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climate variation
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ROBERT MENDELSOHN, WILLIAM NORDHAUS,
AND DAIGEE SHAW

This chapter explores the effect of climate on the value of US agricultural land using a
Ricardian model. The research extends previous analyses by including both inter-
seasonal and diurnal climate variation in addition to average temperature and pre-
cipitation variables. With these climate variation variables included, small increases in
average temperature are predicted to be beneficial. Increases in interannual climate
variation are predicted to be generally harmful to US agriculture but decreases in
diurnal variation will be beneficial.

For centuries analysts have been interested in the impact of weather on crops in
order to predict what crops to grow, when to plant and harvest, and what agricultural
prices will be each year. With the growing likelihood that accumulating greenhouse
gases will change the climate (IPCC, 1996), there has been growing interest in also
measuring the impact of climate change on agriculture. Two distinct ways to measure
the impacts of climate on agriculture have emerged in the literature: an agronomic
approach and a Ricardian rent approach. The agronomic approach (Chapter 2; Adams
et al., 1989, 1990, 1995; Crosson and Katz, 1991; Rosenzweig and Parry, 1994) predicts
changes in yield from crop simulation models such as CERES and SOYGRO and then
enters these changes in mathematical models of agriculture production and consump-
tion. The Ricardian approach (Johnson and Haigh, 1970; Mendelsohn et al., 1994,
1996) uses an empirical cross-sectional approach and estimates the relationship
between land prices and climatic, economic, and soil variables.

The agronomic approach, with its extensive reliance on specific crop models, has
the advantage of being based directly on carefully controlled scientific experiments so
that it can predict phenomena (such as carbon fertilization) that have not yet occurred
in nature. The method is also capable of detailed displays of the links between climate,
crop yields, and market equilibrium. The approach is popular among scientific ana-
lysts of climate impacts because it captures the tremendous detail of individual crop
models. The approach, unfortunately, is somewhat mechanistic. The myriad adapta-
tions that farmers might make to climate are difficult to model explicitly and so are
often omitted, overestimating the damages from climate warming.
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The Ricardian approach, by relying upon how farmers and ecosystems have actu-
ally adjusted to varying local conditions, incorporates adaptation readily. However,
the Ricardian approach does not provide much information about the process of
climate change or about conditions which are not evident in today’s environment,
such as carbon fertilization. The Ricardian approach has only recently been applied to
climate change and so there is less experience of using this approach compared with
the production function technique. Further, because it does not contain the minute
detail captured in the crop response models, crop scientists have been slow to under-
stand its merits. Each method has its own strengths and weaknesses and the two
approaches complement each other.

This chapter begins by addressing several theoretical issues with the Ricardian
model and specifically explores the bias introduced by assuming that prices remain
constant (Section 3.1). The thrust of the chapter, however, lies in the extension of the
empirical results to include the influence of climate variation (described in Section
3.2). Specifically, the study explores the impact of including interannual and diurnal
variation in precipitation and temperature on US agricultural land values. The empir-
ical study is described in detail in Section 3.3. These models are then used to assess the
economic damages to US agriculture from several climate change scenarios in Section
3.4. The chapter concludes with some general observations.

3.1 Theory

This section summarizes the theoretical underpinnings of the Ricardian
approach to climate modeling and explores a few extensions of this theory. We postu-
late a set of consumers with well-behaved utility functions (preferences for goods) and
linear budget constraints. Assuming that consumers maximize their utility functions
across available purchases and aggregating leads to a system of inverse demand func-
tions for all goods and services:

P1 �D�1(Q 1,Q 2,…,Q n,Y)
� � (3.1)

Pn �Dn
�1(Q 1,Q 2,…,Q n,Y),

where Pi and Q i are respectively the price and quantity of goods i, i�1,…, n, and Y is
the aggregate income. Inverse demand functions describe the prices at which con-
sumers are willing to purchase specific bundles of goods. The Slutsky equation is
assumed to apply, so that (3.1) is integrable.

