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Introduction.

(1) One of the most striking features in tbe study of epidemics is the difficulty 
of finding a causal factor which appears to be adequate to account for the 
magnitude of the frequent epidemics of disease which visit almost every popula
tion. I t was with a view to obtaining more insight regarding the effects of the 
various factors which govern the spread of contagious epidemics that the present 
investigation was undertaken. Reference may here be made to the work of Ross 
and Hudson (1915-17) in which the same problem is attacked. The problem is 
here carried to a further stage, and it is considered from a point of view which 
is in one sense more general. The problem may be summarised as follows : 
One (or more) infected person is introduced into a community of individuals, 
more or less susceptible to the disease in question. The disease spreads from
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the affected to the unaffected by contact infection. Each infected person runs 
through the course of his sickness, and finally is removed from the number of 
those who are sick, by recovery or by death. The chances of recovery or death 
vary from day to day during the course of his illness. The chances that the 
affected may convey infection to the unaffected are likewise dependent upon 
the stage of the sickness. As the epidemic spreads, the number of unaffected 
members of the community becomes reduced. Since the course of an epidemic 
is short compared with the life of an individual, the population may be con
sidered as remaining constant, except in as far as it is modified by deaths due 
to the epidemic disease itself. In the course of time the epidemic may come to 
an end. One of the most important probems in epidemiology is to ascertain 
whether this termination occurs only when no susceptible individuals are 
left, or whether the interplay of the various factors of infectivity, recovery and 
mortality, may result in termination, whilst many susceptible individuals are 
still present in the unaffected population.

I t is difficult to treat this problem in its most general aspect. In the present 
communication discussion will be limited to the case in which all members of 
the community are initially equally susceptible to the disease, and it will be 
further assumed that complete immunity is conferred by a single infection.

I t  will be shown in the sequel that with these reservations, the course of an 
epidemic is not necessarily terminated by the exhaustion of the susceptible 
members of the community. I t  will appear that for each particular set of 
infectivity, recovery and death rates, there exists a critical or threshold density 
of population. If the actual population density be equal to (or below) this 
threshold value the introduction of one (or more) infected person does not give 
give rise to an epidemic, whereas if the population be only slightly more dense 
a small epidemic occurs. I t  will appear also that the size of the epidemic 
increases rapidly as the threshold density is exceeded, and in such a manner that 
the greater the population density at the beginning of the epidemic, the smaller 
will it be at the end of the epidemic. In such a case the epidemic continues 
to increase so long as the density of the unaffected population is greater than 
the threshold density, but \tfhen this critical point is approximately reached 
the epidemic begins to wane, and ultimately to die out. This point may be 
reached when only a small proportion of the susceptible members of the com
munity have been affected.

Two of the reasons commonly put forward as accounting for the ter mi nation 
of an epidemic, are (1) that the susceptible individuals have all been removed, 
and (2) that during the course of the epidemic the virulence of the causative
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organism has gradually decreased. I t  would appear from the above results 
that neither of these inferences can be drawn, but that the termination of an 
epidemic may result from a particular relation between the population density, 
and the infectivity, recovery, and death rates.

Further, if one considers two populations identical in respect of their densities, 
their recovery and death rates, but differing in respect of their infectivity rates, 
it will appear that epidemics in the population with the higher infectivity rate 
may be great as compared with those in the population with the lower infec
tivity rate, especially if the density of the former population is in the neighbour
hood of the threshold value. If, then, the density of a particular population 
is normally very close to its threshold density it will be comparatively free from 
epidemic, but if this state is upset, either by a slight increase in population 
density, or by a slight increase in the infectivity rate, a large epidemic may 
break out. Such great sensitiveness of the magnitude of the epidemic with 
respect to these two factors, may help to account for the apparently sporadic 
occurrence of large epidemics, from very little apparent cause. Further, it 
will appear that a similar state of affairs holds with respect to diseases which 
are transmitted through an intermediate host. In this case the product of the 
two population densities is the determining factor, and no epidemic can occur 
when the product falls below a certain threshold value.

