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Summary 

The world faces a severe and acute public health emergency due to the ongoing COVID-19 

global pandemic. How individual countries respond in the coming weeks will be critical in 

influencing the trajectory of national epidemics. Here we combine data on age-specific 

contact patterns and COVID-19 severity to project the health impact of the pandemic in 202 

countries. We compare predicted mortality impacts in the absence of interventions or 

spontaneous social distancing with what might be achieved with policies aimed at mitigating 

or suppressing transmission. Our estimates of mortality and healthcare demand are based on 

data from China and high-income countries; differences in underlying health conditions and 

healthcare system capacity will likely result in different patterns in low income settings.  

We estimate that in the absence of interventions, COVID-19 would have resulted in 7.0 billion 

infections and 40 million deaths globally this year. Mitigation strategies focussing on shielding 

the elderly (60% reduction in social contacts) and slowing but not interrupting transmission 

(40% reduction in social contacts for wider population) could reduce this burden by half, 

saving 20 million lives, but we predict that even in this scenario, health systems in all countries 

will be quickly overwhelmed. This effect is likely to be most severe in lower income settings 

where capacity is lowest: our mitigated scenarios lead to peak demand for critical care beds 

in a typical low-income setting outstripping supply by a factor of 25, in contrast to a typical 

high-income setting where this factor is 7. As a result, we anticipate that the true burden in 

low income settings pursuing mitigation strategies could be substantially higher than 

reflected in these estimates.   

Our analysis therefore suggests that healthcare demand can only be kept within manageable 

levels through the rapid adoption of public health measures (including testing and isolation 

of cases and wider social distancing measures) to suppress transmission, similar to those 

being adopted in many countries at the current time. If a suppression strategy is implemented 

early (at 0.2 deaths per 100,000 population per week) and sustained, then 38.7 million lives 

could be saved whilst if it is initiated when death numbers are higher (1.6 deaths per 100,000 

population per week) then 30.7 million lives could be saved. Delays in implementing strategies 

to suppress transmission will lead to worse outcomes and fewer lives saved.  

We do not consider the wider social and economic costs of suppression, which will be high 

and may be disproportionately so in lower income settings. Moreover, suppression strategies 

will need to be maintained in some manner until vaccines or effective treatments become 

available to avoid the risk of later epidemics. Our analysis highlights the challenging decisions 

faced by all governments in the coming weeks and months, but demonstrates the extent to 

which rapid, decisive and collective action now could save millions of lives.  
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1. Introduction 

The COVID-19 pandemic is now a major global health threat, with 332,930 cases and 14,510 

deaths confirmed worldwide as of the 23rd  March 20201. Since the initial identification of the 

virus in China, global spread has been rapid, with 182 of 202 countries having reported at 

least one case. The experience in countries to date has emphasised the intense pressure that 

a COVID-19 epidemic places on national health systems, with demand for intensive care beds 

and mechanical ventilators rapidly outstripping their availability in even relatively highly 

resourced settings2. This has potentially profound consequences for resource-poor settings, 

where the quality and availability of healthcare and related resources (such as oxygen) is 

typically poorer3.  

There remain large uncertainties in the underlying determinants of the severity of COVID-19 

infection and how these translate across settings. However, clear risk factors include age, with 

older people more likely to require hospitalisation and to subsequently die as a result of 

infection4, and underlying co-morbidities including hypertension, diabetes and coronary heart 

disease serving to exacerbate symptoms5. Both the age-profile and the distribution of 

relevant co-morbidities are likely to vary substantially by country, region and economic status, 

as will age-specific contact patterns and social mixing. Variation in these factors between 

countries will have material consequences for transmission and the associated burden of 

disease by modifying the extent to which infection spreads to the older, more vulnerable 

members of society.  

To help inform country strategies in the coming weeks, we provide here summary statistics 

of the potential impact of mitigation and suppression strategies in all countries across the 

world. These illustrate the need to act early, and the impact that failure to do so is likely to 

have on local health systems. It is important to note that these are not predictions of what is 

likely to happen; this will be determined by the action that governments and countries take 

in the coming weeks and the behaviour changes that occur as a result of those actions. 