We also assume that a set of well-behaved production functions exist which link
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purchased inputs and environmental inputs into the production of outputs by a firm
on a certain site:

Q i �Q i(Ki, E), i�1,…,n. (3.2)

In this equation, we use bold face to denote vectors or matrices. Q i is the output of
goods i, Ki � [Ki1,…,Kij,…,KiJ] where Kij is the purchased input j ( j�1,…,J ) in the
production of good i, and E� [E1,…,El,…,EL] where El is an exogenous environ-
mental input l (l� l,…,L) into the production of goods, e.g. climate, soil quality, air
quality, and water quality, which would be the same for different goods’ production on
a certain production site. Given a set of factor prices, Rj, for Kj, the exogenously deter-
mined level of environmental inputs, and the production function, cost minimization
leads to a cost function:

Ci �Ci(Q i,R,E). (3.3)

Here, Ci is the cost of production of goods i, R� [R1,…,RJ], and Ci(*) is the cost func-
tion. In this analysis, it is helpful to separate land from the vector of inputs, K. We
assume that land, Li, is heterogeneous with characteristics E and has an annual cost or
rent of PE. Companies are assumed to maximize profits given market prices:

Max PiQ i �Ci(Q i,R,E)�PELi (3.4)

where Pi is the price of goods i. This maximization leads firms to equate prices and
marginal costs as well as determine cost minimizing levels of production. We assume
that there is perfect competition for land, which implies that entry and exit will drive
pure profits to zero:

PiQ i �Ci(Q i,R,E)�PELi�0. (3.5)

If use i is the best use for the land given the environment E and factor prices R, the
observed market rent on the land will be equal to the annual net profits from produc-
tion of goods i1. Solving for the value of land rent per acre yields:

PE � [PiQ i �Ci(Q i,R,E)]/Li. (3.6)

The land rent should be equal to the net revenue from the land. Land value, VE, is
equal to the present value of the stream of future net revenue, which can be described
by:

VE � PE e�rt dt� [PiQ i �Ci(Q i,R,E)]e�rt/Lidt. (3.7)

The discount rate is represented by r and time by t. By examining the relationship
between land value and the environmental variable of interest, one can measure its
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impact on the present value of net revenue. The essence of the Ricardian model is
(3.7).

If an environmental factor reduces the stream of future land rents, land values will
be reduced as well (note the similarity of this analysis and hedonic property studies,
see Freeman (1979)). Reliance upon land values rather than land rents, however, intro-
duces a potential source of additional problems. Land values will represent the present
value of the rents using the parcel at its highest purpose. Although land may now be in
agricultural use, it could be that its best future use may be industrial or urban. In order
to control for nonagricultural influences, proxies for the development value of farm-
land must be included in the analysis.

Let us now examine the welfare value of an environmental change from an initial
point EA to a new point EB. The change in annual welfare, W, from this environmental
change is the change in net consumer surplus:

W(EA �EB)� D �1(Q i)dQ i� Ci(Q i,R,EB)�

[ D �1(Q i)dQ i � Ci(Q i,R,EA)] (3.8)

where �� is the line integral evaluated between the initial vector of quantities and the
zero vector, Q A � [Q 1(K1,EA),…,Q i(Ki,EA),…,Q n(Kn,EA)], QB� [Q 1(K1,EB),…,Q i

���Q A

0

���Q B

0
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(Ki, EB),…,Q n(Kn,EB)], Ci(Q i,R,EA)�Ci(Q i(Ki,EA),R,EA), and Ci(Q i,R,EB)�Ci(Q i

(Ki, EB),R,EB). The above equation includes changes in both consumer and producer
surplus. It is necessary to take this line integral as long as the environmental change
affects more than one output. If only one output is affected, then (3.8) simplifies to the
integral of the equation for a single item of goods. Note that as long as the Slutsky
equation is satisfied, the solution to (3.8) is path-independent and unique.

If we assume that the changes in the environment will leave market prices
unchanged,1 then (3.8) can be expressed:

W(EA �EB)�PQB � Ci(Q i,R,EB)� [PQ A � Ci(Q i,R,EA)] (3.9)

where P� [P1,…,Pi,…,Pn]. In this case, consumer surplus is not affected.
Substituting (3.6) into (3.9) yields:

W (EA �EB)� (PEB �LEB �PEA �LEA) (3.10)

where PEA is the value per acre of land area LEA in environmental state A and PEB is the
value per acre of land area LEB in environmental state B. The environmental state
affects both the value per acre and the total number of acres in farmland. It follows that
the present value of this welfare change is:

�

��
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W (EA �EB)e�rtdt� (VEA �VEB). (3.11)

Equation (3.11) is the definition of the Ricardian estimate of the value of environmental
changes. Under the assumptions used here, the value of the change in the environment is
captured exactly by the change in aggregate land values.

