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Abstract

This note illustrates how to handle a sequence of extreme observations—such as those

recorded during the COVID-19 pandemic—when estimating a Vector Autoregression.

1 Introduction

The COVID-19 pandemic is devastating the world economy, producing unprecedented variation

in many key macroeconomic variables. For example, in March 2020, U.S. unemployment in-

creased by 0.7 percentage points, which is approximately 7 times as much as its typical monthly

change. Things got much worse in April, when unemployment reached a record-high level of

14.7 percent, rising by 10 percentage points in a single month. This change was two orders of

magnitude larger than its typical month-to-month variation. Most other macroeconomic indi-

cators experienced changes of similar proportion, including employment, consumption expen-

ditures, retail sales and industrial production, to name just a few examples. It is too early to tell

whether these extremely large shocks will propagate through the economy in a standard way,

or whether their trasmission mechanism will be altered. Unfortunately, answering this question

requires observing a much longer time span of data. But even with an unchanged transmis-

sion mechanism, the massive data variation of the last few months constitutes a challenge for

the estimation of standard time-series models. When it comes to inference, should we treat the
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data from the pandemic period as conventional observations? Or will these observations distort

the parameter estimates of our models? Should we instead discard these recent data? These

questions are not only essential for the estimation of time-series models during the outbreak of

COVID-19, but they will remain crucial for many years to come, since data from the pandemic

period will “contaminate” any future sample of time-series observations.

This paper provides a simple solution to this inference problem in the context of Vector Au-

toregressions (VARs), the most popular time-series model in macroeconomics. Our solution

consists of explicitly modeling the change in shock volatility, to account for the exceptionally

large macroeconomic innovations during the period of the epidemic. What makes our recipe

different, and simpler than standard models of time-varying volatility, is the fact that we know

the exact timing of the increase in the variance of macroeconomic innovations due to COVID-19.

As a result, we can both flexibly model and easily estimate these volatility changes. For exam-

ple, suppose to work with a monthly VAR based on U.S. macroeconomic data. We know that

March 2020 was the first month of abnormal data variation. We can then simply re-scale the

standard deviation of the March shocks by an unknown parameter s̄0, and do the same for April

with another parameter s̄1. As we show in section 2, the parameters s̄0 and s̄1 can be easily es-

timated using the approach of Giannone et al. (2015), provided that this re-scaling is common

to all shocks. This commonality assumption is the same assumption underlying the stochastic

volatility model of Carriero et al. (2016), and it should of course only be interpreted as an approx-

imation. But this approximation seems reasonable in a period in which all variables experienced

record variation. This strategy is also surely preferable to assuming s̄0 = s̄1 = 1, which would be

implicit in a treatment of the data in March and April 2020 as conventional observations.

The final step of our simple procedure consists of modeling the likely future evolution of the

residual variance, beyond April 2020. This is considerably more challenging, since the data to

inform these estimates are not yet available. To tackle this task, we set up a prior centered on the

assumption that the residual variance in May will be similar to that in March and April, and it will

then decay at a 20 percent monthly rate. As more data will become available, the researcher will

be able to update such prior with the likelihood information. It is important to stress that this

step is irrelevant for the estimation of the model on current data, but it plays an important role

for using the VAR to derive predictive densities, since the dispersion of these densities depends

on the future value of the residual variances.

To illustrate the properties of our procedure, we estimate a monthly VAR including data on

employment, unemployment, consumption, industrial production and prices, and we use the
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estimated model to perform two exercises. First, we compute the impulse responses to the fore-

cast error in unemployment. To be clear, these responses do not have any structural interpreta-

tion, but we use them only as summary statistics of the estimated dynamics. When we attempt

to compute these impulse responses using a standard estimation strategy that does not down-

weight the data from the pandemic period, this experiment produces nonsensical results, as the

impulse responses explode. This finding suggests that the March and April 2020 observations,

despite being a tiny fraction of the whole sample, are so wild that they can influence parameter

estimates substantially (and not necessarily in a good way). When the VAR is estimated using

our proposed procedure, the impulse response are instead very similar to those that we would

obtain by estimating the VAR with data until February 2020. This finding suggests that the ad-

hoc procedure of dropping the extreme observations from the pandemic is acceptable for the

purpose of parameter estimation, at least given the data available at the time of writing of this

paper.

