
maintains the economy at the production possibilities frontier. A corollary is that optimal
commodity taxes apply only to final and not intermediate goods.10

Based on this theorem, one might conjecture that tariff escalation has an efficiency ra-
tionale. This interpretation might claim that downstream goods are final goods, and that
tariff escalation seeks to maintain production efficiency by putting tariffs on final rather
than intermediate goods. In this interpretation, while upstreamness accounts for trade pol-
icy’s environmental bias, the link between upstreamness and trade policy could be caused
by government’s desire for an efficient tax system rather than by lobbying. Additionally, if
tariff escalation reflected efficiency rather than political economy forces, then harmonizing
tariffs between upstream and downstream goods could decrease production efficiency even if
it benefited the environment.

Two reasons suggest that production efficiency does not explain the prevalence of tariff
escalation. First, I find similar escalation in NTBs as in tariffs. NTBs do not raise revenue,
so optimal taxes would not include NTBs, except to the extent that they address market
failures. Hence, production efficiency does not explain why NTBs exist or have escalation.
Second, the production efficiency theorem does not rank the efficiency of different second-
best tax systems by the degree to which they tax intermediate goods. This theory does not
permit stating that a tax or tariff structure which has more escalation is more efficient; it
merely states that the optimal tax system has no taxes on intermediate goods.11

9In the global data, weighted across countries by the value of imports, steel has a mean upstreamness
value of 3.5, tariff of 1.3 percent, and NTB ad valorem equivalent of 1.5 percent. Tobacco products has
upstreamness of 1.2, tariff of 9.8 percent and NTB ad valorem equivalent of 43 percent. These are among
the most and least upstream industries in Exiobase.

10One intuitive explanation is that under constant returns to scale, any tax on intermediate goods would
appear through changes in final goods prices. Then the government could collect the revenue through this
tax on final goods. But because taxing intermediate goods prices distorts firms’ input choices, it moves the
economy away from production efficiency (Diamond and Mirrlees 1971, p. 24).

11A related potential explanation is that distortions in the economy aggregate through upstream input
purchases, so an efficient industrial policy would subsidize upstream sectors (Liu 2018). This interpretation
would argue for direct production subsidies rather than trade policies, and it also would not apply to an
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D General Analytical Model

To study the effects of trade policy’s environmental bias, I use a simple two-country, two-
good model that incorporates existing ideas (Markusen 1975; Copeland 1994; Kortum and
Weisbach 2019). This model encompasses several potentially important features: pollution
can directly affect utility; pollution has transboundary damages; consumers may have non-
homothetic preferences; policy reforms may occur from a sub-optimal baseline; and large
countries may affect world prices.

I consider two countries: A (Home) and B (Foreign), indexed by i. They may trade two
goods: 0 (clean) and 1 (dirty), indexed by s.

Preferences. Let Ci
s denote the consumption of good s in country i. Let Z de-

note global CO2 emissions. The utility of the representative agent in country i is W i =
W i(Ci

0, C
i
1, Z), i ∈ (A,B).

Technology. Let X i
s denote the quantity of good i produced in country i. Let F i(·)

denote the production possibilities frontier: F i(X i
0, X

i
1) = 0, i ∈ (A,B). We can also write

the frontier as X i
0 = T i(X i

1).
Pollution. Global pollution emissions increase with output of the dirty good in each

country: Z = Z(XA
1 , X

B
1 ).

Equilibrium. Let good 0 be the numeraire, let p denote the price ratio of good 1 to
good 0 in country A, and let p∗ denote this price ratio in country B. Country A may impose
a trade tax rate of t on good 1, implying

p∗(1 + t) = p (2)

If country A imports good 1 and t > 0, then this tax rate t is an ad valorem import tariff.
If country A exports good 1 and t > 0, then this tax rate t is an export subsidy. In both
cases, the taxes raises the domestic price p relative to the foreign price p∗.

The first order conditions are useful for deriving comparative statics. Production effi-
ciency implies that producers equate the ratio of their marginal products to the price ratio:

p =
∂FA/∂XA

1

∂FA/∂XA
0

= −∂T (XA
1 )

∂XA
1

, p∗ =
∂FB/∂XB

1

∂FB/∂XB
0

= −∂T (XB
1 )

∂XB
1

(3)

I assume T (·) is strictly concave. Consumption efficiency implies that consumers equate the
marginal ratio of substitution to the price ratio:

p =
∂WA/∂CA

1

∂WA/∂CA
0

, p∗ =
∂WB/∂CB

1

∂WB/∂CB
0

Define country A’s net exports of good s as es ≡ XA
s − CA

s . Trade balance implies
e0 + p∗e1 = 0.

Comparative Statics: Pollution. To study how policy affects pollution, totally dif-
ferentiate the pollution equation Z = Z(XA

1 , X
B
1 ):

dZ =
∂Z

∂XA
1

dXA
1 +

∂Z

∂XB
1

dXB
1 (4)

undistorted economy already at the first-best.
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I relate this to policy changes through a few steps. First, differentiate the production ef-
ficiency condition (3), define Rn ≡ −[∂2T (X i

1)/∂X
i
1]
−1, and substitute into the pollution

derivative (4). Combining this with the total derivative of the price equation (2) gives

dZ = d(1 + t)

[
∂Z

∂XA
1

RAp∗
]

+ dp∗
[
∂Z

∂XB
1

RB +
∂Z

∂XA
1

RA(1 + t)

]
(5)

The terms in equation (5) that include ∂Z/∂XA
1 represent the change in home country

pollution emissions due to changes in the home country’s trade policy. The term including
∂Z/∂XB

1 represents a change in foreign pollution emissions due to changes in the home
country’s trade policy.

