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ABSTRACT
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Econometric Models of Fertility*

This paper reviews some key contributions to econometric analysis of human fertility in 

the last 20 years, with special focus on discussion of prevailing econometric modeling 

strategies. We focus on the literature that highlights the role of the key drivers of the birth 

outcomes, including age at entry into motherhood, the number of children, and the time 

between births. Our overall approach is to highlight the use of single equation reduced 

form modelling, which has important advantages but has the limitation of typically being 

unable to shed light on detailed causal mechanisms through which exogenous factors such 

as birth control and infant mortality, and policy variables such as child allowances and tax 

incentives, impact fertility. Structural models that embed causal mechanisms explicitly are 

better suited for this objective. We start with a description of the subject matter, including 

a brief review of existing theories of fertility behaviour and a detailed discussion of the 

sources of data that are available to the analyst. At this point we stress the intrinsic dynamic 

nature of fertility decisions and how such dynamics create data with empirical features 

that pose important challenges for modelling. Once the nature of the problem and the 

characteristics of the data are spelled out, we proceed to review the different econometric 

approaches that have been used for modelling fertility outcomes with cross-section and 

panel data.
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1 Introduction

This paper reviews some key contributions to econometric analysis of human fertility in the

last 20 years, with special focus on discussion of prevailing econometric modeling strategies.

To keep the task manageable and the result useful, we restrict our focus on the strand in the

literature that seeks to highlight the role of the key drivers of the birth outcomes, i.e. where in-

vestigations model outcomes such as the age at entry into motherhood, the number of children,

and the time between births. Hence, we are mainly concerned with work that views fertility

and related variables as the outcome variables of interest and socioeconomic characteristics

are key explanatory covariates. Thus we exclude works where the main interest lies in interde-

pendence between and interactions with fertility and other response variables such as: infant

mortality, labour force participation, labour supply, and/or educational attainment, in which

fertility enters as an important predetermined or jointly determined control variable.

Our overall approach is to use single equation reduced form type modelling of fertility.

Such an approach suffers from limitation that typically it does not shed much light on detailed

causal mechanisms through which exogenous factors such as birth control and infant mortal-

ity, and policy variables such as child allowances and tax incentives, impact fertility. Structural

models that embed causal mechanisms explicitly are better suited for this objective. Neverthe-

less the reduced form approach is widely used, especially in demographic literature. It is useful

for studying associations, projecting fertility patterns and trends, and related demographic fea-

tures.

We start with a description of the subject matter, including a brief review of existing theo-

ries of fertility behaviour and a detailed discussion of the sources of data that are available to

the analyst. At this point we stress the intrinsic dynamic nature of fertility decisions and how

such dynamics create data with empirical features that pose important challenges for mod-

elling.

Once the nature of the problem and the characteristics of the data are spelled out, we pro-
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ceed to review the different econometric approaches that have been used for modelling fertility

outcomes with cross-section and panel data. We shall discuss the properties of a standard

OLS estimator before reviewing more popular count and hazard models. Notwithstanding the

popularity of this class of models, there are important aspects of the fertility process that can

be better handled econometrically using a discrete-time dynamic multi-spell duration model

which we then go on to analyze. A detailed discussion of the main advantages and limitations

of each approach is provided. The paper ends with an illustrative example of an econometric

modeling strategy based on panel data.

2 Nature of the subject matter

2.1 Theories of fertility behaviour

How do couples decide on the number of children and the timing of arrival of each child? Do

they set a plan at the outset for the full fertility cycle that is strictly followed to completion

or are the outcomes sequentially determined? Does economics play a role or are traditional

and established socioeconomic norms dominant? Why does fertility decline (or transition

to a lower level) as economies transition from low average income to high average income?

Generations of demographers, sociologists and economists have wrestled with these questions

and yet a consensus view has not yet emerged, even though it is widely acknowledged that

the homo economicus and homo sociologicus positions are not necessarily mutually exclusive.

Both components are present in a typical reduced form model.

The remainder of this section will briefly review the main ideas in the field. To keep

the scope of the paper manageable, here we focus on reviewing ‘micro theories’, which are

concerned with explaining individual behavior at the level of family, and for which economet-

ric models are typically based on cross-section or longitudinal data collected over relatively

short periods of time; including studies on desired fertility fertility. These studies have a mi-

croeconometric flavor. At the other end of the spectrum are ‘macro theories’ concerned with
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explaining population or society-wide phenomena—such as the epidemiological and fertility

transition triggered by the industrial revolution (see, for instance, Landry 1909, Thompson

1929, Notestein 1945). These studies attempt to model long-term movements in population

fertility rates—such as the total fertility rate1—using country or region level time series or

panel data that span many decades and generations. Studies of the so-called “great transition”

from low-income-high-fertility state to high-income-low-fertility state, especially in Europe,

are a leading example of this type of research with macroeconometric flavor (see, for instance,

Boldrin et al. 2015, Sánchez-Barricarte 2017).

Another topic with a similar macro emphasis concerns short run variations in age- or group-

specific fertility rates that are observed in wars, famines, and humanitarian crises stemming

from social and political upheavals. There are numerous examples in the literature. For ex-

ample, Vandenbroucke (2014) finds that, the birth rate decreased dramatically during WWI,

and then later recovered. Caldwell (2006) shows that European countries, the United States

and Japan had their fertility levels reduced due to local armed conflicts. There are also other

studies of fertility changes using data from Angola, Agadjanian and Prata (2002), Rwanda

(Jayaraman et al. 2009), Eritrea (Woldemicael 2008) and so forth, documenting similar signif-

icant short-term fluctuations. A different strand in the literature uses, for example, data from

Columbia (Torres and Urdinola 2019) and Mexico (Torche and Villarreal 2014), and explores

the connection between within-country violence and its differential impact on adolescent and

older women’s pregnancies, and, more generally, on changes in age at first pregnancy. A third

strand in the literature concerns impact of humanitarian crises arising from famines, tsunamis,

and earthquakes on birth-rates. An example is the Dutch famine of 1944-45 (Stein and Susser

1975). We group these three strands in the literature under the heading of short term variations

in fertility. From a microeconometric viewpoint these studies raise several unresolved issues

such as: How do these shocks fit into the established micro theories? Is the observed behaviour
1A total fertility rate (TFR) is defined as the number of children a woman is expected to have over her lifetime if

she behaves according to a current schedule of age-specific fertility rates. Sometimes the TFR is written in terms of
expected children per 1,000 women. In this definition, an age-specific fertility rate is taken to be the annual number of
live births to women of a specified age or age group per 1,000 women in that age group.
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optimal in some sense? Are the observed short-term changes driven by behavioural responses

to transitory shocks or are there biological mechanisms at work? Are observed changes purely

transitory and mean-reverting or do they interact with underlying long-term trends? These

issues are important but beyond the scope of this paper.

2.1.1 Main ideas from economics

We may begin by asking: Why do people have children? There are two main, not necessarily

contradictory, views. One theory is based on the idea that people derive utility from having and

raising children, so that children are just like any other consumption good c that gives utility

to the consumer. We call this the child-in-the-utility-function approach. A major complication

is that parents may care not only about the number n but also about the ‘quality’ q of their

children. Parents face the following problem:

max
{c,qn}

U(c,qn) = αlog(c)+(1−α)log(qn) (1)

st. c+qn = m.

where, without loss of generality, we have set the price of the quantity and quality of children

to one and use the price of the consumption good as a numeraire — so that q plays the role of

relative price for n and n plays the role of relative price for q. The solution is

qn = (1−α)m (2)

c = αm

Notice that the number and quality of children remain indeterminate but the relationship be-

tween the quantity and quality of children takes the form of

n =
(1−α)m

q
, (3)
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so that for every level of quality there is an optimal number of children. Hence, a quantity-

quality trade-off of children arises because the shadow price of quantity depends on quality—

and vice versa. In their seminal work Becker (1960) and Becker and Lewis (1973) introduce

these ideas in a general form utility function and show that, if the income elasticity for quality

is larger than the income elasticity of quantity, parents will substitute quality for quantity when

income increases. This mechanism, they conclude, may explain the fertility transition that was

triggered by the industrial revolution: fertility declines when households become wealthier.

To consider the role of technological change we may introduce a quality production func-

tion (see, for instance Morand 1999, Rosenzweig and Wolpin 1980)

q = b(t)n−δ (4)

that keeps the inverse relationship between quantity and quality of children but introduces a

new multiplicative term b(t) that is a function of time. Then we solve for n and q

n =

[
(1−α)m

b(t)

] 1
1−δ

(5)

q = b(t)
1

1−δ [(1−α)m]−
δ

1−δ (6)

and conclude that technological change plays the role of increasing the quality of children over

time, which leads to a reduction in the quantity of children. Think of b(t), for instance, as the

effect of the discovery of antibiotics and the improvement of health care on child mortality

and life expectancy. Now the fertility transition can be seen not just as the result of an income

effect but, more generally, as the result of technological change.

A different theory is based on the idea that people do not enjoy children—and thus, do not

directly derive utility from them—but use children to transfer consumption over time. This

is an overlapping generations model where individuals live for two periods, receive income

m1 only in period one, and cannot save for old-age (see, for instance, Allais 1947, Samuelson

1958, Diamond 1965). The only way of securing an old-age pension is having children in
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period one. Hence parents solve the following problem:

max
{c1,c2}

U(c1,c2) = αlog(c1)+(1−α)log(c2) (7)

st. c1 +
c2

1+πqn
= m1,

(8)

where for an investment of (m− c1) monetary units in child services qn in period one, parents

are paid an old-age pension of (1+πqn)(m− c1) monetary units from their children in period

two. The solution is:

c1 = αm1, (9)

c2 = (1−α)(1+πqn)m1.

Here, again, the number and quality of children remain indeterminate. However, if we fix the

rate of return of child services to κ̄ = πqn, appealing to the existence of a known and binding

contract between overlapping generations, the relationship between the quantity and quality of

children takes the form of

n =
κ̄

πq
, (10)

which describes a quantity-quality trade-off of children that is very similar to the one we had

before. Again, for every level of quality there is an optimal quantity of children. We call this

the child-in-the-budget-constraint approach, which describes what is known in the literature as

the old-age pension motive for fertility (Nugent 1985, Srinivasan 1988).

An alternative description of the old-age pension motive argues that children are an insur-

ance device that allows parents to reduce uncertainty about unforeseeable shocks to their health

and/or income (Nugent 1985, Pörtner 2001). In modern times, however, where well developed

security markets and pension systems exist, the old-age pension motive for fertility is weaker

and couples may set fertility near zero (Neher 1971).
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In this model we may also introduce a quality production function as the one in (4) to

investigate the role of technology. Consider the following technology:

q = b(t)+n−δ (11)

so that parents solve the problem of

max{n}Q(n) = m1 (1−α)
(

1+π

(
b(t)n−n1−δ

))
(12)

which has solution

n =

(
(1−δ )

πb(t)

) 1
δ

(13)

q = b(t)+
(

πb(t)
(1−δ )

)
. (14)

Here, once again, the quality increases with technological change whereas the quantity de-

creases with it.

There are many other complementary ideas. For instance, Willis (1973) explores how

women’s participation in the labor market could affect their fertility decisions. As women

enter the labor market, the argument goes, the opportunity cost of children increases because

the time women spend in child-rearing activities is time they cannot spend at work. Therefore,

it is predicted, couples demand fewer children when female education and wage increase. A

similar argument is put forward by Becker et al. (1990) and Galor and Weil (1996) in the

context of a growth model with endogenous fertility and by Rosenzweig and Wolpin (1980)

and Heckman and Walker (1990b) in a joint model of labor supply and fertility.

Becker and Barro (1986; 1988) and Becker et al. (1990) investigate how introducing al-

truism into the child-in-the-utility-function framework affects fertility decisions. Parents, they

argue, do not care only about their own welfare, but also about the welfare of their children,

their grand children, and their great grand children. So, when deciding about their own fertility,
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parents act like a central planner who takes into account how current fertility decisions affect

the welfare of their whole ‘dynasty’. Physical and human capital accumulation are allowed.

While physical capital is subject to diminishing or constant returns to scale, human capital

accumulation exhibits increasing returns to scale. All these features come together in what is

known today as a growth model with endogenous fertility in the literature, which in turn, is a

type of endogenous growth model; see for instance Uzawa (1965), Nelson and Phelps (1966),

Arrow (1972), Romer (1990). Besides the classic quantity-quality trade-off that is present in

all child-in-the-utility-function specification, these models show that the demand of children is

a function of all goods and time that is spent on child-care activities.