This approach based on disregarding the recent data, however, would be inappropriate for

generating any type of prediction for the future evolution of the economy, because it vastly un-

derestimates uncertainty. We demonstrate this point in a second application, in which we use

the estimated VAR to produce density forecasts of various macroeconomic variables, conditional

on the consensus unemployment projection from the latest release of the Survey of Professional

Forecasters (SPF). When we perform this exercise by estimating the model without the data from

the pandemic, the predictions of employment, consumption expenditures and prices appear to

be excessively sharp. Instead, our proposed estimation strategy captures the idea that economic

fluctuations may be quite volatile for many months to come. As a consequence, our predictions

are consistent with a much broader range of possible recovery paths from the COVID-19 crisis.

The literature on time variation in macroeconomic shock volatility is vast, and its compre-

hensive review is beyond the scope of this paper. However, it is important to contrast the simple

volatility modeling strategy we propose here with the more typical time-varying volatility mod-

els that have recently been adopted in the context of VARs, unobserved component or DSGE

models (e.g. Cogley and Sargent, 2005, Primiceri, 2005, Sims and Zha, 2006, Carriero et al., 2016,

Stock and Watson, 2007, Fernandez-Villaverde and Rubio-Ramirez, 2007, Justiniano and Prim-

iceri, 2008, Curdia et al., 2014). A potential issue with these approaches is that the degree of time

variation in volatility is always informed by past data. For example, if historically shock volatili-

ties have varied by at most a factor of two or three from month to month, any estimated ARCH,

GARCH, Markov-switching or stochastic volatility model would have a hard time capturing the
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massive increase in volatility associated with the outbreak of the COVID-19 pandemic. The sec-

ond important difference between our approach and the more typical models in the literature

is that the time of the volatility change is known in the case of COVID-19, which simplifies the

estimation of our model.

The rest of the paper is organized as follows. Section 2 describes the methodology we propose

to handle the extreme observations recorded during the COVID-19 era. Section 3 presents the

results of our two empirical applications, and section 4 concludes.

2 The methodology

To account for the large variance of macroeconomic shocks associated with the outbreak of

COVID-19, we modify a standard VAR as follows:

yt = C +B1yt−1 + ...+Bpyt−p + stεt (1)

εt ∼ N (0,Σ) ,

where yt is an n× 1 vector of variables, modeled as a function of a constant term, their own past

values, and an n× 1 vector of forecast errors εt. In expression (1), the factor st is used to scale up

the residual covariance matrix during the period of the pandemic. More precisely, st is equal to

1 before the time period in which the epidemic begins, which we denote by t∗. We then assume

that st∗ = s̄0, st∗+1 = s̄1, st∗+2 = s̄2, and st∗+j = 1 + (s̄2 − 1) ρj−2, where θ ≡ [s̄0, s̄1, s̄2, ρ] is a

vector of unknown coefficients. This flexible parameterization allows for this scaling factor to

take three (possibly) different values in the first three periods after the outbreak of the disease,

and to decay at a rate 1− ρ after that. This modeling strategy is particularly suitable for monthly

and quarterly time series, given that the amount of data variation was substantially different

in the months of March, April, and—judging from the few available data points at the time of

writing of this paper—May 2020, and will likely be different when comparing 2020:Q1, Q2 and

Q3. We note, however, that alternative parameterizations are possible, even though they would

not affect the results and their interpretation.

How can we estimate equation (1)? This task is actually relatively easy. To see why, begin by

assuming that st is known, and rewrite (1) as

yt = Xtβ + stεt,
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where Xt ≡ In ⊗ x′t, xt ≡
[
1, y′t−1, ..., y

′
t−p
]

and β ≡ vec
(
[C,B1, ..., Bp]

′). Dividing both sides of

this equation by st, we obtain

ỹt = X̃tβ + εt,

in which ỹt ≡ yt/st and X̃t ≡ Xt/st. For given st, ỹt and X̃t are simple transformations of our

data. Therefore, the parameters β and Σ can be estimated using the transformed data ỹt and X̃t,

and the researcher’s preferred approach to inference, such as ordinary least squares, maximum

likelihood, or Bayesian estimation.

While the previous insight applies to all estimation procedures, it is now useful to specialize

our discussion to the case of Bayesian inference, given the well-known advantages of this ap-

proach in the context of heavily parameterized models like VARs. As in Giannone et al. (2015),

we focus on prior distributions for VAR coefficients belonging to the conjugate Normal-Inverse

Wishart family

Σ ∼ IW (Ψ, d)

β ∼ N (b,Σ⊗ Ω) ,

where the elements Ψ, d, b and Ω are typically functions of a lower dimensional vector of hy-

perparameters γ. This class of densities includes the popular Minnesota, Single-Unit-Root and

Sum-of-Coefficients priors, as well as the Prior for the Long Run of our earlier work (Litterman,

1980, Doan et al., 1984, Sims and Zha, 1998, Giannone et al., 2019). Giannone et al. (2015) pro-

pose a simple method to evaluate the posterior of of β, Σ and γ in a model without st. But if

we assume that st is known and replace yt and Xt with ỹt and X̃t, we can use the exact same

methodology to estimate (1).