The strongest assumption above is that output prices remain constant. Suppose
that this assumption is relaxed. Climate change is expected to lead to increases in the
supply of some crops and decreases in the supply of others. For example, crops which
prefer cooler environments, such as apples and winter wheat, may not do as well with
climate warming. In contrast, heat-loving plants, such as tomatoes and citrus fruit,
should be able to grow in wider settings. As supply expands (contracts) for the warm-
(cool-) loving plants, prices will fall (rise).

In a warming scenario, the crops which benefit will fall in price and crops which
grow less well will rise in price. For example, the supply function for cool-loving crop
A could shift from S0 to S1 in Figure 3.1. We measure the loss in net revenue holding
prices constant as W1. In fact, there is an additional consumer surplus loss of W2. The
model understates the damages from the change in supply. Similarly, if supply
expands from S0 to S1 as in Figure 3.2, holding prices constant, we estimate a benefit of
W1. This overstates the benefits because prices fall to P1 from P0. The size of this over-
estimate is equal to W2.

Given that the welfare estimates of the Ricardian model are biased, it is important
to estimate the size of this bias. Suppose that demand and supply price elasticities
take on values within a plausible range for agriculture. What will be the size of

�
i

���

0

MENDELSOHN et al.

60

Table 3.1. Bias from holding prices constanta

Supply elasticity

Demand elasticity 0.5 1.0 2.0

0.5 1.17 1.07 1.03
1.0 1.11 1.05 1.03
2.0 1.07 1.04 1.02

Notes:
a The table presents the ratio of the true welfare measure of
damages from a 10% reduction in aggregate supply to the
Ricardian welfare measure. The Ricardian method overestimates
the benefits of a 10% increase in aggregate supply by a similar
amount.



W1 �W2, the true measure of welfare, relative to W1, the Ricardian measure?
Mendelsohn and Nordhaus (1996) examine these ratios for a simple model with
linear supply and demand functions. The results are given in Table 3.1. Assuming
that global warming causes a 10 percent change in the aggregate supply of goods, the
table estimates the error associated with the Ricardian measure of welfare. With
typical unitary price-elasticities, the error is about 5 percent of the Ricardian
measure. With price-inelastic demand and supply functions of 0.5, the error can be as
large as 17 percent and with price-elastic demand and supply functions of 2.0, the
error falls to 2 percent. With smaller changes in aggregate supply, the effect shrinks.
Given that most models of aggregate supply predict very small changes in aggregate
quantities of food as a result of warming,2 the Ricardian measures of welfare should
be accurate.

3.2 Data

In this section, we extend the Ricardian technique developed by
Mendelsohn et al. (1994) to examine the impact of climate variation on US agricul-
ture. We rely on data from the 1982 US Census of Agriculture to obtain much of the
data on farm characteristics in each county. Although the analysis conducted in this
study relies upon 1982 data, a similar analysis was conducted on 1978 data with similar
results. The results appear to be robust over time. Nonetheless, it would be helpful if
future analysts update the Ricardian estimate using more recent census data.

For the most part, the data reflects actual county averages, so that there are no major
geographic issues involved in obtaining the census information on these variables. The
County and City Data Book, and the computer tapes of that data, are the source for
much of the agricultural data used here, including farmland and building values, and
information on market inputs for farms in every county in the United States. In addi-
tion, we include social, demographic, and economic data on each of the counties
drawn from the County and City Data Book.

Data about soils were extracted from the National Resource Inventory and other
USDA surveys with the kind assistance of Daniel Hellerstein and Noel Gollehon of
the US Department of Agriculture. For each county, we have average measures of
salinity, clay content, sand content, soil permeability, available water capacity, flood
probability, soil erosion, slope length, whether or not the land is a wetland, and numer-
ous other variables that are not used in this analysis.
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Climatic data is available by weather stations rather than by county. The climate
data was obtained from the National Climatic Data Center, which gathers data from
5511 meteorological stations throughout the United States. The data include
information on precipitation and temperature for each month from 1951 to 1980. This
analysis includes data on normal daily mean temperatures and normal monthly pre-
cipitation for January, April, July, and October, representing each season of the year.
Interannual variation in precipitation and temperature in each of the four months is
measured as the difference between the highest and lowest normal monthly precipita-
tion and temperatures over the 30-year period. The variation variables measure the
range of interannual variation.3 We also measure the diurnal range (the difference
between the average of the highest and lowest daily temperatures) for each of the four
months. Altogether there are 12 variation measures in the study.