Moreover, Becker et al. (1990) show that an economy needs a minimum stock of human

capital to create enough incentives for individuals to invest in education and be able to reach a

steady state with low fertility and high human capital. When this minimum human capital is

not present, the economy converges to a steady state with high fertility and no human capital

accumulation. Becker et al. (1990) think of this mechanism as an explanation of the fertility

transition and the way large economic disparities were created between modern developed and

developing countries.

Regarding the timing of children, the main blocks of theory are due to Happel et al. (1984).

The authors start with a child-in-the-utility framework and force parents to have only one child

within their lifetime, which span is known and limited to, say, three “days”.2 Women are young

during the first two days and may work and have children in that period of life. On day three

women are old, retired, and may not have children. So, once the quantity of children issue is

gone: Which day should parents have their child ‘delivered’?

If parents like children and no cost is paid for rearing them, then it is dynamically optimal

to have their child delivered on day one. However, when parenthood involves some costs things

are no longer clear cut. For instance, as Happel et al. (1984) put forward, if women leave work

for some time after a birth and human capital ‘depreciates’ while away of the workplace, then

2Limiting the life span to three days and considering that time is measured in discrete units is not the way Happel
et al. (1984)’s dynamic model is set-up, however, here we use here such a simplification to discuss the main results of
their model without going in much mathematical detail.
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those highly qualified will have incentives to postpone motherhood towards the end of their

fertile period — i.e. the end of day two — in order avoid as much as possible the depreciation

of their human capital that inevitably motherhood will bring about. Those with low human

capital, on the contrary, may find postponement not quite attractive and choose to have their

child delivered on day one.

Summarising, consistent with Becker (1960)’s human capital theory, Happel et al. (1984)

predict that women postpone motherhood as they accumulate human capital.

2.1.2 Alternative ideas from other fields

Demographers and sociologists have put forward ideas that extend and/or depart from the

mainstream ideas based on Becker (1960)’s human capital theory.

An important idea put forward by demographers and sociologists is that, besides socio-

economic factors, fertility is strongly influenced by social norms for family size/composition

and uncertainty about the availability and costs of contraception. Effective contraception tech-

nology became widely available at the turn of the 20th century. Adoption of contraceptives,

however, took decades and varied widely across the globe. Among other things, people of dif-

ferent countries and social backgrounds had, and still have, different levels of access to health

services and, as a consequence, face widely different mortality risks let alone different religious

beliefs and social/political institutions. In such contexts, some women may find it more diffi-

cult than others to get reliable information about the costs and risks of using contraceptives—

many get information and opinions about family planning from family members, friends, and

social contacts, who are not necessarily well informed themselves (see, for instance, Bongaarts

and Watkins 1996). Under this perspective the demographic transition is seen as a dynamic

process of diffusion of knowledge and adoption of new techniques of contraception and fertil-

ity ‘norms’; see for example Montgomery and Casterline (1993), Rosero-Bixby and Casterline

(1993), Bongaarts and Watkins (1996), Kohler (1997; 2000). In such a scenario, women, who

are the decision unit, choose either to follow traditional fertility patterns or to adopt modern
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contraceptives and reduce their lifetime fertility. In this context social-network effects are

present so that an individual’s costs or/and benefits from innovation are a function of the num-

ber and identity of other innovators in his/her social network. By this means ‘contagion’ or

diffusion of the a new fertility standard is generated (Kohler 1997, Montgomery and Caster-

line 1993, Ellison and Fudenberg 1995, Kapur 1995, Kirman 1993, Chwe 2000). This is, as a

whole, an alternative micro-founded mechanism that explains the fertility transition.

2.2 Types and features of fertility data

In this section we illustrate some key features of fertility data that econometric models would

be expected to account for. Two broad population categories are low-fertility-high-income

and high-fertility-low-income. In 2012 total fertility rate (TFR) was 2.4 for the world, 1.7

for high income developed countries, 5.2 for sub-Saharan Africa, and 5.7 for Nigeria; see

Fagbamigbe and Adebowale (2014). In high income populations birth counts cluster around a

handful of values such as (0,1,2,3) with a very short tail; in low-income populations both the

mean and variance tend to be higher. Long time series (especially) European historical data

show a rapid transition from high to low fertility regime as family incomes rise. At the risk of

slight oversimplification one can summarize these features by treating the low TFR case as one

involving underdispersed counts, and the high TFR case as one of overdispersed counts. Such

a distinction takes the Poisson distribution, which has the property of mean-variance equality

(equidispersion), as a benchmark.

There are two types, or flavours, of fertility data analyses: (a) using completed fertility

data, and (b) using fertility history data.

Completed fertility dataset is by far the most widely used. It contains information on a

cross-section of women who, at the time of the survey, are at the end of their childbearing life

(normally aged 45 and over) and can report their ‘completed fertility’—i.e. the total count of

children ever born alive to a woman. Besides the number of children, completed fertility data

typically have information on some characteristics of the mother, as measured at the time of
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Table 1. Number of children: actual frequency distribution British data (N=5706)

Children 0 1 2 3 4 5 6 7 8 9 10 11

Freq. 1524 675 1779 1075 409 153 50 22 12 3 3 1
Percent 26.7 11.8 31.2 18.8 7.2 2.7 0.9 0.4 0.2 0.1 0.1 0.0

interview, including education, income, work status, occupation, and offspring sex composi-

tion. Measuring mother’s characteristics at the end of fertile life may provide current or recent

information but is less likely to provide information about the conditions (e.g. income, em-

ployment status, information about contraception) that prevailed at the time of each birth; this,

in turn, is likely to lead to specification errors. So, the cross-section nature of the data becomes

a serious drawback.

Because completed fertility comes as a count—i.e. a non-negative integer variable with

values that accept a cardinal interpretation—the use of count data econometric models based

on crossection data is a popular choice. We review those techniques in section 4.

Several features of completed fertility data are important and require careful consideration.

We illustrate the relevant points with two examples. Table 1 reports data on completed fertility

from the British Household Panel Survey (BHPS). This is a low-fertility-high-income setting

(N = 5706). The sample mean number of children is 1.84 and the standard deviation is 1.5.

There is some overdispersion with a sample variance is 1.23 times the mean. The distribution

is clearly bimodal (see figure 1) with a half-mode at 0 and a more pronounced mode at 2.

This latter feature has led Melkersson and Rooth (2000) to describe the distribution as being

“inflated at zero and two” . Overdispersion and inflation at specific frequencies are features that

motivates empirically important extensions of the Poisson regression that we cover in section

4.

From this examples it is possible to observe that completed fertility data in a low-fertility-

high-income setting is characterized by limited support, in the sense that just a few event counts

dominate the frequency distribution. A flexible econometric modeling strategy is required to

capture such population differences in regression models.
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Figure 1. Frequency distribution for British completed data

Data from high-fertility-low-income setting are different. Consider for example the case of

the Mexican Family Life Survey (2002) (N = 3,674), which distribution of completed fertility

is reported in table 2. In this case the sample mean is 3.19 and the standard deviation is

1.97, so the sample variance is 1.21 times the mean—a lower mean/variance ratio than what is

typically observed in a low-fertility-high-income setting. Overdispersion, however, is not all

that is different. Here there is not so much of a spike at 0 or 2. In fact, a 2-children outcome is

almost as popular as a 3-children outcome. More importantly, the fertility distribution exhibits

a much longer tail in the high-fertility-low-income setting than in the low-fertility-high-income

setting. For the Mexican data outcomes 4 and 5 still carry a non-ignorable portion of the total

probability mass. Miranda (2010) analyzes Mexican fertility data from the National Survey

of Demographic Dynamics 1997 and reports a similar distribution. The author suggests that

data from developing countries may show ‘an excess of large counts’ that requires explicit

modelling—and understanding of the underlying behavioural drivers.3

Regarding the timing of children data typically comes in the form of an event history,

3Over time, however, societies may transit from high to low fertility rates as social norms and economic choices
favor smaller family units. Planned fertility studies that ask how many children a family would like to have generate
samples with just a few realizations even in high-fertility-low-income settings (Miranda 2008).
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Table 2. Number of children: actual frequency distribution for Mexican data
(n=3674)

Children 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Frequency 137 432 903 968 548 265 175 107 62 38 15 11 6 5 0 1 1
Percent 3.7 11.8 24.6 26.4 14.9 7.2 4.8 2.9 1.7 1.0 0.4 0.3 0.2 0.1 0 0.0 0.0

Figure 2. Frequency distribution for Mexican completed fertility data

where a sample of women, not necessarily at the end of fertile life, provide exact birth dates

for each child they have ever given birth by the time of the survey interview. An event history

has a longitudinal design from the onset. However, data may be collected in a retrospective or

prospective manner.

Retrospective data are collected in a single point of time—and from this point of view it

is a cross-section—but involve asking people to look back and report events that occurred in

the past; such as the date they first married or the date they left school. Using this technique,

it is possible to ‘rebuild’ a fertility history retrospectively. The downside is that people may

suffer substantial problems of “recall bias” or “telescoping”. Recall bias arises when people

selectively recalls better certain (positive) things or experiences than others (negative), while

telescoping is present when an individual’s perceived elapsed time since the occurrence of an
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event is different depending on whether the experience was pleasant or not. In both cases,

recall bias and telescoping, retrospective collection of an event history may introduce seri-

ous measurement error and bias (see, for instance, Gray 1955, Mathiowetz and Ouncan 1988,

Bound et al. 2001, Pyy-Martikainen and Rendtel 2009). Such issues are worse for some vari-

ables than for other variables. For instance, most people can recall the exact birth dates of their

children but have serious difficulties to recall their past salary.

In contrast, prospective longitudinal data (“panel data”) surveys a sample of women over

time and pregnancy and childbirth events are carefully recorded along many other individual

characteristics. From a theoretical point of view, building an event history using prospective

longitudinal data is better than building it retrospectively. It is not only that prospective data is

less susceptible to recall bias and telescoping; the real advantage is that a number of important

fertility determinants, such as income and employment status, get measured contemporane-

ously at each follow-up. Hence, besides a fertility history, panel data delivers a detailed his-

tory of the factors or/and variables that determine woman’s fertility behaviour. From this point

of view, analyses based on panel data are more promising. In practice, however, commonly

available prospective longitudinal data may have gaps that impede identification.

In cohort studies, for example, children who are born in a given year/date are followed

through time. For this type of study researchers may have to wait between 20 and 30 years

to get interesting fertility data. Unfortunately, by the time cohort members start marrying and

having children, most cohort studies may have to rely on data that are subject to substantial

attrition bias due to drop-outs; see Cheng and Trivedi (2015) and chapter 19.9 in Wooldridge

(2010).

A household panel study based on a random sample of the population also has its own

problems. A major issue is that, by design, these studies follow a sample of women of different

ages. As a consequence, many panel members enter the study years after they started having

children. Discarding observations who have already entered motherhood by the start of the

study is an option. However, in most cases, taking such a step results in small sample sizes that

still require time to deliver full-blown fertility histories. Hence, as before, attrition becomes a
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potentially serious problem unless it is purely random.

What is then the best option to build a fertility history? We suggest that the best option

is to use a combination of prospective and retrospective data. The British Household Panel

Data (BHPS) took such approach. Indeed, the BHPS follows prospectively all women who are

panel members and records contemporaneously any births that occur along the study time. To

complement, the BHPS introduced a retrospective fertility module in waves 2, 11 and 12. An

example of the layout of a fertility history in the “long form” (ready for analysis) is given in

table 3.