 

2. Demographics and Income Status 

Figure 1 summarises two of the demographic and societal factors which are likely to 

determine the burden of COVID-19 in different countries. First, there is a strong correlation 

between the gross domestic product (GDP, a measure of the strength of the economy) of a 

country and its underlying demography (Figure 1A). Higher income countries tend to have the 

oldest populations; lower income countries in contrast have a much smaller proportion of the 

population who are above 65 and therefore within the age interval currently observed to be 

at particularly high risk of mortality from COVID-194. However, we note that these 

populations also have very different underlying co-morbidities, including a high burden of 

infectious diseases in low-income (LIC) and low-middle income countries (LMIC) and both 

infectious and chronic diseases in middle-income countries (MIC). In addition, the burden of 
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many infectious diseases is in young children who may therefore be more at risk than has 

been observed in China or Europe. The risk profile for COVID-19 could therefore be very 

different in some low-income settings from that observed to date in China, Europe and North 

America.  

 

Figure 1: Demographic, societal and mixing patterns relevant to COVID-19 transmission and burden 
across different countries. A. Aggregated demographic patterns within 2020 World Population 
Prospects (WPP) projections across countries within each 2018 World Bank (WB) GDP pre-capita 
decile. B. Average Household size within Demographic Health Surveys (DHS) of individuals aged 65 
and over by 2018 WB GDP per-capita. For reference, the average household size of contacts in the 
UK is also provided.  

The household is a key context for COVID-19 transmission6. The average size of households 

that have a resident over the age of 65 years is substantially higher in countries with lower 

income (Figure 1B) compared with middle- and high-income countries, increasing the 

potential for spread generally but also specifically to this particularly vulnerable age-group. 

Contact patterns between age-groups also differ by country; in high-income settings contact 

patterns tend to decline steeply with age. This effect is more moderate in middle-income 

settings and disappears in low-income settings (Figure 2), indicating that elderly individuals in 

these settings (LICs and MICs) maintain higher contact rates with a wide range of age-groups 

compared to elderly individuals in high-income countries (HICs). These contact patterns 

influence the predicted COVID-19 infection attack rate across age-groups (Figure 2) with 

higher attack rates in the elderly predicted in low-income settings compared to high-income 

settings and middle-income settings showing intermediate patterns.  
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Figure 2: Age-stratified COVID-19 attack rates based upon surveys of age-stratified contact patterns 
within all-age samples. A-C show estimates of the final attack rate (proportion infected) by age for 
𝑹𝟎 = 𝟐. 𝟒 for contact patterns from surveys in high income, upper middle income and lower middle 
income/lower income respectively. D-F show the estimated per-capita rates of contact within these 
surveys adjusted for national-level demography.  

3. Healthcare Availability 

Figure 3 summarises our estimates of healthcare capacity in different settings. Hospital bed 

capacity is strongly correlated with the income status of countries (Figure 3B); LICs have the 

fewest hospital beds per 1000 population (1.24 beds per 1000 population on average) and 

HICs the highest (4.82 beds per 1000 population on average). Lower and upper middle-income 

countries (LMIC/UMICs) fall between these two extremes (2.08 and 3.41 beds per 1000 

population on average, respectively). We find that the percentage of hospital beds that are in 

intensive care units (ICU) is lowest in LICs (1.63 on average) and highest in HICs (3.57) with 

LMICs and UMICs falling in-between (2.38 and 3.32 respectively) (Figure 3C). Note that our 

estimates of the ICU capacity in HICs are drawn almost exclusively from a recent review of 

ICU capacity in Asian countries7 and are not necessarily reflective of ICU capacity in HICs 

worldwide.  
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Figure 3: Estimates of Hospital Bed and ICU Capacity, Stratified by World Bank Income Group. Data 
on hospital beds per 1000 population were modelled using covariates from the World Bank, and 
data on ICU capacity collated using a systematic review. (A) Comparison of model prediction and 
empirically observed numbers of hospital beds per 1000 population. Each point represents a 
country, with the x-axis indicating the observed number of hospital beds per 1000 population for 
that country, and the y-axis indicating the model predicted number of hospital beds per 1000 
population. Colouring of the points indicates which World Bank income strata the country belongs 
to. (B) Boxplots of the number of hospital beds per 1000 population, stratified by World Bank 
income group. The points here are the modelled estimates of hospital beds per 1000 population 
obtained from the boosted regression tree model. (C) Results from a systematic review describing 
the percentage of all hospital beds that are in ICUs, stratified by World Bank income group. Error 
bars indicate the 95% confidence interval of the mean.   