In order to link the agricultural data which is organized by county and the climate
data which is organized by station, we conduct a spatial statistical analysis which
examines the determinants of the climate of each county (see Mendelsohn et al., 1994
for more details). The interpolation relies on a regression weighted by distance.

The next and crucial stage is to use the climate data to predict aggregate land
values. Following Mendelsohn et al. (1996), we define the dependent variable as the
aggregate value of farmland in each county rather than the farmland value per acre.
This aggregate measure takes into account how the climate affects which land can be
used for agriculture as well as how climate affects the value of the farmland that
remains. In order to determine the marginal impact of each climate variable, we
regress aggregate farm values on climate, soil, and economic variables. The soil and
economic variables control for unwanted variation so that the climate variables are less
likely to reflect correlated omitted variables. For example, the economic variables
control for the effect of nearby local markets and speculative future land uses.

Alternative control variables in the theoretical model such as interest rates and farm
input prices are not included in the empirical model because they are assumed to be
the same for all counties. In a cross-sectional analysis, the capital market will equate
interest rate expectations across parcels, so that this effect will be the same for all
observations. Competitive market forces should also equate farm input prices for
energy, labor, and equipment.4

In previous analyses, it was demonstrated that both precipitation and temperature
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have quadratic relationships with farm value (see Mendelsohn et al., 1994, 1996). This
same specification is used in this analysis:

V�ao � ai Ei � bi Ei
2 � ci Q i � di Zi �e, (3.12)

where Ei represent the precipitation and temperature normals, Q i represent the
climate variation terms, Zi represent the control variables and e is the error term. The
climate variables have been de-meaned. The coefficients ai can therefore be inter-
preted as the marginal effect of Ei on land values evaluated at the sample mean for the
United States. The coefficients bi measure the impact of the quadratic terms, the
coefficients ci measure the impact of the climate variation terms, and the coefficients di

capture the impact of the control variables.

3.3 Empirical results

Following Mendelsohn et al. (1994) the empirical models are weighted
regressions using either percent cropland or total crop revenue in the county.
Weighting counties by total crop revenue makes sense if the focus of the study is on
aggregate agricultural production since the counties with the highest valued produc-
tion are more important. Weighting by percent cropland is justified if the focus is
understanding what is happening to cropland. See Appendix A3 for a complete list of
the variables used in the models and their definitions.

Columns 3 and 4 in Table 3.2 present the climate model without variation terms
included. Some results are consistent across both weighting schemes. Higher average
temperatures in January and July are harmful to farm values whereas higher tempera-
tures in April and especially October increase values. Increased precipitation in July
and especially October reduces farm values but more precipitation in January and
April increases farm values. The coefficients of all the control variables exhibit consis-
tent effects across the models (although magnitudes vary) with the exception of soil
permeability.

The year-to-year and diurnal climate variation variables are introduced in the
models in columns 1 and 2 of Table 3.2. F-tests of the variation terms as a group indicate
that the variation coefficients are significantly different from zero in all regressions. All
the individual coefficients of interannual climatic variation are significantly different
from zero. The coefficients are all negative implying that increasing interannual varia-
tion reduces farm values with the exception of April temperatures and January pre-
cipitation. An increase in interannual variation in January precipitation and April
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Table 3.2. Regression models with and without climate variationa

Variation Climate variation No climate variation

Independent Percent Crop Percent Crop
variables cropland revenue cropland revenue

January temp. �120.0 �145.0 �86.7 �108.0
(15.53) (19.92) (10.50) (13.94)

January temp. sq. �2.02 �2.71 �0.83 �0.93
(11.11) (16.87) (4.04) (5.25)

April temp. 21.9 49.6 59.6 65.0
(2.20) (6.20) (4.83) (6.06)

April temp sq. �3.69 �3.76 �3.27 �1.36
(6.46) (8.97) (5.65) (3.09)

July temp. �189.0 �182. �117.0 �141.0
(20.46) (23.85) (11.45) (18.83)

July temp sq. �5.63 �5.78 �1.90 �3.07
(10.32) (17.40) (3.38) (8.08)

October temp. 235.0 266.0 152.0 233.0
(15.66) (18.50) (8.68) (14.40)

October temp. sq. 7.81 10.1 3.00 2.87
(9.65) (17.24) (3.50) (4.49)

January rain 43.3 88.0 �131.0 �123.0
(2.28) (5.11) (5.34) (5.14)

January rain sq. 1.78 0.23 12.5 13.3
(0.71) (0.13) (4.96) (7.39)