Table 3. Example of prospective and retrospective longitudinal fertility history
data from the UK (long form)

pid year occ resp parity clock age girl at twins same income mother’s
P = 1 sex edu

at P=2

1 1960 1 0 0 1 18 0 0 0 7.20 GCSE
1 1961 2 0 0 2 19 0 0 0 8.35 GCSE
1 1962 3 0 0 3 20 0 0 0 8.35 GCSE
1 1963 4 0 0 4 21 0 0 0 7.97 GCSE
1 1964 5 0 0 5 22 0 0 0 9.33 GCSE
1 1965 6 1 0 6 23 0 0 0 8.88 GCSE
1 1966 7 0 1 1 24 1 0 0 7.40 GCSE
1 1967 8 0 1 2 25 1 0 0 8.57 GCSE
1 1968 9 1 1 3 26 1 0 0 9.92 GCSE
1 1969 10 0 2 1 27 0 0 1 10.33 GCSE
1 1970 11 1 2 2 28 0 1 1 10.67 GCSE
1 1970 12 1 2 2 28 0 1 1 10.67 GCSE
1 1971 13 0 4 1 29 0 0 0 11.30 GCSE
1 1972 14 0 4 2 30 0 0 0 11.77 GCSE

In the example, the fertility history of a woman is recorded after age 18. Every row is con-

stitutes a new measurement occasion (occ), which is not necessarily equivalent to the passage

of calendar time, and a record of the status of all relevant variables gets included. The main re-

sponse (resp) is a 0/1 binary variable that takes value one if on a given measurement occasion

a new birth is registered. The variable parity measures the total number of children, or fertility,

that the woman has had at each measurement occasion. So, parity increases by one unit every

17



time period resp = 1.4 In our example, the survey follows the woman for 13 years (periods),

has a child at age 23 and at age 26. At age 28 she has twins. The clock indicates, at each occa-

sion, the time elapsed since the woman entered a particular parity and initiated a new duration

spell to the next pregnancy/birth. With each new birth the clock gets restarted. Age, calendar

time, and duration time are three concepts that vary in a different manner for each woman in

the sample and, as a consequence, can be identified separately. To complete the picture, the

data contains information on a set of control variables (regressors) observed during the fertility

history. There are variables that are time-varying, such as income and age; variables that are

time-fixed, such as (our individual) mother’s education; and variables that change with parity,

such as whether the first born was a girl or whether a two children of the same sex occurred at

parity two. The example illustrates the richness that a longitudinal fertility history can offer to

the analyst. These type of data are typically analysed with discrete hazard models, which are

discussed in section 5.

Table 4. Example of longitudinal fertility history data from the UK (wide form)

pid dur fail parity girl at P =
1

age income same sex at
P = 2

8 22 1 0 0 33 8.3518252 0
8 27 0 1 1 60 6.8155894 0
9 12 1 0 0 23 4.3997666 0
9 2 1 1 0 25 4.3997666 0
9 2 1 2 0 27 4.3997666 1
9 5 1 3 0 32 4.3997666 0
10 6 1 0 0 17 0 0
10 3 1 1 1 20 0 0
10 2 1 2 0 22 0 1
10 34 0 3 0 55 0 0

Another form in which fertility histories may come is presented in table 4. We call this ‘the

wide form’ and each row contains data for one event (i.e. one birth) along with a measure of

how long the duration spell or waiting time to event lasted (dur). In our context, an event is a

4In the demographic literature parity refers to the number of children previously born to a woman at a given point
of time. Parity increases with the arrival of a newborn.
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new birth. Along with the length of the duration spell, a dummy variable f ail indicates whether

the spell was ended by the occurrence of a birth f ail = 1, called a ‘failure’ in survival analysis,

or ended as a censored observation f ail = 0. Finally, we have data on various control variables

which may include time-fixed, time-varying, and parity-varying variables. Notice that going

from the long to the wide form of the fertility history we have ‘thrown way’ a substantive part

of the covariate history. From that point of view, and despite the fact that both fertility histories

are longitudinal, modelling using data that has a wide-form seems less promising. These type

of data are typically analysed with continuous hazard models.

2.3 Dynamic inter-dependencies

From the discussion in section 2.2 is clear that successful modeling of fertility needs start by

recognising that each pregnancy is a decision in its own right.

Indeed, when deciding whether to become pregnant, women take into account all the infor-

mation they have at the time (see, for instance, Barmby and Cigno 1990, Wolpin 1984). This

includes the current number of her offspring (incentives and child benefit systems) (Barmby

and Cigno 1990), their sex composition (due to gender preference) (Williamson 1976, Angrist

and Evans 1998), the outcome of her last pregnancy (reduced fecundity after a c-section or

miscarriage) (Kok et al. 2003, Hassan and Killick 2005, O’Neill et al. 2014, Sapra et al. 2014),

her work status and salary (Bettio and Villa 1998, Mira and Ahn 2001), and the available child

care support (see, for instance, Ermisch 1989, Boca 2002, Rindfuss et al. 2010). Many of such

conditions change with time and can influence whether the same woman goes from childless

to have her first child, but not whether she goes from having one child to having two or three

children. That is, in general, factors that affect the transition from parity 0 to parity 1 may not

play any role in the transition from parity 1 to parity 2. Dynamics are an essential feature of

how a fertility history is generated.

To illustrate this point with the British data we present in figure 3 a smoothed kernel esti-

mate of the probability of observing a birth at any point of time given that the birth has not yet
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arrived — also known as the hazard function.

Figure 3. Hazard kernel estimate for British fertility data

From figure 3 we can conclude that the form of the hazard function is very different for

each parity. While at parity 0 (no children), the hazard function exhibits a U-inverted form,

the hazard at parities 1,2,3,4 are monotonically decreasing. Moreover, though the hazard at

parities 1,2,3,4 is a non-increasing monotonic function, the hazard functions at parity 2 is

clearly not a parallel shift of the hazard function at parity 1, nor is the hazard function of

parity 3 a parallel shift of the hazard function at parity 2. These descriptive stylised facts

have important implications for econometric modeling as the most popular methods cannot

deal with non-monotonic hazard functions; let alone dealing at the same time with a whole

fertility history which implies specifying a model that is flexible enough to accommodate for

the special features of the data.

More to the challenge, figure 4 shows that even after fixing the parity the hazard function

depends upon the outcome of the previous pregnancy. In particular, simple inspection shows

that having two boys or two girls at P = 2 shifts outwards the hazard function—increasing

the risk of a new pregnancy as well as decreasing the average duration time to it—but there

is no descriptive evidence that sex composition plays a role at any other parity. In a similar
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Figure 4. Hazard kernel estimate at selected parities

vein, figure 5 shows descriptive evidence that having twins at any parity shifts inwards the

hazard function, decreasing dramatically the likelihood of observing any further births. These

descriptive data examples illustrate that dynamics, other than duration dependance, play an

important role in specifying an econometric model of fertility history.

3 Reduced form vs. structural modeling

As in many fields of the social sciences, there are many possible modeling approaches available

to the applied researcher when dealing with fertility data. Which approach is taken depends,

among other things, on the research objectives and questions of interest, the intended use of

the empirical findings, and the quality and coverage of the available data.

Broadly stated, the research objective is to understand the fertility process in specific pop-

ulations. More specifically researchers try and shed light on the long running debate on the

demographic versus economic perspectives on fertility behavior.

From a purist economic perspective, completed fertility is determined by economic opti-

mizing behavior of a woman. A full specification of the optimization problem requires specifi-
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Figure 5. Hazard kernel estimate for twins in last parity

cation of the utility function and all relevant constraints facing the woman which may depend

upon government interventions such as those in welfare states. Even in a model which ignores

dynamic inter-dependence between a sequence of birth events, the challenge of finding a the-

oretical optimum is compounded by issues such as whether the utility function reflects purely

personal preferences or includes dependence on social norms of individual-specific reference

groups. Economists, relative to demographers and sociologists, in the past have emphasized

much less the role of social interactions and stress the role of individual preferences and eco-

nomic constraints and opportunities. If dynamic interdependence is introduced in the model,

and the issue of optimal spacing of preferred number of children is also considered, the goal of

empirically identifying the parameters of the utility function, the parameters characterizing so-

cial interaction, and parameters that determine responses to interventions becomes even more

complex. If such a goal is achievable, then the estimated parameters have a clear causal inter-

pretation, given the fully specified model structure; for examples, see Hotz and Miller (1988),

Manski and Mayshar (2003). Following standard practice, we will refer to such an approach

as structural modeling as the goal is to identify structural or causal parameters.

Arroyo and Zhang (1997) have provided a useful taxonomy for dynamic models of fertility.
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They distinguish between structural models explicitly based on relationships derived from so-

lution of dynamic programming problem (e.g. Hotz and Miller 1993) and reduced form models

that “may have a basis in some dynamic programming problems but do not rely heavily on that

structure for specification of estimating equations”, e.g. the hazard function approach used in

Heckman and Walker (1990b).

Structural modeling requires strong a priori behavioral and functional form assumptions

and, given typical data constraints, is difficult to implement fully. Many, if not most, empirical

studies are of reduced form type, especially in demographic literature. They focus on regres-

sion models of variables such as completed fertility in which the regressors are socioeconomic

individual or family specific factors. Where relevant they may also include incentive variables

such as child support. Cross-section survey data are widely used and information from retro-

spective surveys may be incorporated. Within such models the mechanism that connects birth

outcomes or (unobserved) individual gender and family size preferences with regressors is at

best implicit, which makes unambiguous interpretation of results difficult. Despite this lim-

itation reduced form models are useful descriptive models and can capture associations with

predictive potential, fertility trends, and intergroup heterogeneity; we provided references in

the next section.

4 Selected count regression models

The raw material of fertility data consists of the count of number of live births to a woman

in a specific year-of-birth cohort and during a specific period which is called exposure. The

completed fertility data consists of non-negative integers in a range that varies both over time

and over socioeconomic groups—a feature which we explore further later in this section. Fer-

tility rate is derived as a ratio of birth counts to corresponding population exposure. Age- and

order-specific fertility rates measure childbearing intensity among women of specific age and

parity (the number of previous live births). Such a fertility rate, a continuous variable, can be

person-period specific, or age specific, or cohort specific.
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4.1 Semiparametric regression

A simple starting point for modeling the total number of births (y), given cross-section or

panel data, is a linear-in-parameters regression estimated by ordinary least squares (OLS). In

that case one usually ignores the nonnegative integer-valued nature of the outcome variable,

treats zeros and positive outcomes as generated by a common (but unspecified) process, and

regressors (x) are treated as exogenous. No specific probability distribution of outcomes is

assumed.

Given a count of live births (denoted y) exposure (denoted t) and other information on so-

cioeconomic and demographic information of surveyed households (denoted by x), age and

cohort specific fertility rates can be constructed as descriptive data, as is standard practice in

demography. However, such an exercise will not adequately control for differences in observ-

able characteristics of the individual and the household. Regression analysis based on (y, t,x)

provides a more informative framework for estimating fertility rates as well as studying the

drivers of fertility. Poisson regression, based on the Poisson distribution and Poisson process,

is a well-established benchmark regression model for birth events despite its strong underlying

assumption of independence of events.

If one wishes to avoid distributional assumptions and ignore the integer-valued feature of

births, a simple solution is to estimate a regression with an exponential mean by nonlinear least

squares:

yi = exp(x′iβ )+ui. (15)

Standard Poisson-type regression models use the same functional form for the conditional

mean, E[y|x] = µ , but estimation is by the more efficient maximum likelihood method. The

marginal impact of a unit change in x j is β jµ .
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4.2 Poisson regression

When completed fertility is the non-negative outcome variable of interest, either Poisson re-

gression or some extension of it, such as the negative binomial regression, is a popular starting

point. Poisson regression and several of its extensions derive form the Poisson process and

Poisson distribution which embody strong assumptions that are easily violated in practice.

Consider the cross-section regression of n independent observations, (yi,xi), where the

dependent variable yi denotes the number of occurrences of birth events, and xi is the vector

of linearly independent regressors. Poisson regression model conditions the distribution of yi

on covariates, x′i = [x1i, ...,xki] and parameters β through a continuous function µ(xi,β ), such

that E [yi|xi] = µ(xi,β ). Thus yi given xi is Poisson-distributed with probability mass function

f (yi|xi) =
e−µ i µ

yi
i

yi!
, yi = 0,1,2, . . . (16)

This one-parameter distribution embodies the restriction of equality of mean µ and variance,

also known as equidispersion, i.e. E [yi|xi] = µ(xi,β ) = Var [yi|xi]. That is, the inherent vari-

ability of birth events increases with the mean—the average number of births per period. In

the standard version of the Poisson regression the mean parameter is parameterized as

µ i = exp(x′iβ ), (17)

to ensure µ > 0. Estimation of the parameters β by maximum likelihood is straight-forward

and feasible using widely available software. See Cameron and Trivedi (2013).

The direct application of this model to birth data assumes that all subjects have the same

exposure period and are at equal ‘risk’ of experiencing the event. Often the subjects in the sur-

vey data have different exposure risk. This feature is handled by introducing an “offset” feature

which decomposes the mean µ i as a product of fertility rate λ i and the length of exposure ti, i.e.