General Theory.
(2) We shall first consider the equations which arise when the time is divided 

into a number of separate intervals, and infections are supposed to take place 
only at the instant of passing from one interval to the next, and not during the 
interval itself. We shall take the size of this interval, which at present may be 
considered constant, as the unit of time, and we shall denote the number of 
individuals in unit area at the time t who have been infected for 0 intervals by

t
vt q. The total number who are ill at this interval t is E vt e, which we shall

# = o
call yt.It should be noted that vt Q denotes the number of individuals at the
time t who are at the beginning of their infection. Also we shall use the symbol 
Vt to denote the number who actually undergo the process of infection during 
the transition from the interval t — 1, to the interval t. In general 0 =  vt 
except at the origin, where we assume that a certain number y 0 of the popula
tion have just been infected, although this infection is naturally dependent on 
some process outside that defined by the equations which we shall develop. 
Thus

Vo,o — v-f- y0. (1)
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The whole process is indicated in the following schema :—

Fresh
infections.

Numbers at each stage 
of illness.

Number
ill.

v3 Vs,0 V'S'i t'3 2 Vz 3
/  /  /  '

Vi

v% V‘2,0 V2  1 2 Vi

Vi 1̂.0 Vi.1 
/

yi

v0 Vo, 0 yo

The arrows indicate the course followed by each individual until he recovers 
or dies.

If tye denotes the rate of removal, that is to say it is the sum of the recovery 
and death rates, then the number who are removed from each 0 group at the end 
of the interval t is 'beVt, e, and this is clearly equal to vtj  — v<+i>e+i.
Thus

Vt.e — 'ty_ii0_ i( l  — — I))

=  <̂—2,9—2(1 ~  ^ (0 -  1) (1 -  4 (0 -  2))

=  Vt-e,o^d, (2)

where B0 is the product (1 — ^ (0 — 1)) (1 — ^ (0 — 2) ) . . .  (1 — (0)).
Now vt denotes the number of persons in unit area who became infected at

t
the interval t, and this must be equal to H(f>evt,e where xt denotes the number

i
of individuals still unaffected, and cf>d is the rate of infectivity at age 0. (It is 
indifferent whether we include the term <j>Q ty0 or not, since in this paper we 
assume that (f>0 is zero, that is that an individual is not infective at the moment 
of infection.) This follows since the chance of an infection is proportional to 
the number of infected on the one hand, and to the number not yet infected 
on the other.

I t  is clear that
t

x t =  N — S vt ' 0
r o

=  N - b ( - j , ,  (3)
0

where N is the initial population density.
If zt denotes the number who have been removed by recovery and death, 

then
xt +  yt +  zt =  N. (4)
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Thus we have t t
vt =  xt 5  <f>eVt,6 — xt 2  ^ B evt_0tO (by 2)

i i

xt (2 A«v,_9 +  A#0) (by 1),

where Ae is written for </>oBe. 
Also

=

By definition

< <
2  Vt,d — 2  BeVf_6i +  B<y0. 
0 0 (6>

(7>—  V t =  X t+1 —

hence equation (5) may be written

— xt+i =  xt (2 +  Aty0). (8>
i

Also z(+1 — z{ is the number of persons who are removed at the end of the
t t

interval of time t, and this is equal to vt> e> ne-> to 2<J/o vt_e -f (LfBt
l l ‘

hence writing C# for B# we have
t

?t+i %t =  2  +  Ct̂ o- (0)i
Also by (4)

« <
Vt+i yt — Xt [2 A êt-e4~ A/y0] Qei't-e +  Ctyo]* (10)1 x

(3) If now we allow the subdivisions of time to increase in number so that 
each interval becomes very small, then in the limit the above equations. 
(4, 7, 8, 9) become

x t +  yt +  zt =  N.
dxt

dt’vt

(11)

( 12>

dxt
n = - x '

| Aevt_ed$ +  A tyo 
Jo

and from (6) 

where

* ' =  f c ^ i e  +  Ctfo,at In

yt = J l&ort-ed% -f- B̂o?
Jo

(13).

(11)

(15)

f0
t » - I  'Ha) daBe =  e Jo , Ae (f>eBe, and Co =  ^oB*.

I t  can, however, be shown that these five relations are not independent and 
in fact that (11) is a necessary consequence of (13), (14) and (15). The four
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independent relations (12), (13), (14) and (15) determine the four functions y, 
z and v.