To interpret equation (5), consider first a small open economy, for which policy cannot
change world prices (so dp∗ = 0). Here, increasing the trade tax on dirty goods (d(1+t) > 0)
unambiguously increases global emissions. We can sign the result since prices are positive
(p∗ > 0), pollution increases in both its arguments (∂Z/∂XA

1 > 0 ), and RA>0 due to the
strict concavity of T (·). This result has an intuitive explanation. If a small open economy
raises tariffs on dirty goods, it increases these goods’ domestic price without changing their
world price. Domestic production shifts towards the dirty industry in response to the price
change, but foreign production does not (since world prices are fixed here by assumption).
Of course, a marginal policy change in a small open economy will have small effects on global
emissions.

Results are more ambiguous for a large economy. The first bracketed term in equation
(5) again represents the effect for a small open economy and is positive. The second term
is negative, because tariffs t are nonnegative, emissions increase in both their arguments
(∂Z/∂X i

1 > 0), and the technology terms are positive (Ri > 0 ). The key difference in
the second term is that a large economy’s import tariff decreases world prices, so dp∗ < 0.
Intuitively, this policy reform decreases foreign emissions since it decreases foreign prices of
dirty goods. This can also be seen from a simpler version which assumes both countries
have the same emissions and production technology; for this simpler case we get dZ =
(∂Z/∂X1)R(dp+ dp∗); here every term is positive except dp∗.

Differentiating equation (5) with respect to each argument shows that the following
forces each make a large country’s tariffs on dirty goods decrease global emissions more (or
increase them less). First, this occurs when a country has market power and increasing tariffs
on imports of dirty goods causes a relatively large decrease in world prices (dp∗ is large).
Second, this occurs when foreign production is especially dirty (∂Z/∂XB

1 is large). This is
relevant since many countries outsource production of dirty goods to countries that are coal-
intensive in production, such as China, and since international trade requires emissions for
international transportation, which is pollution-intensive. Third, this occurs in settings with
higher baseline tariffs on dirty goods (1 + t is large). Finally, this occurs in settings where
foreign production technology is especially concave (RA is large). This concavity captures
the extent to which decreasing the relative price of dirty goods makes the economy substitute
from dirty to clean production.

Comparative Statics: Welfare. To study how policy affects welfare, totally differen-
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tiate utility:

dW i

∂W i/∂Ci
0

= dCi
0 +

∂W i/∂Ci
1

∂W i/∂Ci
0

dCi
1 +

∂W i/∂Z

∂W i/∂Ci
0

dZ

To write in terms of policy changes, define the social cost of pollution as δi ≡ (∂W i/∂Z)/(∂W i/∂Ci
0)

and write the foreign price as a function of Home’s net exports p∗ = E(e1). Then calculate
total derivatives of the definition of net exports, the trade balance condition, the transfor-
mation function, and the definition of foreign price as a function of Home’s net exports.
Combining these results with production efficiency gives the main result that can be used to
study welfare:

dW i

∂W i/∂CA
0

=

[
∂p∗

∂e1
e1 − p∗t

]
de1 + δidZ (6)

This is essentially the expression used to derive the optimal tariff in Markusen (1975),
although the setting is slightly different. Ignoring pollution by setting δi = 0, this would
imply the standard result that the (privately) optimal tariff equals the inverse export supply
elasticity, which can be found by setting Z = de1 = 0: toptimal = (∂p∗/∂e1)(e1/p

∗). If the
dirty good is imported, increasing import tariffs increases national welfare when baseline
tariffs are below the optimum, and decreases it when baseline tariffs are below the optimum.

Because pollution creates global damages, accounting for pollution creates the same pat-
terns of effects as in equation (5)—changing policy affects both domestic emissions (the last
term in equation (6)) and foreign emissions (the second term in this equation). The effect
of trade policy on welfare here is separable into a traditional term capturing the gains from
trade, and a separate term reflecting pollution damages.

This simple model captures two important ideas about how increasing protection can
affect global emissions, though misses others. Any one country’s protection can increase
domestic emissions. Since this model has only two goods, it does not accommodate intra-
industry trade, and two countries cannot simultaneously impose import tariffs on dirty goods.
In reality, if all countries increase tariffs on dirty goods, production of dirty goods could fall
in all countries, which does not occur from trade policy in a two-good model. Additionally,
because it analyzes small perturbations of existing policy, this abstracts from changes in the
scale of global output. For these and other reasons, the main text discusses analytical results
from a model where goods differ by country of origin.

E Quantitative General Equilibrium Model

I show an Armington model for simplicity and comparability with the 2×2 model in the
main text. A richer Ricardian model (e.g., Eaton and Kortum 2002) would lead to the same
equilibrium equations and hence the same counterfactual results.

Assumption 1 (Preferences): Each country produces one variety per sector. The
representative agent in each destination country j has constant elasticity of substitution
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preferences across the varieties and Cobb-Douglas preferences across sectors s:

Uj =
∏
s

(∑
i

qijs
σs−1
σs

) σs
σs−1

βjs

[1 + δ(Z − Z0)]
−1 (7)

Here qijs is the quantity of the variety from country i and sector s consumed in country
j, σs > 1 is the elasticity of substitution, and βjs is the Cobb-Douglas expenditure share.
The bracketed term on the right captures the disutility from climate change; δ represents a
damage parameter, Z0 represents a reference or baseline level of global CO2 emissions used
to calibrate the damage parameter, and Z represents the global emissions in a particular
model scenario.