 

4. Burden of Disease 

We considered the likely scale of four potential scenarios: 

A) An unmitigated epidemic – a scenario in which no action is taken. 

B) Mitigation including population-level social distancing – we assessed the maximum 

reduction in the final scale of the epidemic that can be achieved through a uniform 

reduction in the rate at which individuals contact one another, short of complete 

suppression. 

C) Mitigation including enhanced social distancing of the elderly – as (B) but with individuals 

aged 70 years old and above reducing their social contact rates by 60%. 
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D) Suppression –we explore different epidemiological triggers (deaths per 100,000 

population) for the implementation of wide-scale intensive social distancing (modelled as 

a 75% reduction in interpersonal contact rates) with the aim to rapidly suppress 

transmission and minimise near-term cases and deaths. For these scenarios we do not 

produce final size estimates but illustrate their impact in representative settings.  

We note that each of these strategies would be, in practice, accompanied by surveillance to 

test and isolate all identified cases and their household members as rapidly as possible to 

reduce onward transmission.  

 
Figure 4. Estimated total number of infections (A), individuals requiring hospitalisation (B) and 
critical care (c) and deaths (D) in unmitigated and mitigated scenarios by World Bank region.  

Figures 4 and 5 summarise these results across World Bank geographic regions and income 

statuses. The accompanying Excel spreadsheet gives these results for individual countries. 

Our estimated impact of an unmitigated scenario in the UK and the USA for a reproduction 

number, R0 , of 2.4 (490,000 deaths and 2,180,000 deaths respectively) closely matches the 

equivalent scenarios using more sophisticated microsimulations (510,000 and 2,200,000 

deaths respectively)8. On the basis of the observed three-day doubling time in the incidence 

of deaths across Europe, we here use a central estimate of R0 to 3.0 and investigate scenarios 

with R0 between 2.4 and 3.3. Globally, we estimate that a completely unmitigated COVID-19 

epidemic would lead to 7.0 (range 6.4-7.2) billion infections for a basic reproduction number, 

R0, of 3.0 (range 2.4-3.3). Applying estimates of the age-specific IFR from China4, this could 

result in 40 (range 35-42) million deaths.  
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Despite higher rates of contact across older age-groups, we predict a lower incidence of 

severe disease, hospitalisation and deaths in lower income settings. This is driven by the 

younger average age of these populations. It is important to note, however, that these 

estimates assume no substantive difference in general health/co-morbidity prevalence 

between Chinese and other populations. Furthermore, the standard of medical care available 

is likely to vary markedly between settings and be substantially lower within lower-income 

countries (Figure 3). Neither assumption is likely to hold in practice and as such mortality in 

unmitigated and mitigated epidemics in LMIC and LIC is likely to be substantially higher.  

If mitigation including enhanced social distancing is pursued, for an R0 of 3.0, we estimate a 

maximum reduction in infections in the range 30-38% (median 33%) and a range of reduction 

in mortality between 19%-55% (median 39%) representing 16 million lives saved for R0=3 

(assuming the mortality patterns observed in China). These optimal reductions in 

transmission and burden were achieved with a range of reductions in the overall rate of social 

contact between 40.0%- 44.9% (median 43.9%), with this range increasing to 42.9%-47.9% 

(median 46.9%) for an R0 of 3.3 and decreasing to (34.3%-37.3%, median 36.9%) for an R0 of 

2.4.  

 

 

Figure 5 Estimated total number of infections (A), individuals requiring hospitalisation (B) and 
critical care (c) and deaths (D) in unmitigated and mitigated scenarios by World Bank income group.  