By equation (13), dropping the suffix t except when necessary in the analysis,

dx
— =  — x dt

=  — x

—  X

I A eVt-edO -j- A(y0 
Jo

ft
A t—$v$dQ -J- 

Jo

f ~  k 'ya

where xin the integral is now a function of 0. 
Therefore

—  A t_-  
o Jo

4 d A
d0

d0 — A

where

— A()Xt — Atx0-f- f XqA ' d0 —Aty{) 
Jo

A'i_a — dAt - 0
d (£ —• 0) dO

But A0 — <f>o B0 =  <j)Q — 0, since we assume that an individual at the moment of 
becoming infected cannot transmit infection.

Hence

d =  ~  A, (x0 +  y0) +  f xeA 't_e d0,
JO

A tN -f- f A'ext_edQ. 
Jo

(16)

We have not been able to solve this equation in such a way as to give x in 
terms of t as an explicit function. I t may, however, be pointed out that this is 
an integral equation similar to Volterra’s equation

/ ( O r  *«) +  P n (<, 0) (0)do,
Jo

except that in place o f /  we have ^
dt

(4) If we consider an equation of the form

=  At +  X f  N (/, 0) (0) d0,
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of which the above equation is a particular example, it would appear that a 
solution can be arrived at by a series of successive approximations in a way 
similar to the method used in resolving Volterra’s equation.

We may write
x — /o (0 +  (t) -f- 72/ 2 (t) +  etc*

I t  is easily seen that after substituting this expression in the equation

= x
rt

a {+  x n  (*, e )z (e )d e  
Jo

and equating the coefficients of the powers of X, we obtain

■ J J t) = fn(t)At + f n. 1(t) f  N (t, 6) / o  (6) d6 + /„ -2  w f*N
Jo Jo

N(<, ©)/„_! (6) rfe

d
dz

+  •••  f ./0 

=  Ln_i (<) say.

This is a differential equation for f n (t) of which the solution is 

fn (0 e =  j* Ln_i (0 e”̂ °A<cWd£ +  constant,

where L„_i (Z) is a function of t h e / ’s.
Also / w (0) is zero (n>0), since the initial conditions are presumably inde

pendent of X. Hence the constants of integration are all zero except / o ( 0 ) .  
In the case of this function we have

dfo (Z)
dt

whence
— Jo (J) A<,

foil) = /o ( 0 ) J » A"“,
so that/o  (0) =  x0.

We thus have for the solution of the integral equation,

x =  xoEt +  S XnE( f  dt,
» = i Jo E(

Xo +  S Xw [
i Ji

=  E
;o

where E ( is written for exp. f A and when X =  1
Jo

00 ft

£1 Jo
x =  E, x0 +  £  f  L"~i ^ (17)
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(5) Returning to equation (16) let us consider it in the rather more general 
form

~t
Q t-eXedQ.* , + (

J o

Multiplying both sides by e zt where the real part of z is positive, and 
integrating with respect to t between the limits zero and infinity, we have

therefore
jo 6 =  Jo «“!‘Afit +  j  e~“

— log x„ +  ( ze~*’ log a; eft =  F (z) +  f «-»Q, dd I e~llx t dt,
Jo Jo Jo

=  F -f  Fi (?) j  dt,

where F (2) is written for J e~zik tdt,and Fj (2) for J e~z9QedO. Clearly

e~'d log x tends to zero as t tends to infinity, whilst x  never exceeds the 
initial value N — y0.

Thus
_oo

j e~zt (2 log x — Fi (2) x) dt — F (2 ) +  log x0.
Jo

I t will be seen that this is an equation of the form

f  <f>(x,z) y(z, t)dt — x(
' A

(18)

(19)

where the functions (f>, 6 and 7 are known, and a: is a function of 2 may have 
any value provided that its real part is positive. I t  follows that the formal 
solution obtained in the previous paragraph, equation (17), must satisfy this 
equation (19). If </> (x, 2) had not contained 2 explicitly equation (19) would be 
of Fredholm’s first type. From this point of view the above equation may be 
regarded as a generalisation of Fredholm’s equation of the first type.