April rain 110.0 36.3 117.0 99.0
(5.40) (1.74) (4.24) (3.31)

April rain sq. �28.7 �14.5 �25.8 �40.6
(3.92) (2.19) (3.59) (5.87)

July rain �53.4 �26.5 60.0 75.2
(4.69) (2.35) (3.24) (3.86)

July rain sq. 34.3 17.8 18.2 �6.7
(7.18) (4.33) (3.50) (1.46)

October rain �188.0 �129. �74.5 �7.9
(9.70) (6.66) (2.40) (0.26)

October rain sq. �21.1 6.8 �24.5 �16.4
(1.79) (0.96) (2.02) (2.17)
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Table 3.2. (cont.)

Variation Climate variation No climate variation

Independent Percent Crop Percent Crop
variables cropland revenue cropland revenue

Year-to-year variation
January temp. Y-var. �19.3 �19.1

(4.84) (4.80)
April temp. Y-var. 19.9 11.2

(3.01) (1.76)
July temp. Y-var. �57.1 �63.9

(8.53) (8.56)
October temp. Y-var. �27.6 �29.3

(4.61) (4.46)
January rain Y-var. 21.9 24.9

(2.89) (4.05)
April rain Y-var. �19.5 �26.8

(2.85) (3.42)
July rain Y-var. �29.1 �25.4

(6.39) (4.74)
October rain Y-var. �13.2 �31.7

(2.09) (5.15)

Daily variation
January daily var. �61.7 �100.0

(7.19) (13.13)
April daily var. �66.7 �4.4

(5.83) (0.42)
July daily var. �10.6 �11.8

(1.00) (1.43)
October daily var. 59.8 73.8

(5.81) (7.03)
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Table 3.2. (cont.)

Variation Climate variation No climate variation

Independent Percent Crop Percent Crop
variables cropland revenue cropland revenue

Control variables
Constant 957.0 1060.0 870.0 945.0

(49.96) (57.31) (37.44) (47.08)
Income per 57.4 27.0 52.7 32.9
capita (14.20) (6.00) (13.70) (7.74)
Density 86.3 64.2 15.2 8.6

(1.41) (1.29) (0.26) (0.18)
Density sq. �101.0 �68.6 �76.8 �44.7

(3.60) (4.24) (2.92) (3.00)
Solar �84.4 �38.6 �41.7 2.9
radiation (6.57) (3.37) (2.74) (0.22)
Altitude �121.0 92.9 54.9 90.4

(5.10) (4.53) (2.19) (4.20)
Salinity �843.0 �467.0 �725.0 �715.0

(4.74) (3.51) (4.30) (5.73)
Flood prone �136.0 �102.0 �185.0 �125.0

(3.27) (2.25) (4.57) (2.83)
Wetland �509.0 �784.0 �656.0 �832.0

(4.79) (7.67) (6.43) (8.68)
Soil erosion �799.0 �1480.0 �1050.0 �1420.0

(4.54) (7.64) (6.14) (7.65)
Slope length 24.6 73.1 29.0 64.1

(4.76) (14.29) (5.94) (13.42)
Sand �86.1 �81.2 �21.2 �74.5

(1.94) (1.99) (0.51) (1.97)
Clay 91.6 21.5 86.6 49.4

(5.00) (1.03) (4.97) (2.52)
Water capacity 0.51 0.34 0.41 0.30

(14.96) (10.75) (12.72) (9.98)
Permeability �0.70�10�3 �598�10�3 �0.37�10�3 �8.42�10�3

(0.35) (4.43) (0.20) (6.62)
Adjusted R2 0.793 0.843 0.800 0.869
Number of observations 2938 2938 2938 2938

Notes:
a Dependent variable is aggregate farm value. All observations are weighted. Values in
parenthesis are t-statistics.



temperatures may be beneficial because at least spring-planting farmers can adjust for
the realized values before planting, thus permitting good years to outweigh bad years.

Increases in diurnal variation in January and April are harmful to farming.
Increases in diurnal variation during the summer seem to have no effect on farm
values. However, increases in diurnal variation in the autumn appear beneficial, possi-
bly serving as a useful signal to plants to begin maturing and ripening fruit.