µ i = tiλ i which implies log-linear mean function with an off-set term, i.e. ln(µ i)= ln(ti)+x′iβ .
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Most software packages allow inclusion of the offset term.

The use of regression adds flexibility by combining features of descriptive data analy-

sis with regression analysis, and also facilitating statistical inference on estimated parameters.

Regression framework allows conditioning on relevant factors that affect the birth event, some-

thing that is not possible when a purely descriptive methodology is used in which the fertility

rates are computed using cohort- and period-specific ratios. However, because such descriptive

features are of interest per se, they can be added in a regression framework. For example, one

can to do this by adding dummy (indicator) variables for each category of observation of in-

terest, and then defining the reference group in analysis. That is the Poisson regression model

now has the conditional mean function

ln(µ i) = ln(ti)+∑xiβ i +∑z jγ j, (18)

where z j denotes the indicator variable, such as age-group or cohort. The estimated coefficient

γ j measures the difference in birth rates of a selected category j relative to the reference cate-

gory, while controlling for other differences due to observed regressors x; see Schoumaker and

Hayford (2004).

If the conditional mean function is correctly specified, but the equidispersion assumption

is suspect, then the literature often substitutes pseudo maximum likelihood (PML) in place of

maximum likelihood. The main practical consequence is that a Huber-White type robust vari-

ance estimator is substituted in place of the standard maximum likelihood estimator. Perhaps

the most frequent justification for this practice is to appeal to the overdispersion of data which

one can test for formally; see Cameron and Trivedi (2013), chapter 3.4. Note, however, that,

as previously mentioned, fertility data from high-income-low-fertility economies are likely to

display underdispersion.

The Poisson regression model works well if the key assumptions underlying it, such as

equidispersion, are satisfied. In practice count models often fail to fit fertility data well for

several reasons. First, as was seen in the examples in previous sections, frequency distribution
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has limited support with most of the mass concentrated on just three or four values. Second,

count regression may identify sources of the average difference between high and low out-

comes but may not be very informative about the underlying drivers of events, which makes

interpretation of results difficult. Third, total birth counts involves aggregation of event in-

formation over time; and completed fertility typically span many years—a period over which

many individual-specific observed and unobserved time-varying factors could potentially im-

pact the decision to have a child. Fourth, when the event frequency distribution is bimodal, the

underlying Poisson distribution assumptions are invalid. Finally, Poisson process assumption

that events are independent may be unrealistic in the context of birth outcomes.

4.3 Negative binomial extension of the Poisson

A major limitation of the Poisson regression model is its property of equidispersion which re-

stricts the mean and variance of outcome variable to be equal. Many data sets exhibit overdis-

persion (variance greater than the mean) or underdispersion (variance less than the mean).

Overdispersion stretches the distribution of outcomes, and underdispersion squeezes it. If,

for example, an actual count frequency distribution is trivially different from a binomial, data

would show underdispersion. If, on the other hand, if the mean outcome is subject to unob-

served heterogeneity with some well-defined properties, then the data would be overdispersed.

Populations with low fertility often display underdispersion, and those with high fertility the

opposite; later we will show data examples with these features. Other non-Poisson features of

fertility data and methods for handling them will be discussed later in the paper.

A well-established alternative to the Poisson regression, and one supported in most soft-

ware packages, is the negative binomial (NB) regression model which can be used to model

overdispersed data. Overdispersed counts can be generated by replacing the constant mean pa-

rameter µ i by (say) µ∗i ε i where ε denotes an individual-specific heterogeneity term with mean

1 and variance α . While there are at least two widely used variants of the NB regression, the

most commonly used is the NB2 model, with mean µ and NB2 variance function µ +αµ2 ,
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with density

f (y|µ,α) =
Γ(y+α−1)

Γ(y+1)Γ(α−1)

(
α−1

α−1 +µ

)α−1(
µ

α−1 +µ

)y

, α ≥ 0, y = 0,1,2, ... (19)

The function Γ(·) is the gamma function. Excess variance relative to Poisson is αµ2 which

reflects unobserved heterogeneity. NB2 reduces to the Poisson if α = 0.

The specification of the conditional mean under NB2 is exactly as in the Poisson case.

Estimating the Poisson regression by maximum likelihood when NB2 is the relevant model

will still yield consistent estimates of the regression coefficients but their standard errors will

be incorrect see Cameron and Trivedi (2013). Many software packages support maximum

likelihood estimation of NB2. A test of the null hypothesis H0 : α = 0 can be implemented

in using one of several different approaches (see Cameron and Trivedi 2013, chapter 5.5) and

this often serves as a selection criterion between NB2 and Poisson. However, this test leaves

open the possibility that even the selected model has other misspecification(s). A more precise

indicator of model deficiency is a Pearson-type goodness of fit test, based on comparison of

fitted and observed frequencies of events, which can point to potential misspecification that

affects specific frequencies.

4.4 Modeling underdispersed counts

Although underdispersion gets less attention in the fertility literature, a number of authors have

attempted to extend the parameterization of the Poisson regression to accommodate both over-

and underdispersion via an additional parameter. For example, Winkelmann (1995) develops

a duration model of events that directly leads to an underdispersed count model; Winkelmann

and Zimmermann (1991; 1994) develop a parameterization based on the Katz family of dis-

tributions in which the variance function takes the form µ +(σ2−1)µk+1 with an additional

parameter k. Underdispersion corresponds to σ2 < 1, and µk ≤ 1/(1−σ2). For additional

details see Cameron and Trivedi (2013) , chapter 4.11.
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4.5 Other non-Poisson features of fertility counts

Many studies that have used count data regressions to analyze the role of socioeconomic factors

and social norms on fertility using cross-section data have pointed out non-Poisson features of

fertility data that call for a modeling strategy that goes beyond the standard Poisson and neg-

ative binomial regressions. Poisson distribution is unimodal, displays equidispersion and is

based on the assumption of independent events. These features are often at least partly absent

in observed data. This is unsurprising because birth outcomes do not simply follow invari-

ant biological stochastic processes but are responsive to social norms (e.g. popular notions

of optimum number of children), heterogeneity of individual preferences (e.g. gender prefer-

ences), and economic constraints (e.g. absence of social security) and incentives (e.g. child

allowances), as discussed in section 2. These factors affect the trends in fertility, as is evident in

the extensive literature of fertility transitions, as populations experience improvement in living

standards and governments provide substitutes for family support for ageing populations.

In a previous section we have alluded to differences in the distributional characteristics of

births in high-income-low-fertility populations, such as Western industrialized countries, and

low-income-high-fertility countries, such as developing countries in Africa and Asia. Birth

distributions in the former characteristically show a low mean, underdispersion and departure

from unimodality. The last feature appears in the data through a significant bump in frequencies

y = 0 and y = 2 and a dip at y = 1, features that could indicate preference for no children and

weaker preference for a single child; see ( ). Modifications of standard count data models are

needed to capture these features of data and to provide a relatively better statistical fit to data,

especially in the low-fertility populations.

We next discuss modified Poisson and NB regression models which attempt to deal with

the problem of “zero inflation” which refers to the presence in the data of more zero outcomes

than is consistent with the underlying parent distribution. One might also interpret this as a

statistical solution of the problem of unobserved or unstated individual preferences for family
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size and composition. That is, the refinements we next discuss would be superfluous if we had

data on such family preferences.

4.5.1 Hurdle or two-part models

Hurdle or two-part models (Mullahy, 1986) specify a process for events that differs between

zero and positive outcomes. Specifically, zero valued outcome constitutes a hurdle, which,

once passed, transits to a different probability law. With probability f1(0) the threshold is

not crossed, in which case we observe a count of 0. If the threshold is crossed we observe

positive counts, with probabilities coming from the truncated density f2(y)/(1− f2(0)) (which

is multiplied by (1− f2(0)) to ensure probabilities sum to one. The first part of the model is

a binary (usually logit or probit) model, while the second part models the positive outcomes.

Here and in the next section we use f (.) generically to denote distribution, which in the current

context is most often Poisson or NB. This model is formally stated as follows:

Pr[y = j] =


f1(0) if j = 0
1− f1(0)
1− f2(0)

f2( j) if j > 0.
(20)

The standard model is a special case if f1(0) = f2(0). If f1(0) > f2(0), the model generates

excess zeros, though in principle it can also model too few zeros if f1(0)< f2(0). The density

f2(·) is a count density such as Poisson or NB2, while f1(·) could also be a count data density

or dichotomous density. The two-parts are independent so can be separately estimated by

maximum likelihood.

4.5.2 Zero-inflated models

Suppose the base count density is now f2(y), using the same notation as for the hurdle model,

but this under-predicts zeros. We can add a separate component that inflates the probability of
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a zero by, say, π . Then the zero-inflated model specifies

Pr[y = j] =

 π +(1−π) f2(0), if j = 0

(1−π) f2( j) if j > 0.
(21)

where the proportion of zeros, π , is added to the baseline distribution, and the probabilities

from the base model f2(y) are decreased by the proportion(1−π) to ensure that probabilities

sum to one. The probability π may be set as a constant or may depend on regressors via a binary

outcome model such as logit or probit. Such a specification will improve the statistical fit of

the model while leaving open the question as to the interpretation of the inflation component.

As mentioned by Melkersson and Rooth (2000) birth data for some European countries also

shows ‘excess 2s’, a feature that is consistent with a high family preference for two children,

indicating a contemporary social norm. This inflation can be modelled analogously to excess

zeros. However, using a statistical device to capture the inflation at a particular cell frequency

does not constitute an explanation.

4.5.3 Other modeling options

One further limitation of the count data models applied to cross-section birth data is that

whereas the range of recorded outcomes can span as many as 10 or 12 values, most of the

probability mass is likely concentrated on relatively few values. This implies as many as half

or more cells will be thinly populated making it difficult to achieve a good fit. One way to deal

with this problem is to aggregate (combine) the cells into fewer ordered categories and then

use a multinomial model. For example, one might choose to aggregate cells with frequencies

between 6 and higher into a single cell, or perhaps 2 less aggregated cells. As the cells are then

ordered into about seven categories one could apply the ordinal probit or ordinal logit model

which accommodates the natural ordering of discrete outcomes. The ordered outcomes model

is different from the Poisson-process based models; in that it treats the data as generated by

a continuous unobserved latent variable which on crossing a threshold increases the outcome
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value by one unit. This framework, though not often used, is an attractive option for model-

ing data which are distributed over a small number of cells, as in the case of under-dispersed

samples.

5 Event history models

Count data regressions are static models and hence necessarily uninformative about dynamic

aspects of the fertility process that are captured by a complete events history of births. One

alternative is to model the elapsed duration between successive transitions (births) conditional

on the previous history of the event and on observed covariates. A second alternative is a

discrete hazard model which is typically specified with the objective of modeling the transition

between the status quo state y = 0 and one-additional event state y = 1, conditional on the

previous history of transitions and on information about (usually) exogenous covariates. In

a given time interval y has a binomial distribution. The conditional hazard of the transition

between states can be derived from this property. We label this as Modified Dynamic Event

History (MDEH) model.

5.1 Restructuring event history data for MDEH

The building blocks of the MDEH model are implicit in the description given in section 2.2 of

how a “long form” panel data set may be constructed using event history data. A more formal

description follows. For each sampled individual there is information over a historical period

of calendar length Ti, i = 1, ...,N, which begins at Tb,i and ends at Te,i, Te,i > Tb,i. Ti could be

number of weeks, months or similar. In a standard event history analysis the irregular interval

between events is left as it is. For established econometric methods, the irregular time interval

between events poses a challenge. For example, the distribution of errors is difficult to specify.

We propose a simple modification which would allow us to use “standard” panel data methods

to estimate our models.
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Our modified event history analysis takes irregularly spaced data as a starting point and

then restructures the data as follows. The period (Te,i−Tb,i) is divided into discrete periods

of fixed-length common to all observations. The full data set spans a total of T observational

periods, which are denoted by τ1,τ2, ...,τT , respectively. In our data this fixed-length period

will be just a calendar year, but this choice in general would be context dependent. Our choice

is motivated by the consideration that for a binary outcome model we require that within each

observational period at most one event/transition would be observed; this condition might be

violated in some cases.

In general the sampled individuals will have event histories spanning overlapping obser-

vation periods with different beginnings and ends because individuals will enter or leave the

survey at different times. Hence, a given individual will be observed over a sub-set of these

T periods, which then constitutes the length of the observed event history for that individual.

Different subsets of individuals may share particular beginnings or endings.