Several reasons support using this functional form for climate damages. It makes dam-
ages multiplicative, which facilitates the analysis of counterfactuals using ratios. It also
makes damages proportional to real income. It permits calibration of the climate damage
parameter δ so that a one-ton increase in CO2 emissions decreases global welfare by $40,
which corresponds with prevailing estimates from the climate change literature (IWG 2016).
Additionally, it provides a simple functional form to accomplish these objectives. This spec-
ification is designed to measure damages from changes in emissions only, since in baseline
data, Z = Z0, so the model abstracts from baseline climate damages.

Assumption 2 (Firms and Production Technology): Goods are produced with a
Cobb-Douglas combination of the factor L and an aggregate intermediate good, which is a
constant elasticity of substitution combination of varieties of intermediate goods:

ajt = (Ljt)
1−ηis

∏
s

(∑
o

qIojst
σs−1
σs

) σs
σs−1

ηjst

(8)

The aggregate intermediate good is CES in varieties qIijst shipped from origin country i and
origin industry s to destination country j and destination industry t, and is Cobb-Douglas
across industries. Here ηjst is the intermediate goods share of industry s for production of
industry t in country j.

Buyers pay variable trade costs φijt ≡ τijt(1+tijt)(1+nijt). Here τijt ≥ 1 are iceberg trade
costs, so τ goods must be shipped for one to arrive; I normalize τjjt = 1. Additionally, buyers
pay bilateral import tariffs tijs; tariff revenues are lump-sum rebated to domestic consumers.
I treat NTBs nijs as a multiplicative tariff with revenue that is lost (or, equivalently, as a
form of iceberg trade cost). The quantitative application of this model includes a non-traded
sector; one could interpret this as a sector within infinite trade costs.

Assumption 3 (Pollution): CO2 emissions equal Zis = γisRis/Pis. Here Zis are
the tons of CO2 emitted due to producing goods from industry s in country i, Ris is
country×sector revenue, and Pis is the country×sector price index. The coefficient γ equals
the tons of CO2 per real unit of output in country i and sector s. This variable γ equals
zero for all industries besides coal extraction, oil extraction, and natural gas extraction. For
these three fossil fuel extraction industries, γ equals the metric tons of CO2 per real dollar
of output of a given fossil fuel in a given country.

Assumption 4 (Market Clearing): Market clearing for labor and trade balance are
Li =

∑
s Lis and

∑
j,sXijs =

∑
j,sXjis −Di. Here Lis is factor supply, Di are trade deficits,
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and Xijs is expenditure flows. I assume that in baseline data and in any counterfactual,
consumers maximize utility, firms maximize profits, and markets clear, so the data describe
a competitive equilibrium.

These equations complete the model, and imply several results useful for quantification.
The cost to produce one unit of output is

cis = w1−ηis
i

∏
k

P ηiks
ik

This unit cost is Cobb-Douglas in the price of factors wi and intermediates, and also Cobb-
Douglas across the price index of intermediates Pik. Sector s in country j has the following
price index:

Pjs =

(∑
i

(φijscis)
εs

) 1
εs

Here the price index depends on trade barriers φijs, unit costs cis, and I write equilibrium
equations in terms of the trade elasticity εs < 0, which is related to the elasticity of substi-
tution by εs ≡ σs − 1.

The share of a country’s expenditure in a given sector which is allocated to a specific
exporter is λijs ≡ Xijs/Xjs, where Xijs is the value of bilateral trade. Consumer utility
maximization implies that this can be written as follows:

λijs =
(φijscis)

εs∑
o(φojscos)

εs

This is a standard “gravity” equation.
Total expenditure on varieties from sector s in country j equals the Cobb-Douglas ex-

penditure share βjs times total income from factors, trade deficits, and tariffs, plus income
from selling intermediate goods:

Xjs =
βjs

(
Yj +Dj +

∑
i,l

tijl
1+tijl

λijl
∑

k αjlkRjk

)
1−

∑
i,l

tijl
1+tijl

λijlβjl
+
∑
k

αjlkRjk

Revenues for a given country and sector equal pre-tariff bilateral trade, summed over
destinations:

Ris =
∑
j

λijs
1 + tijs

Xjs

By the Cobb-Douglas assumption of the production technology, labor income is a constant
share of total revenues:

Yi =
∑
s

(1− αis)Ris

I rewrite these equations in changes, which produces a system of nonlinear equations.
These equations describe a competitive equilibrium. I now consider how a counterfactual
policy would affect this equilibrium. This counterfactual analysis uses the “exact hat algebra”
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of Dekle et al. (2008). The cost function is the proportional change in wages and intermediate
goods prices, scaled by their Cobb-Douglas expenditure shares:

ĉis = ŵ1−ηis
i

∏
k

P̂ ηiks
ik

The change in the price index is the weighted sum of bilateral prices from each possible
exporter, where weights equal the baseline expenditure shares λijs:

λ̂ijs =
(φ̂ijsĉis)

εs∑
o λojs(φ̂ojsĉos)

εs

The change in a country’s expenditure on a given sector can be written as

X̂jsXjs =

βjs

(
ŵjYj +Dj +

∑
i,l

t
′
ijl

1+t
′
ijl

λ̂ijlλijl
∑

k αjlkR̂jkRjk

)
1−

∑
i,s

t
′
ijs

1+t
′
ijs

λ̂ijsλijsβjs

+
∑
k

αjskR̂jkRjk

The change in a country’s revenue from a given sector can be written as

R̂isRis =
∑
j

λ̂ijsλijs
1 + t

′
ijs

X̂jsXjs

Finally, the change in national income is

ŶiYi =
∑
s

(1− ηis)R̂isRis

For baseline data, these equations hold exactly. Under counterfactual tariffs or NTBs, I
solve this system to find the changes in prices and firm entry that make it hold with equality.
Finally, I use these to find the resulting change in real income, pollution, and social welfare:

V̂j =
̂Yj +Dj + Tj

P̂j

Ẑi =

∑
s γisR̂isRis/P̂isPis∑

s γisRis/Pis

Ŵj =
V̂j

[1 + δ(Z ′ − Z0)]

This uses the notation x̂ = x
′
/x, where x is some variable in the baseline data, x′ is its value

in a counterfactual, and x̂ is the proportional ratio between the two. Here Tj is total tariff
revenue.
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Antràs, P. and D. Chor (2018). On the Measurement of Upstreamness and Downstreamness
in Global Value Chains (1 ed.)., pp. 126–194. Routledge.
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Panel A. Density of tariffs

Panel B. Density of non-tariff barriers

Panel C. Density of Total CO2 intensity

(Continued on next page)

Appendix Figure 1—Densities of Trade Policy, Carbon Intensity, and Upstreamness
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Panel D. Density of upstreamness

Appendix Figure 1—Densities of Trade Policy, Carbon Intensity, and Upstreamness (Continued)

Notes:  Graphs exclude top 1% of each variable. The value 5 represents the most upstream, while 1 is 
the least upstream. Upstreamness measured as in Antràs et al. (2012).
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Notes:  Data from the U.S. BEA use table for year 2007. Fossil fuel industries include natural gas 
distribution, oil and gas extraction, electricity generation, petroleum refineries, and coal mining. For 
smoothness, for each component of output separately, this analysis estimates a local linear regression of 
the relevant component on upstreamness. The graph shows the fitted values from these regressions. The 
y-axis is the share of an industry's total value of shipments which is accounted for by each of the four 
listed components. The graph describes only manufacturing outputs (though counts intermediate inputs 
from all industries).

Appendix Figure 2—U.S. Upstreamness and Components of Revenues
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Appendix Figure 3—Upstream Location, CO2 Intensity, and Trade Policy, by Country
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Appendix Figure 3—Upstream Location, CO2 Intensity, and Tariff Rates, by Country (Continued)
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Notes:  in each graph, the solid red line is from a local linear regression of import tariffs on the 
industry's upstreamness. The dashed blue line is from a local linear regression of CO2 intensity on the 
industry's upstreamness. Upstreamness is the simple measure of the share of an industry's output sold to 
other industries as intermediate goods (rather than as final demand). All data from Exiobase. All 
regressions use an Epanechnikov kernel with bandwidth of 0.75. Bulgaria, Cyprus, Malta, Slovakia, and 
Taiwan are missing NTB rates, so the red solid line for these countries only includes tariffs.

Appendix Figure 3—Upstream Location, CO2 Intensity, and Tariff Rates, by Country (Continued)
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(1) (2) (3) (4) (5) (6) (7) (8)
1. Main estimates -32.31*** -11.17** -89.78*** -75.67** -5.69*** -6.55*** -47.96*** -37.41***

(8.59) (5.52) (27.33) (30.02) (1.44) (2.30) (10.06) (12.36)

Other econometrics
   2. Tobit (no IV) -35.63*** -5.29 -157.58*** -146.00** -6.19*** -3.61*** -270.19***-156.78***

(11.52) (6.09) (40.74) (59.37) (1.96) (1.30) (60.86) (56.43)

   3. Tobit (IV) -44.10*** -11.57** -191.05*** -154.37** -7.22*** -10.04*** -480.32*** -369.11**
(15.40) (5.74) (56.30) (70.22) (2.29) (3.59) (132.43) (158.31)

   4. Standard errors  -32.31*** -11.17*** -89.78*** -75.67*** — — — —
       clustered by importer (7.71) (3.30) (11.67) (12.84) — — — —

Nonlinearity
  5. Logs -0.65 -0.91** -0.09*** -0.02 -0.64* -0.22 -0.07*** -0.04*

(0.46) (0.43) (0.03) (0.05) (0.36) (0.59) (0.02) (0.02)

  6. Quadratic in emissions
       no IV. CO2 rate -58.33*** 3.58 -194.52*** -152.31 -10.15** -1.29 -45.45* 8.17

(20.32) (14.81) (55.98) (113.86) (4.65) (5.63) (25.49) (27.49)

      CO2 rate2 9,539.88** -3,508.35 34,582.94**34,420.37 1,260.10 -355.19 1,055.59 -4,798.88
(4,668.97) (4,695.02) (14,405.20)(34,372.49) (807.49) (882.31) (5,166.68) (4,704.39)

     fitted slope, 10th pct. -51.56 1.09 -169.99 -127.89 -9.22 -9.22 4.62 4.62

     fitted slope, 50th pct. -46.70 -0.70 -152.35 -110.34 -8.22 -8.22 0.82 0.82

     fitted slope, 90th pct. -30.26 -6.74 -92.77 -51.04 -4.86 -4.86 -11.99 -11.99

  7. Nonparametric -18.56 — -81.48 — -4.89 -4.89 -41.04 -41.04
       marginal effect (no IV)

Other data cleaning and aggregation
   8. Winsorize dependent, -25.49*** -10.66* -90.36*** -75.69** -5.75*** -6.42*** -51.40*** -38.01***
       independent variables (6.60) (5.39) (27.73) (29.95) (1.62) (2.29) (10.45) (12.69)