(6) Let us now integrate equation (13) with respect to t, between the limits 
zero and infinity.
We have

-  f  i t  =  f  f  A  +  f  A
Jo dt J0J0 Jo

-00 -00 -00 
log — =  I  Aed0 | +  j A

hence
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r°° • r  rIf we put A for A tdt,and use the relation =  — — —
Jo Jo Jo dt

we have

log ^  =  A (x0 -  * .) +  A =  A(N —

Let us introduce the value p = — ^7— so V ĥ.e proportion of the

population who become infected during the epidemic.
Then x^ =  N (1 — p) 
and

1 — Vlog A----  L AN
i — Va

N

(20)

This equation determines the size of the epidemic in terms of A, N, and y 0, 

and we shall make use of it later.
If we treat equation (15) in a similar manner, we obtain the relation

I N j* BedO.
'o Jo

Thus 1 B0d6 is the average case duration.

(7) Finally the observational data are given in terms of y and though 
in particular instances the information may be incomplete. The problem may 
arise of obtaining A0 and B0 as functions of 0, and thus of acquiring knowledge 
regarding 6e and the infectivity and removal rates.

In equation (13) vt and d log xjdtare known functions of t and so the equation 
is of the type discussed by Fock (1924). We shall apply his method to obtain 
the solution of this and similar equations.

By equation (13)

: d log X rx ft r°°
e~z t\ A e ^ t - e d ^ d t y Q\e~ztA t dt,

Jo Jo Jo

therefore

f e~z% d t  
J n

yo  +  f e ztVi dt 
Jo

(21)
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■and we shall denote this last expression by the symbol F 2 (z) 
whence

-j Ca + iv>
Ae =  f -| {z) dz.

2rci •J or— i  oo

By equation (15)

j o e~ztytdl =  I e_2< | Bevt^e -f

whence

fJ 0 e 2*B,df
I e ztyt
Jo_________

pOO

+  e~
' n

we shall denote this last expression by F3 (z), and so
| p'l + iao

B, =  - M  <?‘Fs (z)dt.
Zm J a - i  X)

(21a)

(22)

(22a)

Equations (21a) and (22a) give Ae and B0 in terms of the observable data.
If F 2 (z) and F 3 (z) can be expressed as rational functions of then in place 

of Laplace’s transformation we can use the simpler solution given in the next 
section.

Special Cases.

A.— The earlier stages of an epidemic in a large population.

(8) During the early stages of an epidemic in a large population, the number 
of unaffected persons may be considered to be constant, since any alteration is 
small in comparison with the total number. Equation (13) becomes

A eVt-e d0 +  A

where N is this constant population per unit area. 
Using Fock’s method

Ny0 |

f e ‘uvL
1 — N j 

Jo
and we shall denote this by F4 (z). 

Thus

=  A  <fFt (*)<&.
Am Ja-iao

(23)

(23a)
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Making use of equation (15) we have similarly

f e~zty tdt — f e~ztf +  I
Jo Jo Jo  Jo

f e-*\(
Jo J

Nyo f
JO

e~z0Bi dd ~h 2/o [ e dt,

e ztA,dt e ztB t dt

1 — N
' o

+  2/oj e

y0 ( e z%  dt
J 0

1 - N
Jo

which we shall call F5 
Thus

i ra+i»
Vt =  t - t eztFo (2) 

AlZZ J a — ix)

Further we may find the integral equation for yt as follows :—

Vt — [  B t - e V # d d  +  Btyo,
Jo

— N j* B t - e A g _ xvxdz +  A#?/o  ̂ dd -f-

=  N I B t_0 j* A e_zvzdzdd +  % 0 J +

— N f At_o f Bg_zvz dz -(- f A;_eB^d6 -j- B^q,
Jo Jo Jo

— N j" A t-e {ye — B ^ q -j- Beyo) dd +  B^o,

=  N ( A t-eyedd +  B{yo- 
J 0

(24)

(24a)

(25)

I t  is easy to show that by solving this directly we obtain the solution (24).