In this set-up a transition may occur for an individual from the current state to another

state. In case there are S different states, there are S− 1 different transitions that can occur.

The simplest case is S = 2, in which case the occurrence of the event signals the change of

state. Even when there are more than 2 states, by appropriate redefinition the set-up can be

reduced to a simple dichotomy.

5.2 Dichotomous model

To formulate the standard dichotomous outcome model we distinguish between the 0/1 ob-

served binary response variable resp and an underlying continuous latent variable resp∗ that

satisfies the single-index model

resp∗ = x′β + z′γ +u, (22)
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where x denotes the vector of time-varying covariates, and z the vector of individual-specific

time-invariant variables, and u is an i.i.d. error. As resp∗ is not observed, we specify an

observability condition for its observable counterpart resp,

resp = 1[resp∗ > 0], (23)

where the zero threshold is a normalization. Define respiτ as follows:

respiτ =

 0 if no transition is observed in period τ,

1 if a transition from the current state is observed in period τ.

The connection with the count data model results from the fact that ∑τ respiτ is the number

of events observed for ith individual during the event history, but the length of the event his-

tory, also called exposure time in count data models, will not in general be the same for all

individuals.

Then the event history data will consist of (respiτ ,xiτ ,zi), τ = τ1, ...,τP, and τ refers to

a time-period of selected length and the subscript P refers to parity, the number of events

observed up to a particular point in time. However, once a fixed length of measurement is

chosen, it is convenient to index τ as simply τ = 1, ...,T . The elements of vector xiτ are time-

varying regressors, including past outcomes respiτ− j. Moreover, other observable features of

past outcomes may also be included. This set up is more flexible for modelling dynamics than

the autocorrelated conditional duration (ACD) model of Bauwens and Giot (2000) because it

allows us to bring into our specification dynamic factors that are not satisfactorily reflected as

lagged values of outcomes.

The restructured data set-up is now analogous to panel/longitudinal data in the “long form”

with individual and period-specific subscripts. Because in practice we will have a full event

history of different lengths on different individuals, the panel typically will be unbalanced.

Notice that we end up with a layout that defines a multi-state recurrent process, as described

by Steele and Goldstein (2004), that can be analysed as an instance of the multilevel multistate
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competing risks model, with the exception that we put emphasis on dynamics and consistent

fixed-effects estimation over random effects estimation.

As in the case of panel data, individual specific unobserved effects, denoted ci, can be added

to the model to capture unobserved heterogeneity. Also, as in the standard panel case, different

assumptions can be made about ci; it can be treated as an i.i.d. random variable (random

effects assumption), or as correlated with xiτ (fixed effects assumption), or as a function of

observed variables and an i.i.d. random error (conditional correlation assumption). Thus the

event history data can be recast as unbalanced panel data model for a binary outcome.

5.3 Discrete hazards

The above dichotomous outcome model is a discrete hazard model for recurrent outcomes,

analogous to a linear pooled panel data model in which the panel data is treated as a pooled

cross-section. A general formulation of a pooled discrete-time transition model is

hiτ ≡ P

[
respiτ = 1

∣∣∣∣∣xiτ ,zi, ∑
j<τ

respi j = 0

]

= F
(
λ τ +x′iτβ + ziγ

)
, τ = 1, ...,T.

(24)

where hiτ represents the discrete hazard for the i-th individual, i.e. the probability of an event

occurring (i.e. resp = 1) at time τ given that no event has occurred up to τ−1, and F denotes

the c.d.f. This specification restricts the coefficients of regressors to be constant over time,

while the intercept λ τ , τ = 1, ...,T , can vary over duration time. The only dynamics that allows

this models is the one accounted for by λ τ which models duration dependence. Dynamics

related to state dependence and/or dependence of the hazard on lagged time-varying variables

are not accounted for. This is not attractive for the study of fertility behaviour because a fertility

history has an additional state dimension: the parity. Taking all three dimensions into account
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generalizes the above transition model as follows:

hipτ = P

[
respipτ = 1

∣∣∣∣∣xipτ ,sip,zi, ∑
j<τ

respip j = 0

]

= F
(
λ pτ +x′ipτβ + sipδ + ziγ

)
, p = 1, ...,Pi,τ = 1, ...,T,

(25)

where explanatory variables may vary across individuals only (z), across individuals and states

(s), or across individuals, states, and time (x). Duration dependence within each state p is

accounted for by a series of coefficients λ pτ = λ p,1, . . . ,λ p,T that form a step-function that

flexibly represents the baseline hazard.

For a parametric functional form of F two choices are popular: the standard normal c.d.f.,

or the logistic c.d.f. Then the parameters (λ ,β ,γ) can be estimated by a stacked logit or stacked

probit model in which a separate intercept is permitted for each state and for each interval. The

resulting likelihood function for a sequence of τ−1 zeros and a one at time τ is

L(α,λ ,β ,γ) =
N
∏
i=1

Pi

∏
p=1

[
τ−1
∏

g=1

(
1−F

(
λ pg +x′ipgβ +w′ipδ + z′iγ

))]

×F
(
λ pτ +x′ipτβ +w′ipδ + z′iγ

)
.

(26)

Extending this to allow for unobserved additive individual-specific heterogeneity term ci leads

to the conditional likelihood

L(α,λ ,β ,γ|ci) =
N
∏
i=1

Pi

∏
p=1

[
τ−1
∏

g=1

(
1−F

(
λ pg +x′ipgβ +w′ipδ + z′iγ + ci

))]

×F
(
λ pτ +x′ipτβ +w′ipδ + z′iγ + ci

)
.

(27)

Estimation requires the choice of function F . This step causes no major difficulties for the

pooled model underlying (27).

In the case of the fixed effects model, the nuisance parameters ci are not straight-forward

to eliminate for an arbitrary choice of F . For example, it cannot be eliminated by transforma-

tion if we choose F to be the Normal c.d.f. For the case of the static logit model, however, it
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is possible to eliminate the fixed effects by conditioning on the total count ∑τ respiτ and per-

form inference on (λ ,β ,γ) on the basis of a conditional maximum likelihood strategy using

the sample of individuals who experience at least one transition. A major disadvantage of this

FE-Logit case is that it can only identify the parameters of time-varying regressors, whereas

other parameters may also be of interest. Moreover, leaving out individuals who do not expe-

rience any transition is unattractive as the study’s sample size can suffer importantly because

in most samples many women stay childless, specially in low-fertility-high-income settings

where nearly 1/4 of women never have children—for instance in our BHPS example 26% of

women remain childless by age 45. Beyond loss of efficiency, dropping childless observations

is also unattractive because women who never have children may be systematically different

from women who eventually enter motherhood. As a consequence, there may be important

sample selection issues at play that need explicit modelling Heckman (1979), Heckman and

Walker (1990a).

For the dynamic logit case, i.e. a model that includes respi,τ−1 as a covariate, condition-

ing on a sufficient statistic for (ci) is more problematic, see Honoré and Kyriazidou (2000).

However, Bartolucci and Nigro (2010) have proposed a version of the quadratic exponential

model of Cox (1972) and Cox and Wermuth (1994) that closely resembles the dynamic logit

model and for which conditioning on a sufficient statistic is feasible as in a static panel logit

model. We use the pseudo conditional maximum likelihood (PCMLE) estimation method of

Bartolucci and Nigro (2010; 2012). In this approach the fixed effects are integrated out by

conditioning on a sufficient statistic, which in the case of the binary logit model is the total

number of events.This dynamic fixed effect model is used in our application.

We also estimate our MDEH specification under random effects assumptions. In this case

F chosen to be either the probit or the logit as both are computationally manageable; how-

ever, both require a parametric assumption about the distribution of ci, typically followed by

numerical integration.
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6 Modeling dynamics of transitions

There are two important motivations for a dynamic specification. First, in the context of fertil-

ity analysis, there is considerable theoretical and empirical work emphasizing the dependence

of a new outcome on previous birth outcomes; see Bhalotra and Van Soest (2008) and ref-

erences there cited. For example, in Wolpin (1984) dynamic stochastic model of life-cycle

fertility, the model generates implications for the number, timing and spacing of children. And

there is evidence in the literature that families have preferences over gender composition which

imply that past birth outcomes will affect the desire for additional children (Arnold and Liu

1986).

A second motivation flows from wanting to distinguish between the effect of individual

time-invariant unobserved heterogeneity and state dependence. Individual propensity to re-

main in the current state may be mainly a consequence of unobserved persistent characteristics

of that individual. In such a case controlling for individual-specific effects would account for

the state dependence. This is often referred to as spurious state dependence. If, however, sim-

ply continuing to remain in one state decreases the probability of transition, no matter what

the individual-specific characteristics are, then such dynamic dependence is referred to as true

state dependence, or duration dependence. Panel data potentially affords the possibility of dis-

tinguishing between the two alternatives, or even simultaneously controlling for the separate

contributions of each.

Following Heckman and Borjas (1980), in a discrete hazard model for a binary outcome

in which the lagged dependent outcome is a regressor, we may refer to dependence between

the current and past outcomes as occurrence dependence; the term duration dependence refers

to the case of continuous outcomes, and state dependence covers both types of dependence.

Bhalotra and Van Soest (2008) consider some approaches for modeling fertility dynamics—

from a perspective relevant to fertility studies of less developed economies.
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6.1 Autoregressive dependence

A popular dynamic specification of a binary outcome model simply adds the lagged dichoto-

mous variable respiτ−1 as an additional control variable; specifically, we modify (25) thus:

hipτ =P

[
respipτ = 1

∣∣∣∣∣xipτ ,sip,zi, ∑
j<τ

respip j = 0,ci

]

=F
(
λ pτ +x′ipτβ + sipδ + ziγ +ρrespiτ−1 + ci

)
, τ = 1, ...,P,

(28)

which now includes an individual-specific heterogeneity term ci and the autoregressive term

respi,τ−1. The parameter ρ reflects state dependence, with ρ = 0 indicating zero occurrence

dependence (or state dependence). The lagged regressor captures the effect of all unobserved

or unmeasured factors that generate state dependence in the outcome. We call this specifi-

cation Markovian in contrast to other (non-Markovian) specifications we discuss below. As

previously indicated, given the presence in the equation of observed variables that capture

individual heterogeneity, the lagged variable can potentially capture pure occurrence depen-

dence.

Given the above specification, additional assumptions determine whether the random ef-

fects (RE), fixed effects (FE), or the flexible FE model in which the individual-specific param-

eter is parameterized as a function of exogenous variables plus a random component (often

referred to as conditional correlation framework (CCR)) would identify the model. Whether

one is in the large-N-small-τ framework common in microeconometric panels, or in the large-

N-large-τ framework, is relevant to the choice of framework.

In the RE framework, the model will be augmented with an auxiliary assumption regarding

the probability distribution of ci; subsequent to which these nuisance parameters are (numeri-

cally) integrated out of the model—a task which is analytically more tractable than in the FE

specification.

For the FE case, as previously noted, there are several proposed approaches (see Hsiao

2014) for estimating this FE model, including Honoré and Kyriazidou (2000), Bartolucci and

39



Nigro (2010; 2012), Al-Sadoon et al. (2017). In a large-N-large-τ setting, controlling for the

fixed effects using a comprehensive set of dummy variables is theoretically an option but not

much used in practice. In the more common small-τ setting of this paper conditional maximum

likelihood has greater appeal. The conditional approach of Bartolucci and Nigro applied to the

quadratic exponential specification, which closely mimics the dynamic logit, has been applied

to estimate the empirical model in this paper. The discrete hazard is,

hipτ =P

[
respipτ = 1

∣∣∣∣∣xipτ ,sip,zi, ∑
j<τ

respip j = 0,
Pi

∑
p=1

Tip

∑
j=1

respip j = κ,ci

]
(29)

which is estimated by conditional maximum likelihood.

The use of the autoregressive form also poses problems of interpretation because it is based

on a somewhat narrow view of the nature of dependence. In a linear autoregressive model, the

lagged dependent variable captures the effect of all past changes in the exogenous drivers as the

autoregressive model has a distributed lag representation. This is not so in a nonlinear model.

More generally, capturing state dependence via a lagged dependent variable has a black-box

character as it is not clear which mechanism is responsible for inertia in the transition from the

current state.

6.2 Non-autoregressive dynamic dependence

Autoregressive specifications lead to a loss of observations and in some cases dynamic de-

pendence can be captured without using the autoregressive form, e.g. through past values

of exogenous regressors. Hence, using lagged exogenous variables as predictors of current

outcomes instead of lagged outcomes is an appealing way of modeling dynamic dependence,

especially because it avoids the complications due to lagged outcomes in fixed effect models.