Combining mitigation with enhanced social distancing of elderly individuals is predicted to 

result in higher overall mortality reductions of 23%-67% (median 49%), representing 20 
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million lives saved for R0=3. However, these strategies are predicted to have lower 

proportional impact in lower income settings compared to higher income settings due 

primarily to lower-income settings possessing a far smaller proportion of elderly individuals. 

(Figure 1B and Figure 2).  

The resulting reduction in burden under optimal mitigation is predicted to substantially 

reduce the gap between demand for hospital beds and capacity (Figures 6E-H). However, 

demand for critical care is still predicted to vastly exceed capacity in all countries (here, 

modelled using demographics and contact patterns for a representative LIC, LMIC, UMIC and 

HIC) under all mitigation scenarios considered. Although we predict lower demand for critical 

care in lower income settings due to their younger populations, this is likely to be offset by a 

much lower level of supply: for our mitigation scenario including population-level social 

distancing, peak demand for critical care in our simulation for a typical LIC outstrips demand 

by a factor of 25.4, whereas for the equivalent simulation in a typical HIC this factor was 7.0 

(typical LMIC and UMIC produced factors of over-demand of 16.4 and 10.86 respectively).  

The impact of a lack of adequate care for more severe cases of COVID-19 in these scenarios 

is difficult to quantify but is likely to significantly increase overall mortality. As a result, we 

anticipate that those countries pursuing mitigation, lower-income settings are likely to 

experience a higher degree of excess mortality due to health system failure – this is a factor 

not currently captured in our projections of total deaths.
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Figure 6: The impact of various control strategies in representative settings. Using an age-structured SEIR model along with demographies and contact 
patterns representative of LIC, LMIC, UMIC and HIC countries (columns left to right) the impact of different control strategies was. ICU bed occupancy per 
day per 100,000 population is shown in all figures. The top row shows impact of suppression (triggered at times dependent on when the rate of deaths 
per week increases beyond certain defined thresholds) and the bottom row shows mitigation (involving either mitigation involving general social 
distancing across the whole population or mitigation involving whole population social distancing as well as enhanced social distancing of the elderly)   
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Table 1: Estimated impact of suppression strategies. The impact on infections and deaths over 250 days for two different suppression strategies triggered 

according to different thresholds for mortality incidence (0.2 and 1.6 deaths per 100,000 population per week).   

 Unmitigated Scenario Suppression at 0.2 deaths per 

100,000 population per week 

Suppression at 1.6 deaths per 

100,000 population per week 

 Infections Deaths Infections Deaths Infections Deaths 

East Asia & Pacific 2,117,131,000 15,303,000 
 

92,544,000 
 

442,000 
 

632,619,000 
 

3,315,000 
 

Europe & Central Asia 801,770,000 
 

7,276,000 
 

61,578,000 
 

279,000 
 

257,706,000 
 

1,397,000 
 

Latin America & Caribbean 566,993,000 
 

3,194,000 
 

45,346,000 
 

158,000 
 

186,595,000 
 

729,000 
 

Middle East & North Africa 419,138,000 
 

1,700,000 
 

30,459,000 
 

113,000 
 

152,262,000 
 

594,000 
 

North America 326,079,000 
 

2,981,000 
 

17,730,000 
 

92,000 
 

90,529,000 
 

520,000 
 

South Asia 1,737,766,000 
 

7,687,000 
 

111,703,000 
 

475,000 
 

629,164,000 
 

2,693,000 
 

Sub-Saharan Africa 1,044,858,000 
 

2,483,000 
 

110,164,000 
 

298,000 
 

454,968,000 
 

1,204,000 
 

Total 7,013,734,000 
 

40,624,000 
 

469,523,000 
 

1,858,000 
 

2,403,843,000 
 

10,452,000 
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Figure 7: The impact of temporary suppression on infection incidence in a representative lower 

income setting. In this example, suppression is maintained for 3 months but is then stopped and 

contact patterns are assumed to return to previous levels.  