In order to understand the spatial implications of the climate model in Table 3.2,
the climate coefficients from the regression using crop revenues as the weight (the
second column) are used to predict the impact of current climate on the distribution of
farm values in the United States. For each county, the deviation between that county’s
climate and the US mean climate is calculated. This deviation is then multiplied by the
climate coefficient in column 3 of Table 3.2 and the effect is summed across the climate
variables. The predicted effect of the range of climates observed in the United States
on farm values is shown in Figure 3.3. All the climatic variables taken as a group
predict that four areas of the country have climates which yield above average agricul-
tural land values: the Gulf coast, the southern New England coast, the Pacific coast,
and the Mississippi river valley. Climates which lead to below average land values
include northern Maine, the western plains, and the Rocky Mountains.

This same process can isolate the spatial contribution of only the climatic variation.
The parts of the country with the most stable climates include the Pacific coast, the
southern Mississippi delta, and coastal New England. The part of the country most
sensitive to climate variation lies near the dust bowl in Kansas, Missouri, and
Oklahoma. Note that these were the states most devastated by the dust bowl in the
1930s. The range of values produced by climate variation across the United States is
surprisingly large. The current spatial distribution of interannual and diurnal varia-
tion is quite important to crops.

Introducing climatic variation into the Ricardian model has important effects on the
seasonal pattern of mean temperature and precipitation. Adding the climatic variation
variables decreases the harmful effect of a warmer January or July, increases the benefits
of a warmer April, and reduces the benefit of a warmer October. Adding the variation
terms also alters the seasonal importance of increases in precipitation. January pre-
cipitation becomes harmful, July precipitation becomes beneficial, and October pre-
cipitation becomes less harmful. Overall, warmer temperatures and increased
precipitation become more beneficial with the variation terms included in the model.

Adding the climate variation terms also affects two other control variables in the
model. The effect of solar radiation is reduced with the variation terms in place.
Altitude goes from being harmful to being beneficial. It is possible that the damaging
influence of higher altitude is due to the increase in diurnal variation.
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Figure 3.3 Farm values from current climate with crop revenue per county.



Figure 3.4 Change in value due to 5 °C uniform increase weighted by crop revenue/county.



3.4 Climate simulations

In order to test what implications these models have for greenhouse
warming, we simulate nine scenarios for each model. Following the protocol described
in Chapter 1, we examine uniform temperature increases of 1.5, 2.5, and 5.0°C for the
entire United States under three precipitation scenarios of 0 percent, 7 percent, and
15 percent increases. Four impact models are explored: cropland weighted models and
crop revenue weighted models with and without climate variation terms. The models
without climate variations in columns 3 and 4 of Table 3.2 produce the results shown
in Table 3.3. With both the cropland and crop revenue models, warming is increas-
ingly harmful as one moves from 1.5 to 5°C increases. Increased precipitation is also
mildly harmful according to the cropland model and inconsequential according to the
crop revenue model. Adding the climate variation terms (columns 1 and 2) changes
these results dramatically, producing the results in Table 3.4. Gentle warming is
strictly beneficial. As warming approaches 5°C, however, the cropland model predicts
that warming becomes harmful whereas the crop revenue model predicts even larger
benefits. The regional impacts are shown in Figure 3.4.
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Table 3.3. Net agricultural effect of climate change
without climate variationa

Model: percent cropland – no climate variation

Temperature change (°C)

Precipitation change (%) �1.5 �2.5 �5.0

10 �11.9 �20.8 �39.1
17 �12.6 �21.3 �39.5
15 �13.4 �21.9 �39.8

Model: crop revenue – no climate variation

Temperature change (°C)

Precipitation change (%) �1.5 �2.5 �5.0

10 �2.6 �9.2 �15.7
17 �2.7 �5.7 �15.7
15 �2.7 �5.7 �15.6

Note:
a Change in annual net value to US agriculture in
billions of dollars.



3.5 Conclusion

This analysis examines the impact of climate variation on US farm values
using the Ricardian approach developed by Mendelsohn et al. (1994). Three import-
ant results are developed. First, the assumption of constant output prices in the
Ricardian model is shown to underestimate the damages and overestimate the benefits
of climate change. However, these biases are very small, indicating the technique
yields accurate estimates of welfare loss.

Second, climate variation (both diurnal and interannual) has important effects on
farm values. In general, greater interannual variation is harmful to farm values.
Variation in the beginning of the year, however, is less harmful than variation at the
end of the year because farmers can more readily adjust to weather which occurs in
winter and spring. Increases in diurnal variation are also important, generally reduc-
ing farm values in winter, spring, and summer. However, diurnal variation in the
autumn appears to be beneficial, possibly because it serves as a useful signal to plants to
begin ripening before dangerous frosts arrive.