To model dynamics without autoregression, following the discussion in section 2, we pro-

pose to use variables that characterize some observable qualitative features of past events that

are potentially related to a woman’s preferences and hence have predictive relevance. The di-
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chotomous variable respiτ only indicates whether an event occurred. But many events vary

in their nature and intensity. In such cases additional auxiliary (synthetic/constructed) regres-

sors based partly on qualitative features of several past outcomes, rather than just the previous

outcome, can be added because they are potentially useful predictors of future events. The

relevance of such predictors may be easier to rationalize than that of the lagged outcome.

Moreover, unlike the first-order autoregression which only takes into consideration the imme-

diately preceding outcome, such constructed variables may reflect the role of a full or partial

event history.

The proposed dynamic modeling framework has similarities with Moffit (1984) who has

used “panel probit” and “pooled probit” to analyse fertility data from the National Longitudinal

Survey of Young Women. The author refers to his key equation as “number-of-children” equa-

tion; however, “panel probit” equation has a binary dependent variable birth/no birth, and the

dynamics are captured by including the total number of children as a regressor in the model,

which is similar to our use of parity variable. Further, the framework we presented above

incorporates unobserved heterogeneity by allowing for both random and fixed effects.

7 Application: A modified dynamic event history model

for British fertility histories

In this section we discuss results from a modified dynamic event history (MDEH) model fitted

to British longitudinal fertility histories data. We use data from the British Household Panel

Survey (BHPS), a nationally representative United Kingdom longitudinal study that began in

1991 and ended in 2008.5 The 1991 sample is composed by 8,167 households and 10,264

5The BHPS original sample issued in 1991 consisted of 8,166 nationally representative addresses randomly drawn
from the Postcode Address File (a UK comprehensive list of post codes). A three-stage clustered probability design
was implemented, with postcode sectors sampled in the first stage, addresses sampled in the second stage, and house-
holds sampled in the third stage. Implicit stratification combined with systematic sampling was used to ensure that the
sample is well balanced in key socio-economic characteristics at the sector level. The study design ensures that every
household in the population had the same probability of entering the sample.
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individuals. All individuals who belong to the original households were re-interviewed every

year from 1991 to 2008.6 Newborn children automatically become panel members and all

children are interviewed individually once they reach age 16. On wave 9 (1999) a refreshment

sample of 1,500 households and 3,395 individuals was taken in Scotland and Wales to allow

for country level comparisons. In wave 11 (2001) a refreshment sample of approximately

2,000 new households and 5,188 individuals was taken in Northern Ireland.

In section 2.2 we briefly discussed the BHPS and pointed out that this survey takes the

strategy of building fertility histories implementing a prospective fertility follow-up of all panel

members, which is complemented by retrospective fertility data collected in Wave 2 (1992) for

the original sample, and in waves 11 and 12 for the Scotland-Wales and Northern Ireland

refresh samples. This approach delivers a detailed fertility history of all panel members along

a complete history of the variables that are suggested by theory to determine the number and

timing of children.

6Panel members are followed when they split from the original household, and all members of the new household
are subsequently interviewed as long as they live with the original panel member.
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Table 5. Descriptive statistics for longitudinal complemented with retrospective
fertility history from BHPS (N = 238,895)

Variable Mean SD Min Max Description

resp 0.08 0.27 0 1 Response variable
parity 1.36 1.41 0 15 Parity
clock 7.14 5.78 1 33 Clock
girlat1 0.09 0.28 0 1 girl at parity 1
ssex2 0.12 0.32 0 1 Same sex at P = 2
ssex3 0.03 0.18 0 1 Same sex at P = 3
ltwinpar 0.03 0.16 0 1 Last parity twins
age 32.44 9.20 18 50 Age
agesq 1137 618 324 2500 Age squared
lincome 1.22 1.10 0 6.87 Log-income (000s)
relgion m 0.25 0.43 0 1 Religion: missing
norelgion 0.25 0.43 0 1 Religion: none
catholic 0.07 0.26 0 1 Religion: catholic
othrelgion 0.16 0.37 0 1 Religion:other
muslim 0.02 0.12 0 1 Religion: muslim
hindu 0.03 0.16 0 1 Religion: hindu
noedu 0.43 0.49 0 1 Highest qual: none
olevel 0.23 0.42 0 1 Highest qual: O level
alevel 0.13 0.34 0 1 Highest qual: A level
diploma 0.06 0.23 0 1 Highest qual: diploma
degree 0.09 0.28 0 1 Highest qual: 1st degree
postgrad 0.02 0.14 0 1 Highest qual: postgrad
borneu 0.02 0.15 0 1 Born: EU
bornoth 0.03 0.18 0 1 Norn: other
scend 15.11 3.42 0 26 School leaving age
scend m 0.04 0.20 0 1 School leaving age missing
mnowk14 0.50 0.50 0 1 Mother not working when 14
mscl m 0.61 0.49 0 1 Mother scl: missing
msclpromang 0.08 0.27 0 1 Mother scl: profesional/management/technical
msclskllnm 0.10 0.30 0 1 Mother scl: skilled non manual
msclpskll 0.09 0.29 0 1 Mother scl: partially skilled
mscluskll 0.07 0.25 0 1 Mother scl: unskilled

The analytical sample contains detailed fertility histories for 14,137 women aged between

18 and 50. The data has a complex hierarchical structure explained at length in section 2.2.

Table 3 illustrates the layout of the data and descriptive statistics of the analytical sample are

in table 5. The response variable (resp) is a 0/1 binary variable that takes value one when a
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new birth is registered.

We estimate a reduced form model for the fertility history. Two specifications are consid-

ered: (a) a model with no autoregressive term, and (b) a model that includes an autoregressive

term. We implement a number of alternative estimators by either maximum likelihood or con-

ditional maximum likelihood (for FE models): (i) logit, (ii) logit random effects (RE logit), (iii)

logit fixed effects (FE), and (iv) quadratic exponential models for binary panel data (cquad).

7.1 Regression results

We now selectively discuss several aspects of the empirical results that are of interest to

economists, beginning with findings from non-autoregressive models and then going on to

models with some sort of autoregressive inertia. All models include time-varying controls for

age (quadratic function) and log-income (000s of 1992 constant pounds) as well as parity-

varying controls for the birth of a girl at parity one, the occurrence of same sex siblings at

parity two and three, and the occurrence of twins in the last partity. For models that implement

random effects estimators we add additional time-fixed controls for maximum achieved quali-

fication (GCSE / O level / A level / diploma / 1st degree / posgrad / control: no qualification),

religion (no religion / Catholic / Muslim / Hindu / other religion / missing religion / control:

Anglican), country of birth (born in a EU country / born in a non-EU country / control: born

in the UK), age at which the woman left school, work status of the woman’s mother when

she was 14, and the the woman’s mother social class (professional and manager / skilled non

manual / skilled manual / partially skilled / social class missing / control: non skilled).

7.1.1 Non-autoregressive models

Table 6 present empirical results for the logit MDEH models. Here the dynamic event history

is modelled by specifying a hazard function that gives the probability that the count of interest

will be increased by one unit at time τ , given the whole history of a set of exogenous ex-
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ogenous variables. The discrete hazard function models P [respipτ = 1|xiτ ,zi] and unobserved

individual heterogeneity is explicitly allowed as discussed in section 5.3.

Because FE logit delivers a consistent estimator of (λ ,β ,γ) by conditioning on ∑τ respiτ ,

which eliminates ci from the conditional likelihood, no estimates for the fixed effects are ob-

tained after fitting the model and, as a consequence, no valid average marginal effects are

available. This is rather disappointing because each model has its own parametrisation and co-

efficients may not be directly comparable. To allow comparison, for the each of the j = 1, . . . ,J

control variables, we define wip jτ = exp(xip jτ) and calculate the average (semi) elasticity of

xip jτ as

η
w
ip jτ =

[
∂hipτ

∂wip jτ

][
wip jτ

hipτ

]
with hipτ = P

[
respipτ = 1

∣∣xipτ ,sip,zi,∑ j<τ respi j = 0
]
. Kitazawa (2012) shows that ηw is

computable without the fixed effects in the FE logit model and can be calculated without

complication for RE logit and logit. Hence, using ηw a meaningful comparison is possible.

Table 6 reports then average (semi) elasticities.
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Table 6. Modified dynamic event history for BHPS fertility — Average (semi)
elasticities of Pr(resp = 1|x,u) from logit discrete hazard

LOGIT RE LOGIT FE LOGIT

Girl at P = 1 -0.012 -0.012 0.462***
(0.026) (0.027) (0.036)

Same sex at P = 2 0.144*** 0.144*** 0.211***
(0.033) (0.033) (0.039)

Same sex at P = 3 0.018 0.018 -0.272***
(0.060) (0.060) (0.068)

Last parity twins -0.209*** -0.209*** -0.769***
(0.063) (0.064) (0.083)

Age 0.316*** 0.316*** 0.777***
(0.013) (0.013) (0.016)

Age squared -0.006*** -0.006*** -0.010***
(0.000) (0.000) (0.000)

Log(income) -0.075*** -0.075*** -0.056
(0.008) (0.008) (0.034)

Max qual: none -0.006 -0.006 0.000
(0.036) (0.036) (.)

Max qual: O level -0.083** -0.083** 0.000
(0.035) (0.035) (.)

Max qual: A level -0.179*** -0.179*** 0.000
(0.038) (0.038) (.)

Max qual: Diploma -0.202*** -0.202*** 0.000
(0.046) (0.046) (.)

Max qual: First degree -0.201*** -0.201*** 0.000
(0.042) (0.043) (.)

Max qual: Postgraduate -0.228*** -0.228*** 0.000
(0.063) (0.063) (.)

ρ .0000802
SE(ρ) .0105225

N. of obs 238,895 238,895 211,639
N. of individuals 14,134 141,34 8,009

Note. Average (semi) elasticities of Pr(resp = 1|x,u) reported (see Kitazawa (2012)). Clustered robust standard
errors at individual level in parenthesis. *10% significant; **5% significant; ***1% significant. Except for FE
logit, regressions include the following time-fixed controls: maximum qualification (6 levels), country of birth
(EU vs non-EU), school leaving age, mother’s social class, and mother’s work status when respondent was 14.
Note 2. For each parity a different baseline hazard is specified so that the form of the hazard function is fully
flexible. For parity 0 the baseline hazard has steps at t: 1−2, 3−4, 5−6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25 and larger (control is t = 15). For parity 1 the baseline hazard has steps for t at: 1, 3, 5, 6, 7,
8, 9, 10, 11 and larger (control is t = 2). For parity 2 the baseline hazard has steps at t: 1, 2, 4, 5, 6, 7 and larger
(control is t = 3). For parity 3 the baseline hazard has steps at t: 1, 3, 4, 5, 6 and larger (control is t = 2). Finally,
for parities 4 and larger we specify a common baseline hazard with steps at t: 2, 3,4,5, 6, 7 and larger (control is
t = 1).
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logit vs. RE logit. We find little evidence that unobserved individual heterogeneity is

present in the RE logit, with a estimated ρ = 0.001, which is insignificant at 5%. As a conse-

quence, average (semi) elasticities calculated on the basis of logit and RE logit are essentially

the same.

RE logit vs. FE logit. In general RE estimators give substantially different results from

FE estimators. Such a result may arise if age is correlated with the individual heterogeneity

term ci, possibly because the age at which a woman marries and enters motherhood for the

first time can be a function of unobserved time-fixed factors such as general attachment to the

labour market, taste for family size, fecundity, health frailty, etc. Such considerations favor the

FE estimators and suggest that RE hazard specifications, which are the most popular method

used in the literature, may deliver seriously biased and inconsistent estimators. In fact, our

British fertility history example illustrates how even a correlated random effects formulation

may not sufficiently control for relevant individual unobserved heterogeneity (see, for instance,

Mundlak 1978, Chamberlain 1982).

Baseline hazard and dynamics due to parity. Figure 6 presents estimates of the base-

line hazard for the logit MDEH, which is similar to the estimates that are obtained from the

RE logit and the FE logit. In our descriptive explorations in section 2.2, the kernel estimates

of the (unconditional) hazard of entering motherhood (parity zero) showed a U-inverted form

whereas the hazard for higher parities was decreasing monotonically. Moreover, descriptive

kernel estimates suggested that the hazard for P = 1 is always larger than the hazard for P = 2,

the hazard of P = 2 is always larger than the hazard of P = 3 and P = 4. Also the hazards

for P = 2 through P = 4 are hardly a parallel shift of the hazard for P = 1. Most of these

observations still hold when we look at the baseline hazard estimates from the logit MDEH in

figure 6.