Of course, in practice, st is unknown and must be estimated as well. Fortunately, the poste-

rior of the parameter vector θ that governs the evolution of st can be evaluated like the posterior

of γ. More precisely,

p (γ, θ|y) ∝ p (y|γ, θ) · p (γ, θ) , (2)

where y = {yt}Tt=1. In this expression, the first element of the product corresponds to the so-

called marginal likelihood, and it can be computed as

p (y|γ, θ) =

∫
p (y|γ, θ) p (β,Σ|γ) d (β,Σ) ,

which has an analytical expression. The second density on the right-hand side of (2) is the hy-

perprior, i.e. the prior on the hyperparameters. Our prior on the elements of γ is the same as in
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Giannone et al. (2015). As a prior for s̄0, s̄1 and s̄2, we use a Pareto distribution with scale and

shape equal to one, which has a very fat right tail, and is thus consistent with possible large in-

creases in the variance of the VAR innovations. For ρ, instead, we impose a Beta prior with mode

and standard deviation equal to 0.8 and 0.2, respectively. We stress that the hyperpriors on s̄0

and s̄1 are not particularly important for any of the results presented below, because the data

are very informative about these parameters. Instead, the hyperpriors on s̄2 and ρ determine

entirely the shape of their posterior, given that almost no data are yet available after April 2020.

As more data get released, the researcher will be able to update these priors with the likelihood

information.

Appendix A presents some additional technical details of the posterior evaluation procedure.

Matlab codes to implement it are also available.

3 Two applications

To illustrate the working and advantages of our modeling approach, we estimate a VAR with

some key U.S. macroeconomic indicators. We use the estimated model (i) to track the effects

of the combination of structural disturbances that drive the one-step-ahead forecast error in

unemployment; and (ii) to forecast the evolution of the U.S. economy, conditional on the con-

sensus unemployment prediction from the May 2020 SPF.

More precisely, the VAR includes six variables available at the monthly frequency: (i) employ-

ment, measured by the logarithm of the total number of nonfarm employees; (ii) unemployment,

measured by the civilian unemployment rate; (iii) consumption, measured by the logarithm of

real personal consumption expenditures; (iv) industrial production, measured by the logarithm

of the industrial production index; (v) CPI, measured by the logarithm of the consumer price

index; and (vi) core PCE, measured by the logarithm of the price index of personal consumption

expenditures excluding food and energy. The VAR has 13 lags and it is estimated on the sam-

ple from 1988:12 to 2020:4 using a standard Minnesota prior, whose tightness is chosen as in

Giannone et al. (2015). We do not extend the sample before 1988:12 because Del Negro et al.

(2020) document a reduced reaction of inflation to fluctuations in real activity since the 1990s,

compared to the pre-1990 period.

Figure 1 plots the posterior distribution of three (hyper)parameters of the model. The left

panel presents the posterior of the overall standard deviation of the Minnesota prior (denoted
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Figure 1: Posterior distribution of the overall standard deviation of the Minnesota prior, and the March and April

2020 volatility scaling factors.

by λ), which provides information on the appropriate degree of shrinkage on the β coefficients.

The center and right panel of the figure, present instead the posterior distribution of the volatil-

ity scaling factors in March and April 2020, i.e. s̄0 and s̄1. These posteriors peak around 10 and

60, suggesting that the innovation standard deviation in these two months were one and two

orders of magnitude larger than in the pre-COVID-19 period. For comparison, figure 1 also re-

ports the posterior of λ when the VAR is estimated in a standard way, without the presence of

st. When the latest observations are excluded from the estimation sample (essentially assuming

s̄0 = s̄1 = ∞), the posterior of λ is similar to the one implied by our baseline model, consistent

with the fact that our inferential procedure assigns comparatively less weight to these most re-

cent observations. When instead these observations are included in the estimation sample and

treated as conventional data (essentially assuming s̄0 = s̄1 = 1), the posterior of λ exhibits a

large shift to the right, implying much less shrinkage for the β coefficients. This reduction in

shrinkage is the necessary cost to pay to fit the large variability of the latest data with a change

in the estimated β.

We now illustrate the implications of these estimation results in two empirical applications.