Third, including climate variation in an empirical model is important because it is
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Table 3.4. Net agricultural effect of climate change with
climate variationa

Model: percent cropland – with climate variation

Temperature change (°C)

Precipitation change (%) 1.5 2.5 �5.0

0 2.7 2.9 �3.7
7 3.3 3.1 �3.1
15 3.9 3.7 �2.5

Model: crop revenue – with climate variation

Temperature change (°C)

Precipitation change (%) 11.5 12.5 15.0

0 11.5 16.7 26.2
7 12.9 18.8 27.5
15 13.8 19.7 28.4

Note:
a Change in net annual income to US agriculture in
billions of dollars.



correlated with mean temperatures. Increases in mean temperatures can be harmful if
climate variation terms are omitted from a model. However, when climate variation
terms are included, increases in mean temperatures are strictly beneficial.

The marginal effect of temperature variation is large. If the interannual variation of
temperature increases by 25 percent in every month, average farm values would fall by
about one-third.5 Similarly, if the diurnal range of temperature decreased in every
month by 25 percent, farm values would double. In contrast, if the interannual varia-
tion of precipitation in every month increased by 25 percent, farm values would fall
just 6 percent. What farmers should fear, apparently, is years with unusual tempera-
tures, not years with unusual precipitation levels.

After estimating the effect of diurnal and interannual variations in temperature and
precipitation on agricultural land values, we tested the implications of these models.
Impacts from a total of nine climate scenarios were estimated using the four different
impact models. The models that include climate variation variables in the estimate
yield quite different results to those from the models which omit these variables.
Including climate variation suggests that small amounts of warming are beneficial.
Only when the temperature increase is above 2.5°C does the cropland with the climate
variation model suggest that increased warming is harmful.

An alternative perspective on the four models can be obtained by examining the
overall response function of the four models. Each predicts a quadratic relationship
with an optimal average temperature (given US seasonal variation). The cropland and
crop revenue models without variation terms predict the optimal average temperature
for agriculture is 4 and 1 °C, respectively, less than the US average. The cropland and
revenue models with variation terms included predict that the optimal agricultural
temperature is 1 and 6 °C, respectively, warmer than the US average. Thus, the results
are generally in agreement among all four models and they suggest as a group that
modest warming will have either a mildly harmful or mildly beneficial effect. The
model predictions, however, diverge with more severe climate scenarios.

There are a number of improvements which could strengthen our understanding of
climatic impacts on agriculture. The direct effect of carbon dioxide must also be
included for an accurate assessment. According to the model presented in Chapter 2,
including carbon fertilization effects could add another $50 billion of benefits, making
global warming clearly beneficial. The analysis also needs to be extended to other
countries, especially in subtropical and tropical settings. Finally, this chapter demon-
strates that changes in climatic variation are important to agriculture. More precise

MENDELSOHN et al.

72

5 Summing across months, the product of the coefficient in Table 3.2 multiplied by a change in that
variable yields an estimate of the net effect of that change.



climate work quantifying changes in diurnal and interannual variation will be impor-
tant to final damage estimates.
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Appendix A3. Definition of major variables and terms used in this study

Variable Definition

Normal As applied to temperature and precipitation refers to the value of
that particular element averaged over the period from 1951–1980.

Temp Normal daily mean temperature in the month, Fahrenheit.
Computed as being the temperature one-half way between the
normal daily maximum and normal daily minimum temperatures
for the month.

Temp sq. Temp for a month, squared.

Rain Normal precipitation for the month, inches.

Rain sq. Rain for a month, squared.

Daily var. The difference between normal daily maximum and daily
minimum temperatures in the month (diurnal cycle).

Temp y-var. The range between the year with the highest and the year with
the lowest mean monthly temperature over a 30-year period.

Rain y-var. The range between the year with the greatest and the year with
the least monthly precipitation over a 30-year period.

Income per capita Annual personal income per person in $1000, 1984.

Density Number of thousands of people per square mile, 1980.

Density sq. Density, squared.

Solar radiation Latitude measured in degrees from southern-most point in US.

Altitude Height from sea level in feet.

Salinity Percent of land which needs special treatment because of
salt/alkaline in the soils.

Flood prone Percent of cropland which is prone to flooding.

Irrigated Percent of cropland with irrigation.

Water capacity Ability of soil to hold water.

Permeability Ability of water to pass through soil.

Wetland Percent of land considered wetland.

Soil erosion K factor–soil erodibility factor in hundredths of inches.