Note that once we condition on covariates, instead of a U-inverted shape the (conditional)

hazard of entering motherhood (P = 0) increases monotonically with age. A possible reason
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is that a U-inverted quadratic effect of age, which peaks at 26, accommodates the drop in the

probability of entering motherhood (for the first time) as an individual grows older. Another

interesting finding is a late peaking of the hazard at parity one (P = 1), which occurs between

8 and 10 years after the arrival of a woman’s first child. This late surge for the second child

is consistent with the timing theories of Happel et al. (1984), and the structural models of

Rosenzweig and Wolpin (1980) and Heckman and Walker (1990b) that predict that women

postpone motherhood as they accumulate human capital. Hence, it is likely that the late surge

at P = 1 is driven by working mothers with high human capital who wait to the end of their

fertile life to have their second child. In fact, our findings suggests that such postponement

occurs mainly between the first and the second child. Notice also that for P = 1 and P = 2

the baseline hazard is increasing only for two or three years, which means that most women

who plan to have two and three children schedule their pregnancies quite close once they

enter motherhood; which is also predicted by Happel et al. (1984). In summary, the empirical

evidence that we obtain suggest that parity is a major determinant of dynamics in the British

fertility histories in a way that is consistent with the predictions from the theory of human

capital of Becker (1960).

Offspring gender effects. We find also strong support that women prefer mixed-gender

family composition and that they are prepared to increase family size to achieve such a mixture.

This is clearly indicated in table 6 by the positive, and highly significant, coefficients on the

dummy that indicates when a woman reaches parity 2 with all girls or boys. However, when

a woman reaches parity 3 with three girls or three boys is likely to stop trying to achieve

mixture. Interestingly, we do not find an statistically significant effect of the gender of the first

child (girl at P = 1) for the logit and RE logit specification, but a positive effect for having a

girl at parity 1 is reported by the FE logit specification. This effect is statistically significant at

1% and suggest that, after all, the probability of progressing to the second child increases when

couples have a girl as their first child. Or to put it in other words, there is indeed preference

for a boy a P = 1.
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Figure 6. Estimated baseline hazard by parity from a modified dynamic event
history model for British (BHPS) longitudinal fertility data.

Note that if we had kept the RE estimator, which is the estimator most used in the literature

(see, for instance, Steele and Goldstein 2004), the inference for girl at P = 1 would be that

couples do not have preference for the gender of their first child. So, using a FE estimator

is crucial, maybe because there is a time-fixed unobserved heterogeneity related to offspring

sex preference that is correlated with the girl at P = 1 control. The finding illustrates the

relevance of implementing hazard models with fixed effects rather than the popular random

effects specification.

The findings above are evidence that qualitative features of past outcomes are important

and support the hypothesis that fertility is a dynamic sequential decision process. Controlling

for such important observable aspects of past outcomes, even within the context of a non-

autoregressive hazard model, it is possible approach to incorporate such dynamics in an easily

interpretable way.

Family income. As expected, and suggested by the Beckerian human capital theory and the

quantity-quality trade-off of children, the effect of income on the hazard in table 6 is negative

and statistically significant at 1% in both the RE or the FE specifications. It is important to
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say, however, that marginal effect calculations for logit and RE logit indicate that the marginal

effect is rather small. In fact, an extra 1,000 pounds reduce the probability of observing a

second birth in less than −0.001 percentage points (p.p. hereafter) at the point of maximum

probability of ever observing the arrival of a second child—i.e. at age 26 and three years

after the birth of first child). Moreover, once a FE logit hazard is fitted the effect of income

becomes statistically insignificant. These findings suggest that income incentives, such as the

UK child tax credits program (replaced by universal credit in 2012), may have small impact

on reproductive behavior.

Education. Consistent with the Beckerian theory of human capital, women with higher

education have a lower hazard of having an additional child at any point of time than those

who have compulsory education (the control group). The effect, however, is nonlinear. The

stronger protective effect of education is felt when a woman progresses from no education

to A levels—a marginal effect of −0.01 p.p. for the logit model. Progressing from A levels

to Diploma reduces the logit hazard by −.002 p.p.; and progressing from A levels to first

degree reduces the logit hazard by−.0018 p.p. Given that we already control for family labour

income, the nonlinearity in the effect of education may reflect a wealth effect (or permanent

income effect) that is not captured by income. That is, part of the smaller effect of education

at the higher level may be explained by the fact that wealthier individuals tend to have larger

families.

7.1.2 Autoregressive model: CQUAD

The above results show that nonautoregressive models can capture important dynamic features

of the fertility outcomes. In this section we consider whether adding lagged outcome variables

can further improve the model specification by capturing state dependence. Specifically, we

employ the dynamic FE panel model of Bartolucci and Nigro (2010), hereafter referred to as

the conditional quadratic exponential (CQUAD) specification.

The substantive difference between models in section 7.1.1 and CQUAD is that while in the
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Table 7. Modified dynamic event history for BHPS fertility from CQUAD discrete
hazard

Coeff. SE t-stat p-value

Girl at P = 1 0.558*** 0.042 13.3 0.000
Same sex at P = 2 0.234*** 0.044 5.3 0.000
Same sex at P = 3 -0.333*** 0.076 -4.4 0.000
Last parity twins -1.260*** 0.099 -12.7 0.000
Age 0.778*** 0.019 41.5 0.000
Age squared -0.011*** 0.000 -37.7 0.000
Log(income) 0.011 0.039 0.28 0.781

Lagged response -0.394*** 0.028 -14.2 0.000

log− likelihood -36538.5

N. of obs 211,598
N. of individuals 8,007

Standard errors reported. *10% significant; **5% significant; ***1% significant. The following individual level
controls: age, age squared, income. For each parity a different baseline hazard is specified so that the form of the
hazard function is fully flexible. For parity 0 the baseline hazard has steps at: t = 1−2, t = 3−4, t = 5−6, t = 7,
t = 8, t = 9, t = 10, t = 11, t = 12, t = 13, t = 14, t = 16, t = 17, t = 18, t = 19, t = 20, t = 21, t = 22, t = 23,
t = 24, t = 25 plus (control is t = 15). For parity 1 the baseline hazard has steps at: t = 1, t = 3, t = 5, t = 6, t = 7,
t = 8, t = 9, t = 10, t = 11 plus (control is t = 2). For parity 2 the baseline hazard has steps at: t = 1, t = 2, t = 4,
t = 5, t = 6, t = 7 plus (control is t = 3). For parity 3 the baseline hazard has steps at: t = 1, t = 3, t = 4, t = 5,
t = 6 plus (control is t = 2). Finally, for parities 4 and larger we specify a common baseline hazard with steps at:
t = 2, t = 3,t = 4,t = 5, t = 6, t = 7 plus (control is t = 1).

former dynamics of the fertility history is accounted for by changes in explanatory variables,

here dynamics are induced by changes in explanatory variables as well as the autoregressive

effect of the lagged dependent variable; which is a genuine shifter of the current transition prob-

ability after controlling for individual unobserved heterogeneity in a fixed effects framework–

just as in the dynamic logit model of Honoré and Kyriazidou (2000).

Because CQUAD implements a fixed effects approach, the model conditions on total scores

∑t respit and only uses the subset of observations in the sample for which at least one transition

is recorded. Besides, like in any other FE approach, coefficients on time-fixed variables are not

identified. However, unlike the dynamic logit of Honoré and Kyriazidou (2000), CQUAD al-

lows for time dummies among the set of control variables because it does not impose conditions
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on the support of the distribution of regressors. Table 7 shows results, reporting coefficients

because average marginal effects or average (semi) elasticities are not available for this model.

The sign-pattern of effects is similar to that in the logit fixed-effect hazard shown in Table 6,

so we do not comment further.

Lagged outcome. Of special interest is the negative coefficient on the lagged response

variable. This result has to be interpreted with care, following the analysis presented in section

3.1 of Bartolucci and Nigro (2010) who show that the coefficient of lagged outcome variable

respi,τ−1, say γ , can be shown to be

γ = log
{
P(respiτ = 1 |ci,xiτ ,respi,τ−1 = 1)
P(respiτ = 0 |ci,xiτ ,respi,τ−1 = 1)

}
− log

{
P(respiτ = 1 |ci,xiτ ,respi,τ−1 = 0)
P(respiτ = 0 |ci,xiτ ,respi,τ−1 = 0)

}
(30)

which is the difference between the log-odds (of outcome 1 vs. 0) in τ given respi,τ−1 = 1

and the log-odds in τ given respi,τ−1 = 0. Thus the coefficient does not have an interpreta-

tion analogous to the standard linear autoregressive model for continuous outcomes. Clearly,

in CQUAD the coefficient on the lagged outcome can be either positive or negative. While

the statistical interpretation of the coefficient on the lagged outcome is clear, the economic

interpretation is less clear. First, in our fertility application, it is not clear what should be con-

sidered the relevant “lagged outcome” as one could focus on respi,τ−1, as CQUAD does, or on

the effect of the outcome of the last pregnancy —live birth vs. still birth, for instance.

8 Discussion and conclusions

Our results support the position that specifying RE hazards, the most popular method used in

applied work, may lead to biased and inconsistent estimators when there are control variables

that are correlated with individual time-fixed unobserved characteristics. In such cases a FE

hazard specification is preferred. The applied researcher should be aware that FE specifications

are more robust than RE specifications to misspecification error not only in linear but also in
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nonlinear models.

Results from our British fertility history data support the position that non-autoregressive

models with lagged exogenous variables, such as gender composition and parity indicators,

representing qualitative features of past fertility outcomes, can function as proxy variables for

dynamic dependence. The role of these variables is easier to interpret than that of lagged

dependent variables intended to model duration or occurrence dependence. When the lagged

dependent variables are added to the non-autoregressive model, there are interaction effects

between them and parity indicators which add to the difficulty of interpretation. Nevertheless,

we detect some evidence of state dependence.
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Table

8.1 Data Appendix

We use retrospective fertility data complemented with longitudinal data from the BHPS. The

BHPS is a longitudinal study that began in 1991 and ended in 2008; in 2009 a large propor-

tion of the sample of the BHPS became part of the new UK Household Longitudinal Study

(UKHLS).

8.1.1 Coverage

The BHPS original sample issued in 1991 consisted 8,166 nationally representative addresses

randomly drawn from the Postcode Address File (a UK comprehensive list of post codes in

the country). A three-stage clustered probability design was used, with postcode sectors sam-

pled in the first stage, addresses sampled in the second stage, and households sampled in the

third stage. In the first stage all postcode delivery points (addresses) listed in the frame were

ordered so that an implicit stratification by region and socioeconomic status was created using

information from the 1981 Census. Such implicit stratification allowed the use of systematic

sampling for sample selection, setting a random start and a fixed sampling interval. This pro-

cedure ensured that every address in the frame had the same probability of selection and was

more convenient than explicit stratification given the large number of existing strata. Postcode

sectors were the Primary Sampling Units (PSUs), and have in average of 2,500 delivery points.

A total of 250 postcode sectors were selected in the first stage using a selection probability

proportional to size, guaranteed by the implicit stratification and the systematic sampling im-

plemented. In the second stage 33 delivery points where selected within each selected postcode

sector, using again systematic sampling. Finally, in the third-step non-residential addresses

were excluded and all households in the selected delivery point were drawn into the sample

unless the delivery point had more than three households, in which case a random sample of
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three households was taken. Archived response rates were 95% for individuals and 75% for

households. The original 1991 sample is composed by 8,167 households and 10,264 individ-

uals. All individuals who belong to the original households are the Original Sample Members

(OSM) and are re-interviewed every year.7

Newborn children automatically become panel members and all children are interviewed

individually once they reach age 16. Around 13.6% of the original sample was lost due to

attrition between Wave 1 and Wave 2, which amounts approximately to a 86% wave-on-wave

response rate. After that, from Wave 2 on, wave-on-wave attrition becomes less onerous but

still non-negligible, with a loss of around 2% to 3% of the original sample per year. By 2008

the BHPS had a sample of 4,411 OSMs, equivalent to 44.5% of the original sample. On wave

9 (1999) a refreshment sample was taken in Scotland and Wales to complement the survey

and alleviate the small sample size (around 500 households in Scotland and 300 households in

Wales) taken in each country in the original sample and to allow for country level comparisons,

which became important due to the policy changes that followed the devolution of powers to

Scotland and Wales during the 1990s. A total of 1,500 extra households and 3,395 individuals

from Scotland and 1,500 households and 3,577 individuals from Wales were added to the

BHPS sample. In the same vein, in wave 11 (2001) a refreshment sample of approximately

2,000 new households and 5,188 individuals was taken in Northern Ireland.