In a previous communication, McKendrick (1925-26), these solutions were given in a 
somewhat different form. The equation for vt0 was given as

vt,0 =  j Aev.-^o Jo
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and the solution obtained was

711

\  Ca +too
"‘•0 =  2S

get . dz
e~20A e

I t  was remarked that vt,o had a singularity at the point 0. In the present dis
cussion we regard the original infections as occurring at the very beginning of the epidemic 
but in such a way as to be independent of the equations which define the epidemic proper. 
Thus Vi, o — vt except in the short interval of time 0 to e, and during this interval the

integral equation does not hold, but instead j" vt, o dt is equal to 

Thus
Vt, 0 =  Vt,0 —  Vt, 0 +  Vt, 0,

— | Aj_0 i>0,o d 6 - \ - A t - eve,0

=  1 At-eVedd +  A t - e' | where 0 <  <  e,
Jo Jo

Aj—000 dd AtyQ.I

Thus the integral equation previously given for i% o implies the equation now given for vt. 
The solution previously given may be written in the form

vt, o=  - L f
2 ni |,

a d-i oo 

ci — % '
e^F (z) dz,

where

F ( 2 )

In the new form
(V10

let us denote this by
Z&A$ dd

F 4 (z) =  +
Al/n

1 — A  1 — A ’

which is the same as in equation (23) when one notes that in the former discussion the 
function A was taken as including N. Now if vt has no singularities, the Laplacian solution
of F 4 (z) is a function with no singularities and so the Laplacian of ;y0 corresponds to the

[ C a + i oo
singularity. I t  is easy to see that the Laplacian solution |  ̂  ̂ y0) dz corresponds

to a function <j> (t)such that j ” (0 d t = - y aNow if 0  is zero from € to oo , and

becomes infinite at the origin in such a way that | ̂  dt tends to y0 as e tends to zero,
T a + i co

then it is clear that the above equation will be true. And so the expression I ( yo)dzJ Cl — l  oo
may be taken as representing a function with exactly the same properties as vt - v t,o.

That is to say it is zero from e to oo and (w* -  vly0)dt = -  when £ becomes very 

small.
3 BVOL. CXV.— A.
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These values of vtand ytconstitute the general solution of the problem in the
case where N is considered as remaining constant, if A# and Be, or <f>9 and
are given.

We can as before readily obtain the values A0 and B0 from observed values 
of vtand yt, and we find

10 " 2 ro Jra + i co dv, dt

a—i x> %0 +  n J
dz,

ry—ZtVtdt
(26)

For the arithmetical solution of the integral equations the reader is referred 
to Whittaker (‘Roy. Soc. Proc.,’ A, vol. 94, p. 367, 1918).

(9) I t  will be observed that solutions (21, 22, 23, 24, 26, 27) depend upon an
f »

equation of the type e~ztcj) ( t)dt =  F (z) whose solution can be expressed by
Jo

the use of Laplace’s transformation.

If F (z) can be expressed as a rational function of the form v2— r where
<M »)

and are polynomials of degree n and m respectively, and n is less than m,

then it is always possible to express F(z) in the form SE ^ r, s—where r and s
(z ar)

vary from unity to a and b respectively, find a and b have finite values.
But

hence a solution of

. 0 ®r)
is given by

<f> {t) =  EE - Ar>* P~V rt: see Fock ( . (28)
(s — 1)1

B. Constant .
(10) Much insight can be obtained as to the process by which epidemics in 

limited populations run their peculiar courses, and end in final extinction,
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from the consideration of the special case in which <f> and y are constants k 
and l respectively.

In this case the equations are
dx

=  — kxv

dy
dt Kxy — ly

dz 7
n  =  l*

(29)

and as before x-f- +  z — N. 
Thus

|  =  I ( N - * - * ) ,

i d x  K. I i &nand — =  — -  x, whence log ~  
dz l x — z, since we assume that z0 is zero.

f = l ( N - x 0e *r

Thus

Since it is impossible from this equation to obtain z as an explicit function of

t, we may expand the exponential term in powers of - z, and we shall assume
L

that -  zis small compared with unity.

Thus

But N — xQ =  y0,where y0 is small. I t is for this reason that we have to

take into consideration the third term in z2, as although j  is small compared

with unity, its square may not be small as compared with ( - x0 — 1 | z.