   9. Include non-manuf. -32.31*** -9.91 -84.77*** -72.96** — — — —
       industries (8.59) (8.96) (24.07) (33.21) — — — —

Weighted X X X X
(Continued on next page)
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(1) (2) (3) (4) (5) (6) (7) (8)
   10. Multiple partners -37.33** -11.23* -82.63** -75.70** -6.95*** -6.55*** -55.10*** -37.41***
         (i×j×s level data) (16.49) (5.84) (32.19) (29.63) (2.10) (2.29) (12.34) (12.34)

   11. i×j×s level data -38.34** -16.33** -84.46** -93.59** -6.54*** -2.61* -54.23*** -38.40***
        exporter fixed effects (17.11) (6.88) (33.16) (37.43) (1.95) (1.41) (11.87) (14.13)

   12. Industry-level data -21.80** -12.77** -124.16** -78.08* — — — —
        (no IV) (10.38) (5.14) (52.71) (45.14) — — — —

   13. Add intra-national -5.80*** -11.90*** -60.48** -81.84*** — — — —
          trade (1.39) (3.90) (23.32) (21.01) — — — —

Other measures of emissions
   14. Direct emissions -27.48*** -11.53 -78.33*** -104.70*** -7.52*** -10.35*** -63.34*** -59.13***

(7.91) (8.10) (22.30) (34.86) (2.00) (3.71) (16.68) (20.78)

   15. Direct emissions 49.89* -21.03 183.49** 6.37 -1.86 -6.09** -15.98 -35.63**
(28.79) (24.12) (78.40) (135.57) (1.81) (2.49) (16.17) (16.04)

         Total emissions -62.72** 6.55 -212.24*** -76.56 -4.29** -2.70*** -35.86*** -14.87***
(26.28) (16.00) (70.42) (100.21) (1.66) (0.87) (9.14) (4.16)

   16. Include all -16.93*** -6.55** -46.71*** -41.65** — — — —
         greenhouse gases (4.48) (2.56) (14.34) (16.95) — — — —

Consumption emissions from energy-consuming durable goods

  17. Exclude energy- -35.30*** -16.50** -98.47*** -113.23** -9.60*** -17.40*** -60.92*** -66.09***
        consuming durables (9.38) (7.90) (29.80) (47.39) (2.10) (6.50) (14.00) (23.26)

  18. Adjust CO2 rates:  -32.91*** -12.33** -91.04*** -83.46** -6.04*** -8.34** -50.89*** -47.66***
        50% goods, 50% energy (8.73) (6.03) (27.86) (33.52) (1.55) (3.32) (11.11) (16.07)

  19. Adjust CO2 rates: -32.71*** -12.02** -90.51*** -81.35** -6.39*** -11.07* -53.86*** -63.25**
     5% goods, 95% energy (8.69) (5.90) (27.69) (32.39) (1.67) (6.29) (12.31) (30.48)

Additional sensitivity analyses
   20. Reverse regression -0.0004*** -0.0002 -0.0006*** -0.0003** -0.0040***-0.0040*** -0.0009 -0.0009
         (no IV) (0.0001) (0.0004) (0.0001) (0.0001) (0.0011) (0.0011) (0.0006) (0.0006)

   21. Lifecycle tariffs -7.80** -5.04 -89.68*** -51.46** — — — —
(3.56) (9.31) (26.99) (25.28) — — — —

Weighted X X X X
(Continued on next page)

US ImportsGlobal

Tariffs NTBs Tariffs NTBs

Appendix Table 1—Carbon Taxes Implicit in Trade Policy, Sensitivity Analysis (continued)
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(1) (2) (3) (4) (5) (6) (7) (8)
   22. No importer fixed -32.05*** -13.51* -97.58 -83.65*** — — — —
         effects (8.42) (7.18) (55.30) (30.55) — — — —

   23. WIOD, not Exiobase -13.43 -19.88 -19.54 -121.44 — — — —
         (no IV) (12.87) (16.83) (40.09) (84.18) — — — —

  24. Add industry fixed 28.80 7.48 -16.09 123.97 — — — —
        effects (25.46) (15.32) (13.39) (85.56) — — — —

  25. Exclude manuf. -5.29 -5.87 -75.67** -40.81** -5.70*** -6.68*** -36.55*** -37.67***
         food, ag. goods (6.09) (4.52) (30.02) (17.36) (1.47) (2.33) (8.87) (12.22)

Trade war in 2018
  26. U.S. tariffs in 2017 — — — — -4.80*** -4.14** — —

— — — — (1.68) (1.45) — —

  27. U.S. tariffs including — — — — -3.97*** -4.29** — —
        2018 protectionism — — — — (1.43) (1.75) — —

Weighted X X X X

Global US Imports

Notes: All regressions are instrumental variables estimates, except where otherwise noted. All regressions include a constant. 
Parentheses show standard errors clustered by industry except in row 4. In columns 3 and 4, hyphens indicate data which are 
same as row 1 or which are not available for U.S. imports only (e.g., MECS survey does not cover non-manufacturing; WIOD 
v. Exiobase not relevant for U.S. microdata; all greenhouse gases not separately reported). Asterisks denote p-value * < 0.10, 
** < 0.05, *** <0.01.