Even extensive suppression (Figures 6A-D & Table 1), triggered when weekly rate of deaths 

per 100,000 reaches a given threshold, is predicted to result in critical care demand being 

exceeded unless suppression is triggered at an early stage of the epidemic in a country. 

Additionally, the impact of a trigger based upon number of deaths for suppression and its 

ability to prevent the epidemic exceeding ICU bed capacity differs between settings. 

Triggering suppression based on deaths or death rates is less sensitive in LICs and LMICs - the 

younger populations in these settings mean that by the time a certain death rate threshold is 

reached, they have typically accrued a higher number of cases (and by extension, ICU capacity 

has already been overwhelmed).  

Given these results, the only approaches that can avert health system failure in the coming 

months are likely to be the intensive social distancing measures currently being implemented 

in many of the most affected countries, preferably combined with high levels of testing. These 

approaches are likely to have the largest impact when implemented early (Figure 6, Table 1). 

It is however important to consider the sustainability of such measures. As illustrated in Figure 

7, these interventions will likely need to be maintained at some level in tandem alongside 

high levels of surveillance and rapid case isolation to avoid the potential for resurgent 

epidemics.  

It is important to note that we do not quantify the wider societal and economic impact of 

such intensive suppression approaches; these are likely to be substantial. Nor do we quantify 

the potentially different societal and economic impact of mitigation strategies. Moreover, for 
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countries lacking the infrastructure capable of implementing technology-led suppression 

maintenance strategies such as those currently being pursued in Asia6,9, and in the absence 

of a vaccine or other effective therapy (as well as the possibility of resurgence), careful 

thought will need to be given to pursuing such strategies in order to avoid a high risk of future 

health system failure once suppression measures are lifted. 

The results presented here illustrate the potential impact of the COVID-19 pandemic globally. 

Our analyses give insight into possible trajectories and the impact of measures that can help 

reduce the spread of the virus based on the experience of countries affected early in the 

outbreak. However, at the current time, it is not possible to predict with any certainty the 

exact number of cases for any given country or the precise mortality and disease burden that 

will result. A full understanding of both will only be available retrospectively.  

This analysis highlights the challenging decisions faced by all governments in the coming 

weeks and months. However, our counterfactual of an unmitigated pandemic clearly 

demonstrates the extent to which rapid, decisive and collective action can prevent billions of 

infections and save millions of lives globally.  
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5. Methods  

Patterns of contact, demography and household size across the World  

Population sizes and age distributions by country were taken from the 2020 World Population 

Prospects, the 27th round of the official United Nations population estimates prepared by the 

Population Division of the Department of Economic and Social Affairs of the United Nations 

Secretariat (available here: https://population.un.org/wpp/). Estimates of household size and 

the age of members of each household were extracted from The Demographic and Health 

Surveys (DHS) Program using the rDHS package10; data from a total of 59 LMIC countries with 

surveys conducted since 2010 were extracted. In addition, we extracted equivalent household 

information for the United Kingdom as a representative HIC11.  

Patterns of contact across different populations and countries were drawn from several 

sources, including previously published estimates of mixing from a number of HICs 12 and a 

recent systematic review of social contact surveys including MICs and LMICs 13. Additional 

data were obtained from surveys included in the socialmixR package 

(https://github.com/sbfnk/socialmixr), as well as references identified through either the 

reference lists of included surveys, or through informal searches of Web of Science and 

PubMed. We identified data from 18 countries. Ten were from HIC settings, with 8 (Belgium, 

Finland, Germany, Italy, Luxembourg, Netherlands, Poland and the United Kingdom) from the 

POLYMOD social mixing study12, and two further surveys from France14 and Hong Kong15. Five 

surveys were identified in UMIC settings: China16, India17, Peru18, Russia19 and South Africa20. 

Two surveys were identified in LMIC settings: Kenya21 and Zimbabwe22. One survey was 

undertaken in a LIC: Uganda23. Contact matrices were adjusted to give symmetric age-specific 

contact rates for each country. 