The solution of this equation is ___

z — \ j x° —  ̂ ^ ̂ i ~~9— ^ $)) (30)
where

j  Xq 1
<f> =  tanh-1

V“
and k2U

f
3 b 2



714 W. O. R erm ack and  A. G. M cK endrick .

Also for the rate at which cases are removed by death or recovery which is the 
form in which many statistics are given

dz
dt 2xok2a/ — q sech2 ( — 2 (31)

30
weeks

The accompanying chart is based upon figures of deaths from plague in the island of 
Bombay over the period December 17, 1905, to July 21, 1906. The ordinate represents 
the number of deaths per week, and the abscissa denotes the time in weeks. As at least 
80 to 90 per cent, of the cases reported terminate fatally, the ordinate may be taken as 
approximately representing dz/dt as a function of t. The calculated curve is drawn from 
the formula

— =  890 sech2 (0 • — 3 • 4).
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We are, in fact, assuming that plague in man is a reflection of plague in rats, and that 
with respect to the rat (1)/ the uninfected population was uniformly susceptible ; (2) that 
all susceptible rats in the island had an equal chance of being infected ; (3) that the infec- 
tivity, recovery, and death rates were of constant value throughout the course of sickness 
of each r a t ; (4) that all cases ended fatally or became immune ; and (5) that the flea 
population was so large that the condition approximated to one of contact infection. 
None of these assumptions are strictly fulfilled and consequently the numerical equation 
can only be a very rough approximation. A close fit is not to be expected, and deductions 
as to the actual values of the various constants should not be drawn. It may be said, 
however, that the calculated curve, which implies that the rates did not vary during the 
period of the epidemic, conforms roughly to the observed figures.

Further at the end of the epidemic

21 (=  —  ®oKXo\
l (32)

where y0 has been neglected. This is obviously no limitation as y0, the initial 
number of infected cases is usually small as compared with It is clear that 
when x0, which is identical withN if y0 be neglected, is equal to 1/k, no epidemic 
can take place. If, however, N slightly exceeds this value then a small epidemic

will occur, and if we write N =  -
K

-j- n, its magnitude will be

9,L?L or

In this sense the population density No — - may be considered as the threshold

density of the population for an epidemic with these characteristics. No epi
demic can occur unless the population density exceeds this value, and if it does 
exceed the threshold value then the size of the epidemic will be, to a first approxi
mation, equal to 2 n, that is to twice the excess (if n is small as compared with N). 
And so at the end of the epidemic the population density will be just as far below 
the threshold density, as initially it was above it.

At first sight it appears peculiar that in such a homogeneous population 
the epidemic should at first increase and then diminish. The reason foi this 
behaviour is readily appreciated when attention is focussed on the conditions 
obtaining when the epidemic is at its maximum. By equation (29) this occurs

when ^  =  0 that is when x — - , or when the unaffected population has been 
dt ’ k

reduced to its threshold value. Once the population is below this value, any 
particular infected individual has more chance of being removed by recovery 
or by death than of becoming a source of further infection, and so the epidemic
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commences to decrease. In fact, as remarked above, in small epidemics the 
curve for y is symmetrical about the maximum. This symmetry exists for y 
as a function of t, and consequently also for dz/dt, that is to say the curve of 
removal by recovery or by death. On the other hand no such symmetry is

docobtained in the curve of case incidence, that is of — — =  Kxy. This is clear 

since y is symmetrical and x — e *

C. Magnitude of small epidemics in general case.

(11) We have seen that in the case last discussed, that is where the population 
is limited, and the characteristic rates are constants, a threshold value exists, 
such that no epidemic can arise if the density is below this value, whereas if 
the density be above it, the size of the epidemic is equal to twice the excess, 
provided that the excess be a small fraction of the threshold density. I t  is 
of importance to enquire how far a similar result is true in the general case 
where the characteristic rates vary during the course of the disease.

We found that
log J.----2. =  ApN,

1 - ^ 2
N

(20)

where p is the proportion of the population infected during the epidemic, and

We shall assume th a ty 0/N is small as compared with unity, and can be 
neglected.

I t  is clear that when p  is greater than zero, — log (1— hence A pN > p
and consequently A N >1.

That is to say for an epidemic to occur (that is for p to be greater than zero), 
N must be greater than 1 /A. Writing N0 — 1 /A and N — N0 -j- we have

hence

P +  2 -  +  £ + • • •  =  A ? NA fj

v~ + £ +  
2 3

n
No’
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or neglecting powers of p higher than the first
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? N =  2 n ^  =  2 „ ( l  +  ^ )  =  2„, (33)

approximately, as w/N0 may be neglected as compared with unity.

