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1

1 Introduction
Nigar Hashimzade and Michael A. Thornton

This volume is part of the new series of Handbooks of Research Methods and 
Applications in the Social Sciences, compiled under the editorship of Mark Casson. 
While these Handbooks engage with general issues of research methodology, their 
primary focus is on the practical issues surrounding best- practice techniques and real 
world applications.

This Handbook provides a systematic account of a range of research methods in 
empirical macroeconomics. It is intended as a reference for graduate students and 
researchers interested in exploring new methodologies, but could also be deployed as 
a graduate text. The Handbook concentrates on the most important issues, models and 
techniques for research in macroeconomics. Each chapter highlights the key method-
ologies and their empirical application in an accessible way. The chapters are largely 
self- contained, and some background and key statistical concepts and methods are 
reviewed in the opening chapter. Given the breadth and the significance of the topics 
covered in the Handbook, no single chapter could claim to be comprehensive, but the 
chapters include the key references for each topic and provide a sound guide for further 
reading.

Distinctive features of the Handbook are:

● coverage of a wide range of methodologies from the well- established to relatively 
recent advances;

● a particular focus on examples illustrating the application of these methodologies 
to macroeconomic problems and datasets;

● the availability of resources and computer programs through a supporting 
website.

The opening chapter of the Handbook introduces the reader to the basic theoretical 
concepts of stochastic processes and stationarity. The chapter also presents a number of 
univariate and multivariate models that are useful for the analysis of macroeconomic 
data, and describes three most commonly used estimation methods: method of moments, 
generalized method of moments, and maximum likelihood. These models and estima-
tion methods are further developed in greater detail with examples of application in later 
chapters. The first three sections of the volume set out a general theoretical framework, 
while also covering some important examples from macroeconomic research, whereas 
the remaining three sections focus on practical applications, providing further theoreti-
cal background where needed. Part I of the Handbook (Chapters 3, 4 and 5) describes 
the specific properties of macroeconomic data that require modelling and analysis dif-
fering from that typically applied in other fields of economics and the social sciences. 
The decomposition of a time series into trends and cycles, and the identification of unit 
roots, structural breaks and various non- linearities are presented in Chapters 3 and 4, 
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2  Handbook of research methods and applications in empirical macroeconomics

whereas Chapter 5 introduces the theory of filtering, or isolating the components of data 
that are of particular interest (the signal), whilst removing the unwanted components 
(the noise).

Part II (Chapters 6 to 13) presents a number of fundamental models for macro-
economic data analysis. A detailed treatment of the vector autoregressive (VAR) model-
ling technique, from model specification and estimation to the structural analysis and 
forecasting, is given in Chapter 6. Chapter 7 introduces the concept of cointegration 
and describes the error correction approach to the modelling of non- stationary data. A 
set of threshold type regime switching models are described in Chapter 8; this approach 
is relevant when it can be assumed that the model parameters change once an economy 
experiences a change in regime, for example, following a policy intervention, while 
remaining constant within each regime. Econometric tests for instability in parameters 
and in the functional form of a model are presented in Chapter 9. Dynamic panel data 
models, introduced in Chapter 10, provide the advantage of accounting for heterogene-
ity across, say, countries, as well as for the dynamic nature of the relationships between 
economic variables. An overview of the dynamic factor analysis of large macroeconomic 
panel datasets is given in Chapter 11. Modelling data that exhibit conditional heteroske-
dasticity is commonly associated with the financial data analysis; Chapter 12 shows how 
this framework can be usefully applied to study the links between uncertainties in macro-
economic variables. Chapter 13 concludes this section by addressing a fundamental issue 
of temporal aggregation in time series and discussing, in particular, the implications 
of temporal aggregation in macroeconomic data for testing popular macroeconomic 
theories.

Part III (Chapters 14 to 17) presents the theoretical frameworks for estimation and 
evaluation of macroeconometric models. Chapter 14 describes in detail the generalized 
method of moments (GMM), arguably the most convenient and general way of esti-
mation of an economic model that can be equally applied in a variety of frameworks. 
Maximum likelihood (ML) estimation and inference is presented in Chapter 15, as part 
of a detailed treatment of state space models in macroeconomics. Chapter 16 introduces 
Bayesian methods, as an alternative to the GMM and the ML estimation that has been 
gaining popularity in applied macroeconomic research with the development of powerful 
computers. Often researchers in empirical macroeconomics are interested in selecting, 
among competing models, the one that generates the most accurate forecast of the future 
values of economic variables. A review of traditional and modern methods of evaluation 
of the accuracy of forecasts, which are robust to instabilities, is provided in Chapter 17, 
along with the macroeconomic applications.

Part IV (Chapters 18 to 21) gives a detailed exposition of one important applica-
tion of the theoretical and empirical methods developed in the previous sections, the 
dynamic stochastic general equilibrium (DSGE) framework. Currently, this framework 
is, perhaps, the most widely employed by academics and practitioners in the field of 
macroeconomics. Chapter 18 presents the building blocks of the New Keynesian (NK) 
DSGE model and describes how the Bayesian estimation methodology is applied in this 
framework. Chapter 19 provides a discussion of model comparison and validation, as 
well as the application of this framework for policy analysis. The application of two esti-
mation methodologies for the DSGE models, Bayesian estimation and the GMM esti-
mation, with an extension to the simulated method of moments (SMM), are developed 
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Introduction   3

in greater detail in Chapters 20 and  21, using an alternative version of the NK DSGE 
model.