As Figure 2 shows, contact patterns measured within Western Europe suggest attack rates 

are likely to decline substantially by age. For Hong Kong, the only non-European HIC setting 

for which contact data were identified, contact rates did not decline sufficiently at older ages 

to produce a similar decline, which may suggest this is not a consistent trait across all high-

income countries. However, we identified additional surveys in the literature from Hong 

Kong24 and Japan25 where contact rates did appear to decline more substantially with age but 

were not available in readily downloadable format. Our projections for UMIC settings showed 

declines in projected attack rates by age, though to a lesser extent than HIC settings. 

Meanwhile the limited data from LMIC did not result in substantial declines in attack rate by 

age.  

Given the sparse availability of contact data, we used representative patterns for countries 

which do not have survey data. For the USA and Canada we used the UK survey data. For 

other European and Central Asian countries (with available data from Russia also indicating 

substantial declines in attack rates in older ages – Figure 2B), as well as countries previously 

classified as advanced economies by the International Monetary Fund26, we used the patterns 

from the European survey producing the median final attack rate within individuals aged 70 

https://population.un.org/wpp/
https://github.com/sbfnk/socialmixr
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and above (the Netherlands POLYMOD survey12). Countries from Latin America and the 

Caribbean were assigned mixing patterns from the Peruvian survey; those from South Asia, 

mixing patterns from the Indian survey; those from East Asia, mixing patterns from the 

Chinese survey; those from sub-Saharan Africa, mixing patterns from the Zimbabwean survey 

(with the exception of South Africa which was assigned patterns from the Chinese survey); 

whilst those in the Middle-East and North Africa were assigned patterns from the Chinese 

survey if they were high or upper-middle income and from the Zimbabwean survey if they 

were low or lower-middle income. These contact patterns, alongside country-specific 

demography were then used to provide estimation of number of Infections and deaths, 

demand for health care in an unmitigated pandemic and the impact of control measures for 

a given basic reproduction number. 

We calculated the final epidemic size generated from an age-structured Susceptible-Infected-

Recovered model incorporating both the demographic structure of the population and the 

rates of contact between different individuals across different age groups27. This numerical 

solution replicates the total number of infected individuals derived from our simulation 

models for the UK and USA8. Final epidemic sizes by age where then generated using a central 

R0 value of 3.0, with uncertainty range between 2.4 and 3.3. This value of R0 was chosen as it 

results in a 3-day doubling time, consistent with current observations in Europe.  

To estimate the demand for health services and overall mortality, we use age-specific 

estimates of the hospitalisation rate and infection fatality ratio (IFR) obtained from our 

previous analysis of data from China4. Hence, we make the strong assumption that similar 

levels of medical care to that provided in China are available elsewhere. We also implicitly 

assume that mortality patterns do not vary given the different co-morbidities. These 

assumptions may mean that our results may overestimate mortality in some HICs and under-

estimate it in some lower income countries.  

For each country we estimated the potential maximum benefits from mitigation through a 

policy of social distancing within the general population. We identified the minimum final size 

of the epidemic produced by a uniform proportional reduction in  social contacts across age 

categories conditional on this final size achieving a level of herd immunity that would be 

sufficient to prevent a second wave following the relaxation of the policy and a subsequent 

return to the levels of social contact prior to the pandemic. In a similar manner, we also 

assessed the maximum impact of a policy where in addition to overall social distancing, 

individuals 70 years old and above reduce their social contacts by a substantially larger 

proportion, here modelled as 60% (“shielding”).   

To model the impact of these scenarios on the dynamics of likely healthcare demand over 

time we used an age-structured stochastic Susceptible-Exposed-Infected-Recovered (SEIR) 

model parameterised to match best estimates of key parameters determining the dynamics 

of spread of COVID-19. The exposed category was modelled as two separate compartments 

to produce a gamma-distributed incubation period of mean 4.58 days and standard deviation 
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3.24 days. A single compartment was used for the infectious compartment, yielding an 

exponentially distributed infectious period with mean 2.09 days. An R0 of 3.0 was used for all 

scenarios explored and presented in this report. Integration with country-specific 

demographies and patterns of contact between age-groups then enabled setting-specific 

estimation of the incidence of new infections over time. This incidence of new infections over 

time is then converted to the incidence of infections requiring hospitalisation and/or critical 

care. Both the probability that an infected person requires hospitalisation and whether they 

also require critical care increase with age, matching estimates given in8. We assume a delay 

of 5 days between symptom onset (assumed here to be when individuals progress from the 