In our first application, we study the dynamic response of the variables in the VAR to a positive

shock to unemployment, when it is ordered first in a Cholesky identification scheme. There-

fore, this shock corresponds to the typical linear combination of structural disturbances that

drives the one-step-ahead forecast error of unemployment. We do not assign a structural inter-

pretation to these impulse responses, but just use them as summary statistics of the estimated

dynamics. Figure 2 presents their posterior when the VAR is estimated using the procedure out-

lined in section 2. The real economy (employment, consumption and industrial production)

initially slows down and then recovers. Prices also experience some downward pressure, espe-
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Figure 2: Impulse responses to a one standard deviation shock to the unemployment equation. The shock is iden-

tified using a Cholesky strategy, with unemployment ordered first. The solid lines are posterior medians, while the

shaded areas correspond to 68- and 95-percent posterior credible regions.

cially core PCE, consistent with a “demand” interpretation of this shock. But the response of

inflation is overall relatively muted compared to that of the real variables, in line with the results

of Del Negro et al. (2020).

As we did earlier, it is useful to compare these impulse responses to those obtained when

estimating the model in a more conventional way. Unfortunately, if we include the latest obser-

vations in the estimation sample without any special treatment, the implied impulse responses

become explosive and unreasonable (for this reason, we do not report them). This finding illus-

trates the importance of explicitly modeling the change in shock volatility during the COVID-19

era. Instead, the responses in figure 2 are very similar to those implied by a standard VAR esti-

mation that excludes the March and April 2020 data (given this similarity, we do not report them
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either). We summarize the lesson from this first application as follows: For the purpose of esti-

mating the parameters β and Σ, we recommend to adopt the procedure we described in section

2, which involves a minimal deviation from the conventional VAR estimation. However, if a re-

searcher still wishes to estimate a VAR “as usual,” it is much better to exclude the data from the

pandemic rather than including them and treating them as any other observation in the sample.

It is likely that the latter approach will produce meaningless results, as it did in our application.

We now illustrate a second empirical application in which the gains of adopting our ap-

proach to inference are even more evident. In this application, we conduct a scenario analysis to

highlight the impact of the current change in shock volatility and its expected future evolution on

the U.S. economic outlook and the uncertainty surrounding it. More precisely, we compute the

most likely evolution of the macroeconomic indicators included in our VAR under the consen-

sus unemployment projection from the latest release of the SPF. This consensus unemployment

projection is plotted in the first panel of figure 3.1 According to the SPF, unemployment will

likely decline steadily over the next few years, reaching 10 percent by the beginning of 2021, and

5 percent by the end of 2022. The other panels of the figure, show a slow and gradual recovery

for employment, and a more sudden rebound of consumption and industrial production. The

latter, after reaching its pre-crisis level in 2021, resumes the slow downward trend which became

apparent over the last two decades. The CPI and core PCE are affected much less from the deep

recession and, after a short-lived downturn, they return to their historical trend.

How would these conditional forecasts look like if we estimated the model in a more standard

way? Once again, the answer to this question depends on whether the last few observations

from the COVID-19 period are included or excluded from the estimation sample. If they are

included, the estimates of β and Σ are unduly affected, and these conditional forecasts become

explosive and completely unreasonable, as in the case of the impulse responses above. If instead

the estimation sample ends in February 2020, the implied conditional forecasts are more in line

with those produced by our model with time-varying volatility. But despite a broad similarity in

the qualitative features, the conditional forecasts show now important quantitative differences,

as we can see by comparing figures 3 and 4. In particular, the VAR estimated with our proposed

procedure incorporates a higher innovation variance not only in March and April 2020, but also

in the subsequent few months.2 As a consequence, the estimated conditional forecasts in figure

3 exhibit a higher degree of uncertainty about the future prospects of the U.S. economy, relative

1The SPF reports quarterly and annual projections. To translate them into monthly projections, we simply inter-
polated them using a smooth exponential curve.

2As mentioned earlier, the expected future evolution of the shock volatility depends only on the prior at the mo-
ment, but the availability of a longer sample will soon allow to update this prior with more likelihood information.
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Figure 3: Forecasts of the variables in the VAR conditional on unemployment following the path in the first subplot.

The solid lines are posterior medians, while the shaded areas correspond to 68- and 95-percent posterior credible

regions.
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Figure 4: Forecasts of the variables in the VAR conditional on unemployment following the path in the first subplot.