Appendix Table 1—Carbon Taxes Implicit in Trade Policy, Sensitivity Analysis (continued)
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(1) (2) (3) (4)
Panel A. U.S. import tariffs
CO2 rate -6.03*** -4.49** -78.32*** -62.39***

(1.71) (1.94) (12.70) (23.96)
N 374 374 374 374
Dep. Var. Mean 0.020 0.013 0.324 0.275

Panel B. Japanese import tariffs
CO2 rate -54.72*** -44.70 -46.99** -9.18

(16.61) (27.00) (19.06) (13.43)
N 47 47 47 47
Dep. Var. Mean 0.074 0.040 0.072 0.027

Panel C: Chinese import tariffs
CO2 rate 5.25 18.91 -60.50 -3.34

(10.12) (12.01) (54.50) (68.22)
N 47 47 47 47
Dep. Var. Mean 0.088 0.062 0.547 0.397

Weighted X X

Cooperative Non-Cooperative

Appendix Table 2—Carbon Taxes Implicit in Cooperative Versus Non-
Cooperative Tariffs

Notes:  U.S. non-cooperative tariffs apply to Cuba and the Democratic People's Republic of Korea. 
Chinese non-cooperative tariffs apply to Andorra, the Bahamas, Bermuda, Bhutan, the British Virgin 
Islands, the British Cayman Islands, French Guiana, Palestinian Territory (West Bank and Gaza), 
Gibraltar, Monserrat, Nauru, Aruba, New Caledonia, Norfolk Island, Palau, Timor-Leste, San 
Marino, the Seychelles, Western Sahara, and Turks and Caicos Islands. Japanese non-cooperative 
tariffs apply to Andorra, Equatorial Guinea, Eritrea, the Democratic People's Republic of Korea, 
Lebanon, and Timor-Leste. Other countries receive cooperative tariff rates from these countries. See 
Ossa (2014) for further discussion. All regressions include a constant. Standard errors clustered by 
industry in parentheses. Asterisks denote p-value * < 0.10, ** < 0.05, *** <0.01.
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Global U.S.
(1) (2)

Panel A: analyzed for all country×industries
  Upstreamness 0.676*** 0.756***

(0.146) (0.098)
  Intra-industry trade -0.152 0.252**

(0.093) (0.105)
  Import pen. ratio 0.031 -0.579***

(0.086) (0.101)
  Labor share -0.146** -0.536***

(0.069) (0.102)
  Mean wage -0.107 -0.389***

(0.127) (0.104)
Panel B: analyzed for U.S. only
  Inverse export supply elasticity — -0.141

— (0.106)
  Output trends, 1972-2002 — 0.026

— (0.105)
  Import pen. ratio 1997-  2002 — -0.085

— (0.105)

  Workers: share with college (%)
— -0.176*
— (0.105)

  Four-firm concentration ratio — 0.084
— (0.106)

  Mean firm size — 0.113
— (0.106)

  Standard deviation of firm size — 0.030
— (0.106)

  Capital share — 0.058
— (0.105)

(Continued next page)

Appendix Table 3—Political Economy Variables,
Dirty versus Clean Industries

Regression of variable on "Dirty":
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Global U.S.
(1) (2)

  Shipping cost per 
dollar×kilometer — 0.697***

— (0.100)
  Geographic dispersion — -0.022

— (0.106)
  Workers: unionized (%) — 0.669***

— (0.100)
  Workers: unemployment — -0.063

— (0.106)
  Local pollution 0.601***

(0.102)
  PAC contributions — -0.188*

— (0.104)

Regression of variable on "Dirty":

Notes:  Each table entry is the coefficient from a separate regression of the indicated variable on a dummy for 
whether an observation has above-median total emissions rate and a constant; Column 1 also includes 
country fixed effects. All variables are measured in z-scores. Regressions are weighted by the value of 
imports. Standard errors clustered by industry in parentheses. Asterisks denote p-value * < 0.10, ** < 0.05, 
*** <0.01. 

Appendix Table 3—Political Economy Variables,
Dirty versus Clean Industries (Continued)

A36



(1) (2) (3) (4) (5) (6)
Panel A. All global trade, weighted
CO2 rate -86.60*** 6.36 -87.83*** -89.11** -87.02*** -90.90**

(33.44) (40.92) (33.00) (35.71) (33.64) (37.97)

Panel B. All global trade, instrument for political economy, weighted
CO2 rate -86.60*** 49.78 -76.18* -113.95* -70.84* -98.21*

(33.44) (52.40) (43.52) (63.04) (38.23) (55.32)
K-P F Statistic — 28.9 9.6 3.9 21.7 24.8

Panel C. U.S. imports, weighted
CO2 rate -49.72*** 2.74 -51.99*** -47.50*** -49.75*** -54.32***

(9.90) (10.19) (10.54) (10.32) (12.19) (10.45)

Panel D. U.S. imports, direct CO 2  only

CO2 rate -70.12*** -4.75 -71.73*** -61.11*** -48.24*** -95.27***

(23.88) (17.20) (19.84) (21.21) (17.80) (27.15)

Panel E. U.S. imports, direct CO 2  only, unweighted

CO2 rate -65.28*** 3.11 -68.47*** -60.83*** -63.07*** -70.97***

(16.13) (11.66) (17.16) (16.32) (17.95) (17.34)

Upstreamness X
Intra-industry X
Import pen. ratio X
Labor share X
Mean wage X

Appendix Table 4—Political Economy Explanations for Implicit Carbon Taxes: One at a Time

Notes:  Dependent variable in all regressions is sum of tariffs and NTBs. Each observation is a 
country×industry (Panels A and B) or industry (Panels C, D, and E). In Panels A, B, and C, CO2 

rate is the total rate from inverting an input-output table, which is instrumented with the direct 
CO2 rate. In panel B only, the political economy variables (upstreamness, intra-industry share, 
etc.) are instrumented with the mean of each political economy variable in the industry of interest 
across the 10 smallest other countries. Panels A and B include country fixed effects. All 
regressions include a constant. Standard errors clustered by industry in parentheses. Asterisks 
denote p-value * < 0.10, ** < 0.05, *** <0.01.
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IV IV Lasso IV Lasso
(1) (2) (3) (4) (5)