Exposed to the Infectious compartment) and hospitalisation and that hospitalised individuals 

require a hospital bed for 8 days. If critical care is also required, we assume that individuals 

remain in hospital and occupy a critical bed for a further 8 days, yielding a total hospital stay 

of 16 days. Any mortality associated with COVID-19 is assumed to occur 21 days after 

symptom onset. These parameters are based on our current best understanding of the likely 

progression and severity of COVID-19.  

Using this model, we replicated the “unmitigated”, “mitigation including social distancing” 

and “mitigation including enhanced social distancing of the elderly” scenarios from the final 

size analysis. For the “mitigation including social distancing scenario”, contact rates were 

reduced by a factor determined through our minimum final size calculations described above. 

For the “mitigation including enhanced social distancing of the elderly” scenario, contact rates 

were reduced uniformly across age groups less than 70 and then a further, more extreme 

reduction (60%) applied to the 70-75 and 75+ age groups. 

We also explored the impact of more rigorous social distancing approaches aimed at 

immediate suppression of transmission. We looked at 6 suppression scenarios in which the 

timing of policy implementation varied according to when the weekly death rate per 100,000 

population exceeds a certain threshold (here, either 0.1, 0.2, 0.4, 0.8, 1.6 or 3.2 deaths per 

week per 100,000 population) – the effects of widespread transmission suppression were 

modelled as a uniform reduction in contact rates by 75%, applied across all age-groups.  

Hospital bed capacity estimation 

Data on the number of hospital beds per 1,000 population were available from the World 

Bank (https://data.worldbank.org/indicator?tab=all) for 201 countries (66 High Income, 58 

Upper Middle Income, 47 Lower Middle Income and 30 Low Income). However, many of these 

records were not recent (earlier than 2015). We therefore use a boosted regression tree-

based modelling approach to generate contemporary estimates of hospital beds per 1,000 

population using the following covariates: maternal mortality (per 100,000 live births), access 

to electricity (% of population), population aged 0-14 years (% of population), pupil-teacher 

ratio in secondary school, rural population (% of population), domestic government health 

expenditure (% of GDP), infant mortality (per 1,000 live births), the proportion of children 

enrolled in secondary school, geographical region and income group (with the latter two 

https://data.worldbank.org/indicator?tab=all
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covariates categorised according to the World Bank’s definitions). The model was fitted using 

the statistical software R and the dismo package, with tree complexity of 12, bag fraction of 

0.65, and a learning rate of 0.001. 10-fold cross-validation was implemented to check 

overfitting, and the model found to predict well both training and held-out (test) datasets.  

Review of Intensive Care Unit Capacity 

These data were derived from 3 resources. We extracted data from a previously conducted 

systematic review of ICU capacity in low-income countries28, as well as a more recently 

published review of ICU capacity across Asia7. In addition to this, we also carried out a 

systematic review to identify further references containing information on ICU bed capacity 

in Lower- and Middle-Income Countries. Web of Science was searched on Friday 13th March 

using the search terms (“critical care” OR “intensive care” OR “ICU” OR “CCU”) AND capacity 

AND (country name) where country name refers to 1 of the 138 countries classified as LMIC 

by the World Bank. This search yielded 174 results, with 30 texts retained after Abstract 

screening, and 20 of these retained following screening of the full text. Due to the 

requirement for contemporary estimates, balanced by the comparative paucity of data for 

ICU capacity compared to hospital beds, we excluded papers earlier than 2000. These 

resources provided a total of 57 data points describing the number of ICU beds per 100 

hospital beds across countries belonging to the World Bank’s 4 income strata (LIC, LMIC, UMIC 

and HIC). 

 

6. Appendix data sources 

Data on global unmitigated, mitigated and suppression scenarios: Imperial-College-COVID19-Global-

unmitigated-mitigated-suppression-scenarios.xlsx 
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