A difficulty occurs due to the fact that y0 can have no value less than unity, and so ?/„ /X 
cannot be made indefinitely small. I t  appears, in fact, that under certain conditions quite 
a number of cases might occur at the threshold value, but these would be sporadic cases and 
would not constitute an epidemic in the true sense. The difficulty may be got over if we 
allow the unit of area to increase. If we increase it k times then N0 increases to kN0 and A 
becomes A/k, so that AN0 does not change. On the other hand ?/0/N0 becomes yn , 
and although y0 can never be less than unity, k can be made indefinitely large, and so 
2/0/kN0 may ultimately be neglected as compared with unity.

I t  thus appears that precisely the same result is arrived at in this case, as in 
the simpler case in which the rates were constants. There exists a threshold 
population whose density is equal to 1 /A, and when an epidemic occurs in a 
population of slightly higher density, its size is equal approximately to twice 
the excess.

I t  will be seen that the more complex expression A now replaces the simpler 
fraction k /1.In fact, when the rates are constant

Reverting to equation (20) it is clear that p can never be equal to unity, as 
long as N is finite, so that an epidemic can never affect all the susceptible 
members of a limited population. Of course it has to be recognised that when 
the population has been reduced to small numbers the equations here given do 
not strictly hold.

I t  may also be pointed out that the population density N0 =  1 /A is only a 
threshold density with respect to initial importations of cases which have just 
been infected. That is to say the cases present at the commencement of the 
epidemic are assumed to be of the type v0 0, and none are of the types 
v0ii, iyQ>2 ... v0 r. I t  is this limitation which renders it impossible in the general 
case to identify the threshold population with the number who are still un
affected at the instant when the epidemic reaches its maximum, since at that 
instant many cases will certainly be not just commencing but will be of the type 
v0 r, and so they cannot be treated as equivalent to those which we have assumed 
to have been originally introduced. Nevertheless there seems little doubt 
that by analogy with the simpler case in which the rates were constants, the
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point at which the epidemic reaches its maximum will, in general, correspond 
approximately with the point at which the remaining unaffected population 
has been reduced to the threshold value.

Another point of interest arising from equation (20) is in relation to variations 
in the infectivity rate. I t  will be seen that the effect of increasing the 
infectivity from (f>0 to a (j>eis to increase A to a A, and consequently the 
threshold value N0 is reduced to N0/a.

Let a =  1 -f  p, where [3 is very small, so tha t (3 is the fractional increase in 
the infectivity.

The new threshold is now •
1 +  P

N0 — (3N0. Consequently the excess being

now (3N0, an epidemic of the size 2(3N0 is to be expected. Thus a small increase 
in the infectivity rate may cause a very marked epidemic in a population which 
would otherwise be free from epidemic, provided tha t the population was 
previously at its threshold value. On the other hand, if the actual density was 
below the threshold, no epidemic could occur until the infectivity had been 
increased to such a degree as to make the threshold value less than the actual 
density.

(12) I t  is not difficult to extend these results to such diseases as malaria or 
plague, in which transmission is through an intermediate host. In this case 
using dashed letters for symbols referring to the intermediate host we have

d log x _ rt= f A>',_«<ze + AVo 1
Jo

and

whence
dg ^  = f + A,y0

-  log 1 ~  P-  A'p'W  1 

N

i'j
(34)

and 1
-  log 1 ~  v ', -  AnN 

l  VoN' J

(35)

Neglecting y0jN and yd [W as before we have to a first approximation

3>(l +  f j p '  ( l  +  J| )  =  A A 'fpO T , _
thus

§ + £ = AAW-l.z z
(36)
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As p  and p' are always positive where there is an epidemic, AA'NN' must be 
greater than 1, or a true epidemic can occur only when AA'NN' is greater than 
unity. We thus see that there is no threshold in the sense used in the previous 
paragraph for either man or the intermediate host separately, but that there 
exists what may be called a threshold product 1 /AA', and this must be exceeded 
by the product NN' in order that an epidemic may occur.