Slope length Number of feet length of slope (not steepness).

Farm value Estimate of the current market value of farmland including
buildings for the county expressed in dollars per acre, 1982.

Sand Mean surface layer texture of cropland from loamy sand to coarse
sand.

Clay Mean surface layer texture of cropland from sandy clay loam to
clay.



4 Climate change and agriculture:
the role of farmer adaptation
KATHLEEN SEGERSON AND BRUCE L. DIXON 1

There has been considerable debate about the potential effect of emissions of “green-
house gases” on climate change or “global warming” and its impact on economic and
ecological systems (see Helms et al., 1996). One sector thought to be sensitive to
climate effects is the agricultural sector. The impact of global warming on the US
agricultural sector has been studied by a number of previous authors (e.g. Adams et al.,
1988; Dudek, 1988; Adams, 1989; Crosson, 1993; Kaiser et al., 1993; Mendelsohn et
al., 1994; Rosenzweig and Parry, 1994). However, most of these studies do not allow
for the full range of adaptations that farmers could employ in response to climate
change, such as changes in the crop/enterprise mix, input mix, and the timing of
operations (with the exception of Mendelsohn et al., 1994 which includes, but does
not explicitly model adaptation). Those studies that do explicitly incorporate adapta-
tion (e.g. Crosson, 1993; Kaiser et al., 1993) base their estimates on simulated effects
rather than actual evidence of adaptation that has occurred. Failure to reflect the full
range of adaptation possibilities in estimates of impacts is likely to result in over-esti-
mation of damages from climate change.

In order to assess the full range of adaptation possibilities, a study of the extent of
farmer adaptations based on empirical adaptation data was undertaken. This chapter
reports the results of that study. Some of the results reported here (specifically, the
results from the estimated yield equations) were used in conjunction with other
information on adaptation to generate “best guess” parameter adjustments for the
Agricultural Sector Model (ASM). The ASM was then re-run with these adjustments
to determine the effect of adaptation on the predicted aggregate welfare effects of
climate change. Details regarding the parameter adjustments that were made and the
resulting welfare impacts are reported in Chapter 2.
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4.1 Methodology

The basic approach used in this study was to estimate the adaptation
possibilities by examining how farmers have responded to existing differences in
climate across regions in the United States. The theoretical foundation for the
approach is neoclassical duality theory. Duality theory suggests that farm-level pro-
duction decisions depend on exogenous factors such as output prices, input prices,
technological constraints, and environmental factors (Varian, 1992). Since environ-
mental factors generally vary across regions, cross-sectional data can be used to esti-
mate how production decisions (and the associated costs, revenues, and profits) have
varied with these environmental factors. These estimated relationships reflect the
adaptation possibilities, since in making the actual production decisions, farmers have
taken advantage of all the mitigation or adaptation possibilities available to them.
From the estimated relationships, we can then calculate how farm-level profits, for
example, would change if an exogenous change in an environmental factor occurred
and farmers adapted to that change.2 The above approach could be applied in a
number of different environmental contexts. For example, Garcia et al., (1986) used
cross-sectional data for farms in Illinois to estimate the impact of ground-level ozone
changes on farm profitability.

The duality-based approach is related to the Ricardian approach used by
Mendelsohn et al., (1994, 1996) to estimate the impacts of global climate change (see
also Chapter 3). Under the Ricardian approach, climate variables are assumed to affect
farm-level profitability, which (among other things) determines land values. However,
other factors affecting profitability, such as output prices, are not included. In addi-
tion, their methodology does not allow the estimation of yield changes that can be
compared to yield change estimates based on crop simulation models to estimate the
extent to which farmer adaptation can offset any negative impacts of climate change.

In this study, we take a two-pronged approach to estimating adaptation possibilities
using duality theory. First, we directly estimate per-acre yield functions for corn,
winter and spring wheat, and soybeans (the major field crops in the Midwest) that
incorporate farmer adaptation to climate (temperature and precipitation). The yield
equations are then used to predict the impact of alternative climate change scenarios
on crop yields. Comparing these yield change estimates with the estimates obtained
from crop simulation models that incorporate only modest adaptation allows the
potential for adaptation to mitigate the yield losses to be measured. The yield effects,
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2 This approach does not incorporate input or output price changes that could occur if aggregate
farmer responses are large. To incorporate price adjustments, the farm-level responses must be used
in a market-level model in which prices are endogenous, such as the ASM model used in Chapter 2.