8.1.2 Incorporating retrospective information

The BHPS is one of the best suited existing surveys to analyze fertility histories in a developed

country with a well established fertility transition. Indeed, the BHPS compiles histories using

both retrospective and longitudinal information and carefully records the exact date of birth and

gender of every child ever born to a woman even if they do not live currently in the mother’s

household.

Retrospective fertility data was collected in Wave 2 (1992) for the original sample, and in

7Panel members are followed when they split from the original household, and all members of the new household
are subsequently interviewed as long as they live with the original panel member.
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waves 11 and 12 for the Scotland-Wales and Northern Ireland refresh samples. All women aged

16 and over were asked to provide a detailed fertility history, including the number children

ever born, the exact date of birth, the gender of the child, and the date of death if the child was

not longer alive.

Besides retrospective fertility histories, the BHPS longitudinally logs the exact date of birth

and the gender of any child born to an original sample member during the survey study time.

Therefore, it is possible to build a detailed and complete fertility history for all adult women

in the sample. This is particularly rich fertility data unlike other cross-section or even other

longitudinal surveys. (The Swiss Household Panel (SHP), to give an example, only records

date of birth and gender of resident children.) The role of some key factors, e.g. family

preference for mixed-gender offsprings, cannot be analyzed without detailed history of birth

outcomes, (see, for instance, Williamson 1976, Angrist and Evans 1998). The BHPS allows

one to control for such factors.

8.1.3 The final dataset

The analytical sample contains information for 14,134 women aged 15 and over and followed

annually during the 1992−2008 period. We have a hierarchical and longitudinal data structure,

with newly reported children nested within years, years nested within parity, and parity nested

within individuals.There are 87,311 person-year records and, because each woman can report

more than one birth per year, a total of 238,895 person-year-parity entries are available. A

woman can report more than one child in a year either because in that year she gave birth to

multiple children (twins, triplets, etc.) or because that year she filled the BHPS retrospective

fertility module and reported all children born before the start of the survey. This peculiarity

of the data will be fully accounted for in our analysis.

Note that childless women contribute a single row per year and parity is set to zero in

all entries. In contrast, women with a positive number of children can contribute one or more

rows of data per year. Parity may vary within year. For instance, a woman who had no previous
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children and gives birth to twins in a particular year will contribute two rows of data that year

and parity will have gone from 1 to 2 the same year.

On average there are 1.36 children per woman, with a standard deviation of 1.4, a minimum

of 0 and a maximum of 15. The distribution of number of children ever born is given in Figuree

1. Clearly, 95% of the probability mass is concentrated in the first 5 counts {0,1,2,3,4}. In

fact, 70% of the probability mass falls in the 0,1,2 counts. As a consequence, ignoring outliers

in the tail, one could argue that the number of children is a count with limited support. This is

typical of fertility data in developed countries and posses a challenge for analysis using count

data techniques as standard count models do not fit well counts with limited support. In this

context, modelling the whole event history seems to be more attractive.

8.1.4 Control variables

Coming back to a our fertility history data the response resp is a dichotomous variable that

takes on 1 when a birth is reported and zero otherwise. There are a total of 189,999 registered

births in our data and various types of controls:

1. individual-specific and time-fixed variables;

2. individual-specific and time-varying variables;

3. parity-specific and time-invariant variables.

Type I controls include, for instance, gender, religion and education. Type II controls

include age and family income. Finally, type III controls include whether the first child was

a girl, whether there was a same-gender pair at parity one, or whether twins (multiple births)

were born in the last pregnancy.

Table 5 presents a list of variables, their definition, and classifies variables in each control

category along presenting some descriptive statistics.

Having type II and III control variables is critical for modelling and identifying the dynamic

and sequential nature of the fertility decisions that women take over their lives. Clearly, each

pregnancy is a decision in its own right and when deciding whether to become pregnant women

57



take into account all the information they have at the time (see, for instance, Barmby and

Cigno 1990, Wolpin 1984). This includes the current number of her offspring (incentives and

child benefit systems) (Barmby and Cigno 1990, Gonzalez 2013), their sex composition (due

to gender preference) (Williamson 1976, Angrist and Evans 1998), the outcome of her last

pregnancy (reduced fecundability after a c-section or miscarriage) (Kok et al. 2003, Hassan

and Killick 2005, O’Neill et al. 2014, Sapra et al. 2014), her work status and salary (Bettio and

Villa 1998, Mira and Ahn 2001), the available child care support (see, for instance, Ermisch

1989, Boca 2002, Rindfuss et al. 2010), etc. Many of such conditions change with time and can

influence whether the same woman goes from childless to have her first child, but not whether

she goes from having one child to having two or three children . That is, in general, factors that

affect the transition from parity 0 to parity 1 may not play any role at all the transition from

parity 1 to parity 2 (a similar argument is put forward in Miranda 2010; 2013). Here is where

using an event history approach to model fertility outcomes becomes attractive, as variation in

type II and type III variables will capture much of the dynamic nature of the counting process.

References

Adsera, A. (2006). An economic analysis of the gap between desired and actual fertility: The

case of spain. Review of Economics of the Household, 4(1):75–95.

Agadjanian, V. and Prata, N. (2002). War, peace, and fertility in angola. Demography,

39(2):215–231.

Al-Sadoon, M. M., Li, T., and Pesaran, M. H. (2017). Exponential class of dynamic binary

choice panel data models with fixed effects. Econometric Reviews, 36(6-9):898–927.

Allais, M. (1947). Economie et interet. Imprimerie National, Paris.

Angrist, J. D. and Evans, W. N. (1998). Children and their parents’ labor supply: Evidence

58



from exogenous variation in family size. The American Economic Review, 88(3):pp. 450–

477.

Arnold, F. and Liu, Z. (1986). Sex preference, fertility, and family planning in china. Popula-

tion and Development Review, pages 221–246.

Arrow, K. J. (1972). Economic welfare and the allocation of resources for invention. In

Readings in industrial economics, pages 219–236. Springer.

Arroyo, C. and Zhang, J. (1997). Dynamic microeconomic models of fertility choice: A survey.

Journal of Population Economics, 10(1):23–65.

Barmby, T. and Cigno, A. (1990). A Sequential Probability Model of Fertility Patterns. Journal

of Population Economics, 3(1):31–51.

Bartolucci, F. and Nigro, V. (2010). A dynamic model for binary panel data with unobserved

heterogeneity admitting an-consistent conditional estimator. Econometrica, 78(2):719–733.

Bartolucci, F. and Nigro, V. (2012). Pseudo conditional maximum likelihood estimation of the

dynamic logit model for binary panel data. Journal of Econometrics, 170:102–116.

Bauwens, L. and Giot, P. (2000). The logarithmic acd model: an application to the bid-ask

quote process of three nyse stocks. Annales d’Economie et de Statistique, (60):117–149.

Becker, G. (1960). An economic analysis of fertility and demographic change in developed

countries. Princeton University Press and NBER.

Becker, G. and Barro, R. (1986). Altruism and the economic theory of fertility. Population

and Development Review, 12(supplement):69–76.

Becker, G. and Barro, R. (1988). A reformulation of the economic theory of fertility. The

Quarterly Journal of Economics, 103(1):1–25.

59



Becker, G. and Lewis, H. (1973). On the interaction between the quantity and quality of

children. The Journal of Political Economy, 81(2):S279–S288.

Becker, G., Murphy, K., and Tamura, R. (1990). Human capital, fertility, and economic growth.

Journal of Political Economy, 98(5):S12–S37.

Bettio, F. and Villa, P. (1998). A mediterranean perspective on the breakdown of the relation-

ship between participation and fertility. Cambridge Journal of Economics, 22:137–171.

Bhalotra, S. and Van Soest, A. (2008). Birth-spacing, fertility and neonatal mortality in india:

Dynamics, frailty, and fecundity. Journal of Econometrics, 143(2):274–290.

Boca, D. D. (2002). The effect of child care and part time opportunities on participation and

fertility decisions in Italy. Journal of Population Economics, 15(3):549–573.

Boldrin, M., De Nardi, M., and Jones, L. E. (2015). Fertility and social security. Journal of

Demographic Economics, 81(3):261–299.

Bongaarts, J. (1990). The measurement of wanted fertility. Population and development re-

view, pages 487–506.

Bongaarts, J. (1992). Do reproductive intentions matter? International Family Planning

Perspectives, pages 102–108.

Bongaarts, J. (2001). Fertility and reproductive preferences in post-transitional societies. Pop-

ulation and development review, 27:260–281.

Bongaarts, J. and Watkins, S. (1996). Social interactions and contemporary fertility transitions.

Population and Development Review, 22(4):639–682.

Bound, J., Brown, C., and Mathiowetz, N. (2001). Measurement error in survey data. In

Handbook of econometrics, volume 5, pages 3705–3843. Elsevier.

60



Caldwell, J. C. (2006). Social upheaval and fertility decline. In Demographic Transition

Theory, pages 273–299. Springer.

Cameron, A. C. and Trivedi, P. K. (2013). Regression analysis of count data, volume 53.

Cambridge university press.

Chamberlain, G. (1982). Multivariate regression models for panel data. Journal of economet-

rics, 18(1):5–46.

Cheng, T. C. and Trivedi, P. K. (2015). Attrition bias in panel data: a sheep in wolf’s clothing?

a case study based on the mabel survey. Health economics, 24(9):1101–1117.

Chwe, M. (2000). Communication and coordination in social networks. Review of Economic

Studies, 67:1–16.

Cox, D. and Wermuth, N. (1994). A note on the quadratic exponential binary distribution.

Biometrika, 81(2):403–408.

Cox, D. R. (1972). The analysis of multivariate binary data. Applied statistics, pages 113–120.

Diamond, P. (1965). National debt in a neoclassical growth model. The American Economic

Review, 55(5):1126–1150.

Doepke, M. and Tertilt, M. (2018). Women’s empowerment, the gender gap in desired fertility,

and fertility outcomes in developing countries. In AEA Papers and Proceedings, volume

108, pages 358–62.

Ellison, G. and Fudenberg, D. (1995). Word-of-mouth communication and social learning.

The Quarterly Journal of Economics, 110(1):93–125.

Ermisch, J. (1989). Purchased childcare, optimal family size and mother’s employment: theory

and econometric analysis. Journal of Population Economics, 2(2):79–102.

61



Fagbamigbe, A. F. and Adebowale, A. S. (2014). Current and predicted fertility using poisson

regression model: evidence from 2008 nigerian demographic health survey. African journal

of reproductive health, 18(1):71–83.

Galor, O. and Weil, D. N. (1996). The Gender Gap, Fertility, and Growth. American Economic

Review, 86(3):374–387.

Gonzalez, L. (2013). The effect of a universal child benefit on conceptions, abortions, and

early maternal labor supply. American Economic Journal: Economic Policy, 5(3):160–88.

Gray, P. G. (1955). The memory factor in social surveys. Journal of the American Statistical

Association, 50(270):344–363.

Günther, I. and Harttgen, K. (2016). Desired fertility and number of children born across time

and space. Demography, 53(1):55–83.

Happel, S., Hill, J., and Low, S. (1984). An economic analysis of the timing of childbirth.

Population Studies, 38(2):299–311.

Hassan, M. and Killick, S. (2005). Is previous aberrant reproductive outcome predictive of

subsequently reduced fecundity? Human Reproduction, 20(3):657–664.

Heckman, J. and Walker, J. (1990a). Estimating fecundability from dara on waiting times to

first conception. Journal of The American Statistical Association, 85(410):283–294.

Heckman, J. and Walker, J. (1990b). The relationship between wages and income and the

timing and spacing of births: Evidence from swedish longitudinal data. Econometrica,

58(6):1411–1441.

Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, pages

153–161.

62



Heckman, J. J. and Borjas, G. J. (1980). Does unemployment cause future unemployment?

definitions, questions and answers from a continuous time model of heterogeneity and state

dependence. Economica, 47(187):247–283.
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