We shall now suppose that the value of N' =  N0', and that N =  — +
A A. Hq

where nis not very great compared with 1 /AA'N0', thus N =  N0 -j-
We observe that if the value N had been N0, the situation would be such that 

no epidemic could arise. In fact, the product NN' would have been at its 
threshold value. If, however, N exceeds this value N0 by an amount n, and if 
we regard N0 as remaining fixed, then under this condition N0 corresponds to a 
threshold value in the former sense, and we are considering the case in which 
this threshold value is exceeded by n.

Eliminating p' from the above equations we have to a first approximation
2 nA'N0'

V = Nol +  A'No'’
(37)

Three cases may be considered :
(1) When N0' is very small, p — 0, and a true epidemic will not occur.
(2) When N0' =  1/A', pN0 =  n.
The size of the epidemic is here exactly equal to the excess and the result of 

the epidemic is to reduce the population to its threshold value.
(3) When N0' is very great, pN0 — 2 nor to double the excess. 
In this case the size of the epidemic is the same as in the simple case previously

considered. That this should be so is apparent, when we consider that the 
assumption that N0' is very great, is equivalent to the assumption that the 
intermediate host is so plentiful that we are dealing with a condition which is 
practically identical with contact infection.

Further reverting to equation (36) and multiplying both sides by N0N0' we 
have

N0'j>No +  N ^ 'N 0' =  2N0N0' (AA'NN' -  1).
We choose

N0N0' =  1/AA' =  7t0,
where 7t0 is what we have called above the threshold product. That is to say, 
when the populations are simultaneously N0 and N0' there will be no epidemic. 
Then

N0>N 0 +  N0p'N0' =  2 (NN' -  N0N0')
=  2(7T — 7T0),
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where tz is equal NN', and we suppose that n  is greater than tt0. N ow let N and 
N' be the populations after the epidemic has terminated, and let tt =  NN'.

Then
tc — 7r =  NN' — (N — AN) (N' -  AN'),

=  NAN' -j- N'AN -  AN AN',

=  Np'N' +  N'pN -  pNp'N',

=  NN' (P +  V'~ PP'),
=N0N0' (p  + p' — pp') +  (NN' — N0N0') +

If the excess of population is small so that NN' — N0N0' is small as compared 
with N0N0', we can neglect the second term. Further, pp' can be neglected 
as compared with p or p', and therefore

n — n =  N0N0' (p -j- — 2 (7r — 7r0). (38)

That is to say, the difference between the values of the product of populations 
before and after the epidemic is twice the excess of the product before the 
epidemic over the threshold product. This equation is exactly analogous to 
equation (33). Somewhat similar results have been previously obtained by 
one of us (McKendrick, 1912) in an analogous but slightly different problem.

(13) These results account in some measure for the frequency of occurrence 
of epidemics in populations whose density has been increased by the importation 
of unaffected individuals. They also emphasise the role played by contagious 
epidemics-in the regulation of population densities. I t  is quite possible that in 
many regions of the world the actual density of a population may not be widely 
different from the threshold density with regard to some dominant contagious 
disease. Any increase above this threshold value would lead to a state of 
risk, and of instability. The longer the epidemic is withheld the greater will 
be the catastrophe, provided that the population continues to increase, and the 
threshold density remains unchanged. Such a prolonged delay may lead to 
almost complete extinction of the population. Similar results, though of a 
somewhat more complicated form, hold for epidemics transmitted through an 
intermediate host. In this case, in place of the threshold density we have to 
consider the threshold product.

Summary.
1. A mathematical investigation has been made of the progress of an epidemic 

in a homogeneous population. I t  has been assumed that complete immunity is 
conferred by a single attack, and that an individual is not infective at the
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moment at which he receives infection. With these reservations the problem 
has been investigated in its most general aspects, and the following conclusions 
have been arrived at.

2. In general a threshold density of population is found to exist, which 
depends upon the infectivity, recovery and death rates peculiar to the epidemic. 
No epidemic can occur if the population density is below this threshold value.

3. Small increases of the infectivity rate may lead to large epidemics ; also, 
if the population density slightly exceeds its threshold value the effect of an 
epidemic will be to reduce the density as far below the threshold value as initially 
it was above it.

4. An epidemic, in general, comes to an end, before the susceptible population 
has been exhausted.

5. Similar results are indicated for the case in which transmission is through 
an intermediate host.
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