CO2 rate -29.237 -29.600 -24.780 -112.754* -44.065
(19.444) (29.641) (18.726) (64.063) (41.779)

Upstreamness -0.105*** -0.180*** -0.106*** -0.044*** -0.069***

(0.017) (0.029) (0.017) (0.016) (0.015)

Intra-industry trade -0.004 -0.051 0 -0.007 0

(0.010) (0.053) 0 (0.015) 0

Import penetration ratio -0.027** -0.234*** 0 -0.016 0

(0.012) (0.072) 0 (0.017) 0

Labor share -0.012* -0.360** 0 -0.042 0

(0.006) (0.159) 0 (0.026) 0

Workers: mean wage 0.003 0.126 0 -0.034* 0

(0.019) (0.078) 0 (0.020) 0

Inverse export supply elast. — — — -0.023** 0

(0.011) 0

Output trends 1972-2002 — — — 0.007 0

(0.011) 0

Trend in import pen. ratio — — — 0.026 0

(0.016) 0

Workers: share w/ college — — — -0.034 0

(0.028) 0

Four-firm conc. ratio — — — -0.059 0

(0.038) 0

Mean firm size — — — 0.109* 0

(0.061) 0

Standard dev. of firm size — — — -0.120* 0

(0.062) 0

Capital share — — — 0.032 0

(0.025) 0

Shipping cost per dollar*km — — — 0.034 0.034

(0.033) (0.029)

Geographic dispersion — — — 0.083 0

(0.053) 0

Workers: unemployed — — — 0.001 0

(0.028) 0

Workers: unionized (%) — — — 0.025 0

(0.017) 0

Local pollution 0.008 0

(0.015) 0

PAC contributions — — — 0.028 0

(0.021) 0

Instrument political economy X

(Continued next page)

All global trade U.S. imports

Appendix Table 5—Political Economy Explanations: All Controls Together
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Notes:  Lasso entries of "0" mean the coefficient is exactly zero. CO2 intensity refers to total intensity from the input-

output table. Total CO2 rate is instrumented with direct CO2 rate. In column 2, political economy variables are 

instrumented with their mean in other countries. Columns 1-3 include country fixed effects. Country fixed effects and 
excluded instrument are not penalized in Lasso estimates. All regressions include a constant. Standard errors clustered by 
industry in parentheses.

Appendix Table 5—Political Economy Explanations: All Controls Together (Continued)
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Country Aggregation
Australia
Japan
South Korea
Taiwan
Austria
Belgium
Germany
France
Luxembourg
The Netherlands
Bulgaria
Czech Republic
Estonia
Hungary
Lithuania
Latvia
Poland
Romania
Russia
Slovakia
Slovenia
Brazil
Mexico
Canada
United States
China China
Cyprus
Spain
Greece
Italy
Malta
Portugal
Turkey
Denmark
Finland
United Kingdom
Ireland
Norway
Sweden
India
Indonesia
Rest of the World-Asia and Pacific
Rest of the World-Europe
Rest of the World-Africa
Rest of the World-America
Rest of the World-Middle East
South Africa
Switzerland

Rest of the World

Northern Europe

Indian Ocean

Appendix Table 6—Country Aggregation in General Equilibrium Model

Pacific Ocean

Western Europe

Eastern Europe

Latin America

Southern Europe

North America
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Sector Overall

Caliendo 
& Parro 
(2011)

Shapiro 
(2016)

Bagwell et 
al. (2018)

Giri et al. 
(2018)

Agriculture, Hunting, Forestry, and Fishing 9.1 9.1 3.3 22.1 —
(1.1) (2.0) (3.6) (1.3) —

Coal and Peat Extraction and Related 5.4 13.5 3.5 5.4 —
(1.0) (3.7) (1.3) (1.7) —

Petroleum Extraction and Related 13.5 13.5 3.5 22.4 —
(1.2) (3.7) (1.3) (11.3) —

Natural Gas Extraction and Related 8.5 13.5 3.5 — —
(1.2) (3.7) (1.3) — —

Other Mining 4.1 13.5 3.5 4.1 —
(0.7) (3.7) (1.3) (0.9) —

Food, Beverages, and Tobacco 4.4 2.6 5.3 11.0 3.6
(0.2) (0.6) (2.1) (1.4) (0.3)

Textiles, Textile Products, and Leather 6.4 8.1 18.6 4.6 3.7
(0.2) (1.3) (5.6) (0.9) (0.2)

Wood; Wood and Cork Products 8.2 11.5 5.9 10.5 4.2
(1.0) (2.9) (2.2) (3.0) (1.3)

Pulp and Paper 6.9 16.5 5.8 7.9 3.0
(0.2) (2.7) (3.0) (2.1) (0.2)

Coke, Refined Petroleum, and Nuclear Fuel 9.0 64.9 9.0 — 3.9
(0.5) (15.6) (4.0) — (0.5)

Chemicals, Fertilizer, and Basic Plastics 3.4 3.1 1.6 8.2 3.8
(0.2) (1.8) (3.0) (2.6) (0.2)

Rubber and Plastic Products 3.0 1.7 1.6 9.3 4.3
(0.5) (2.2) (3.0) (3.6) (0.5)

Glass, Cement, Other Non-Metallic Minerals 3.4 2.4 1.6 8.3 4.4
(0.4) (1.6) (3.0) (8.0) (0.4)

Basic Metals and Fabricated Metal 8.0 5.5 12.9 9.1 6.8
(0.8) (1.6) (8.3) (2.9) (1.0)