The solid lines are posterior medians, while the shaded areas correspond to 68- and 95-percent posterior credible

regions.

to the forecasts in figure 4 obtained by excluding the latest data. This is particularly evident

for the case of employment and consumption. For example, the predictions of consumption

produced by the standard VAR at short horizons are quite sharp, presumably too much. The

density forecast in figure 3, instead, not only entails more uncertainty, but it also implies a faster

rebound, since it is consistent with the idea that the size of fluctuations may be larger for some

time. This implication is reasonable, given that consumption has declined considerably more

relative to other variables at the onset of the COVID-19 recession.
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4 Concluding Remarks

The sequence of wild macroeconomic variation experienced during the COVID-19 pandemic

constitutes a challenge for the estimation of macro-econometric models in general, and VARs

in particular. In this paper, we propose a simple solution to this problem, which consists of

explicitly modeling the large change in shock volatility during the outbreak of the disease. We

also show that estimating such a model is quite straightforward, because the time of the volatility

change is known. Our empirical results show that the ad-hoc procedure of dropping the extreme

observations from the pandemic era is acceptable for the purpose of parameter estimation—at

least given the data available at the time of writing of this paper—but it is inappropriate for

forecasting the future evolution of the economy, because it vastly underestimates uncertainty.

A Posterior Evaluation

This appendix describes the technical details of the MCMC algorithm that we use to evaluate the

posterior of the model parameters. This algorithm is a standard Metropolis algorithm, almost

identical to that in Giannone et al. (2015), consisting of the following steps:

1. Initialize the hyperparameters γ and θ at their posterior mode, which requires a prelimi-

nary numerical maximization of their marginal posterior (whose analytical expression is

derived below).

2. Draw a candidate value [γ∗, θ∗] of the hyperparameters from a Gaussian proposal distribu-

tion, with mean equal to
[
γ(j−1), θ(j−1)

]
and variance equal to c ·W , where

[
γ(j−1), θ(j−1)

]
is the previous draw of [γ, θ], W is the inverse Hessian of the negative of the log-posterior

of the hyperparameters at the peak, and c is a scaling constant chosen to obtain an accep-

tance rate of approximately 25 percent.

3. Set [
γ(j), θ(j)

]
=

 [γ∗, θ∗] with pr. α(j)[
γ(j−1), θ(j−1)

]
with pr. 1− α(j),

where

α(j) = min

{
1,

p (γ∗, θ∗|y)

p
(
γ(j−1), θ(j−1)|y

)}

4. Draw
[
β(j),Σ(j)

]
from p

(
β,Σ|y, γ(j), θ(j)

)
, which is a Normal-Inverse-Wishart density (see
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details below).

5. Increment j to j + 1 and go to 2.

In step 3, the density p (γ, θ|y) is given by

p (γ, θ|y) ∝ p (y|γ, θ) · p (γ, θ) ,

where the second term of the product corresponds to the hyperprior. The first term is instead

the marginal likelihood, and it can be computed analytically as in Giannone et al. (2015). If we

condition on the initial p observations of the sample, which is a standard assumption, we obtain

p (y|γ, θ) =

T∏
t=p+1

p (yt|Xt, γ, θ) =

T∏
t=p+1

p
(
ỹt|X̃t, γ, θ

)
snt

,

where the denominator on the right-hand side captures the Jacobian of the transformation ỹt =

yt/st. From the results in Giannone et al. (2015), it follows immediately that

p (y|γ, θ) =

 T∏
t=p+1

s−nt

( 1

π

)n(T−p)
2 Γn

(
T−p+d

2

)
Γn

(
d
2

) ·

|Ω|−
n
2 · |Ψ|

d
2 ·
∣∣x̃′x̃+ Ω−1

∣∣−n
2 ·∣∣∣∣Ψ + ˆ̃ε′ ˆ̃ε+

(
ˆ̃B − b̂

)′
Ω−1

(
ˆ̃B − b̂

)∣∣∣∣−T−p+d
2

,

where x̃t ≡
[
1, y′t−1, ..., y

′
t−p
]
/st, x̃ ≡ [x̃p+1, ..., x̃T ]′, ˆ̃B ≡

(
x̃′x̃+ Ω−1

)−1 (
x̃′ỹ + Ω−1b̂

)
and ˆ̃ε ≡

ỹ − x̃ ˆ̃B.

The posterior of [β,Σ] in step 4 is given by

Σ|Y ∼ IW
(

Ψ + ˆ̃ε′ ˆ̃ε+
(

ˆ̃B − b̂
)′

Ω−1
(

ˆ̃B − b̂
)
, T − p+ d

)

β|Σ, Y ∼ N
(

vec
(

ˆ̃B
)
,Σ⊗

(
x̃′x̃+ Ω−1

)−1)
.
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