Machinery N.E.C. 6.2 1.5 10.8 9.2 3.3
(0.2) (2.8) (2.8) (2.2) (0.2)

Electrical and Optical Equipment 7.9 8.9 10.8 6.9 3.3
(0.2) (0.9) (2.8) (3.6) (0.2)

Transport Equipment 5.7 1.2 6.9 7.0 4.5
(0.5) (0.7) (3.7) (2.9) (0.8)

Manufacturing, N.E.C., Recycling 5.3 4.0 12.8 5.3 —
(0.8) (1.1) (4.6) (1.2) —

Electricity Generation 6.7 4.0 6.7 10.2 —
(1.0) (1.1) (3.2) (5.0) —

All other industries 6.7 4.0 6.7 18.5 —
(1.0) (1.1) (3.2) (9.5) —

Land, pipeline, air, and sea transportation 5.3 4.0 6.7 — —
(1.0) (1.1) (3.2) — —

Appendix Table 7—Sectors and Trade Elasticities
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CO2 Emissions Real Income
CO2 Intensity = 

(1) - (2)
Climate 
damages

Social 
welfare

(1) (2) (3) (4) (5)
Panel A: Counterfactual sets tariffs and NTBs to mean
     1. Global totals -1.55% 0.97% -2.52% -0.03% 1.00%

2. By region
Pacific Ocean 7.71% 0.80% 6.91% — —
Western Europe 8.21% 1.61% 6.60% — —
Eastern Europe 0.58% 1.32% -0.74% — —
Latin America -8.36% 0.85% -9.21% — —
North America -6.11% 0.33% -6.44% — —
China 4.07% 0.97% 3.10% — —
Southern Europe 24.21% 1.36% 22.85% — —
Northern Europe 17.01% 1.72% 15.29% — —
Indian Ocean -1.39% 0.75% -2.14% — —
Rest of World -5.95% 1.17% -7.12% — —

3. Decomposition
Scale 0.79% — — — —
Composition -0.98% — — — —
Technique -1.36% — — — —

4. By Fossil fuel
Coal 0.22% — — — —
Oil -3.14% — — — —
Natural gas -2.92% — — — —

Panel B: Counterfactual sets EU tariffs and NTBs to mean
     5. Global -0.72% 0.60% -1.32% — —

6. By region
Pacific Ocean -1.12% 0.07% -1.19% — —
Western Europe 9.45% 1.50% 7.95% — —
Eastern Europe 0.56% 0.22% 0.34% — —
Latin America -7.04% 0.12% -7.16% — —
North America -0.58% 0.05% -0.63% — —
China -0.20% 0.31% -0.51% — —
Southern Europe 25.22% 1.28% 23.94% — —
Northern Europe 11.99% 1.58% 10.41% — —
Indian Ocean -1.19% 0.13% -1.32% — —
Rest of World -2.67% 0.98% -3.65% — —

(Continued next page)

Appendix Table 8—Effects of Counterfactual Tariffs and NTBs on CO2 Emissions and Welfare, General 
Equilibrium Model Estimates
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CO2 Emissions Real Income
CO2 Intensity = 

(1) - (2)
Climate 
damages

Social 
welfare

(1) (2) (3) (4) (5)
Panel C: Counterfactual sets tariffs and NTBs to mean of cleanest third of goods
     Global totals -3.81% 0.38% -4.18% -0.08% 0.46%

Panel D: Counterfactual sets tariffs and NTBs to mean of dirtiest third of goods
     Global totals -2.51% 1.31% -3.83% -0.06% 1.37%

Panel E: All countries add a carbon tariff
     Global totals -0.073% 0.004% -0.077% 0.00% 0.004%

Panel F: All Countries set tariffs and NTBs to zero
     Global totals 3.39% 2.60% 0.80% 0.08% 2.52%

Appendix Table 8—Effects of Counterfactual Tariffs and NTBs on CO2 Emissions and Welfare, General 
Equilibrium Model Estimates (Continued)

Notes:  Global change in real income refers to the weighted mean percentage change in countries' real incomes 
due to a counterfactual policy, where weights equal each country's baseline income. In all baseline and 
counterfactual scenarios, intra-national tariffs and NTBs are assumed to equal zero. 
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CO2 Emissions Real Income

CO2 Intensity = 

(1) - (2)
Climate 
damages

Social 
welfare

(1) (2) (3) (4) (5)
Panel A: Reform All Trade Policy
1. Baseline estimates -1.55% 0.97% -2.52% 0.03% 0.94%
Other data

2. WIOD, not Exiobase -0.37% 0.58% -0.95% 0.02% 0.56%
3. Trade elasticities: -1.51% 0.82% -2.32% -0.08% 0.89%

Caliendo-Parro
Other counterfactuals

4. Harmonize within importer -0.92% 1.05% -1.97% 0.03% 1.02%
5. Harmonize tariffs only -0.77% 0.08% -0.85% 0.03% 0.05%
6. Harmonize NTBs only -0.79% 0.85% -1.64% 0.00% 0.85%

Other estimation methods
7. First remove trade deficits -1.61% 0.97% -2.59% 0.00% 0.97%
8. Algorithm: trust-region -1.55% 0.97% -2.52% 0.03% 0.94%
9. Algorithm: Levenberg- -1.55% 0.97% -2.52% 0.03% 0.94%

Marquardt

Notes:  See notes to Table 5. Unless otherwise noted, all estimates refer to changes in both tariffs and NTBs. 

Appendix Table 9—Effects of Counterfactual Tariffs and NTBs on CO2 Emissions and Welfare, Sensitivity 

Analysis
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