Part V (Chapters 22 and 23) presents the application of the VAR as an alternative 
methodology for the macroeconomic modelling and policy analysis. Chapter 22 develops 
the structural VAR approach, presenting various methods for identification and discuss-
ing the relationship between the structural VAR and the DSGE framework. A number 
of examples of macroeconomic policy analysis in the VAR framework are developed in 
Chapter 23.

Part VI (Chapters 24 and 25), the final section of the volume, is dedicated to the 
calibration, simulation and estimation of macroeconomic models. Chapter 24 gives 
a detailed and careful description of the procedure for calibration and simulation 
using the neoclassical growth model as an example. Chapter 25 introduces Dynare, 
software (http://www.dynare.org) widely used for the simulation and estimation of 
macroeconomic models of the DSGE type, with detailed instruction from installation 
to writing a code for Bayesian estimation for a simple real business cycle model using 
macroeconomic data for the US.

Each chapter in this volume is an original contribution by a leading authority in the 
field.
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4

2 A review of econometric concepts and methods 
for empirical macroeconomics
Kerry Patterson and Michael A. Th  ornton

1 INTRODUCTION

The aim of this chapter is to review some econometric terms and methods that are par-
ticularly useful for empirical macroeconomics. The technical level of the chapter assumes 
completion of an intermediate or good introductory course such as covered by, for 
example, Dougherty (2011) or Wooldridge (2011). Ideally, some knowledge of the linear 
regression model in matrix- vector notation would also be helpful, such as provided in 
Greene (2011).

This chapter proceeds as follows. The starting point for the analysis of macroeconomic 
time series is univariate modelling, a classic case being Nelson and Plosser’s (1982) analy-
sis of a number of macroeconomic time series to assess whether they were generated by 
unit root processes, a finding that would have implications not only for econometric 
analysis but, from a macroeconomic perspective, also for the persistence of shocks and 
the generation of the business cycle. There are two basic concepts that enable a better 
understanding of the framework of unit root tests, the first being that of a stochastic 
process and the second that of stationarity and non- stationarity, and these are outlined 
in section 2. Stationarity is a property related to the process generating the observable 
data of macroeconomic analysis, although one often finds a shorthand reference to the 
stationarity or non- stationarity of the data or of a particular time series.

The basic univariate modelling framework is outlined in section 3. Central to this 
framework and analysis is the autoregressive model of order p, AR(p), which can be 
extended to include a moving average error process of order q, MA(q); together they 
result in the ARMA(p, q) model. The unit root question then usually relates to the prop-
erties of the AR polynomial, although the possibility and implications of a unit root in 
the MA polynomial should not be overlooked; see, for example, Tanaka (1990), and for 
a textbook exposition of the ARMA modelling framework more generally see Brockwell 
and Davis (2006).

A test for a unit root is also often adopted as a pre- test that informs subsequent mod-
elling, such as establishing balance (in the mean) in potentially cointegrated relation-
ships. Chapter 4 by Niels Haldrup, Robinson Kruse, Timo Teräsvirta and Rasmus T. 
Varneskov takes up the issue of unit root testing in greater detail, including caveats and 
extensions such as the importance of non- linearities. Note, in particular, that the ARMA 
model is a linear framework whereas there is now a gathering body of evidence that non- 
linearities may characterize a number of macroeconomic variables; see for example Peel 
et al. (2001) on modelling the exchange rate, Taylor et al. (2003) on modelling money 
balances and Teräsvirta (2006) for a comparative forecasting assessment of linear and 
non- linear models.
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A natural extension of the ARMA framework allows several variables to be modelled 
jointly and an outline of some key multivariate models is provided in section 4. The 
natural extension of the univariate AR and ARMA models is to the vector autoregres-
sive, VAR, model and vector ARMA, VARMA models, although the focus in practice is 
largely on the former. Non- stationarity now refers to a property of the process generating 
the multivariate model and leads to the key concept of cointegration. This multivariate 
framework is followed up extensively in later chapters, see especially Chapters 6, 7, 22 
and 23.

Estimation methods in empirical macroeconomics are largely based on parametric 
models and these are represented in this Handbook by variants of least squares, the 
generalized method of moments and maximum likelihood; section 5 outlines some 
of the preparatory background. Extensive reference to econometric and quantita-
tive techniques that are useful in macroeconomics is provided in Bårsden (2005) and 
Canova (2007); and a good reference for non- parametric methods, which are becoming 
 increasingly important, with applications in macroeconomics, is Li and Raccine (2006).

2 TWO BASIC CONCEPTS

The concepts of a stochastic process, which in essence is a sequence of random variables, 
or vector of random variables, ordered in time, and the stationarity or non- stationarity 
of that process, are central to time series analysis and especially to the analysis of macro-
economic time series. By considering a suitably defined vector stochastic process and 
fixing the time dimension of the process one obtains a cross section, whereas a sequence 
of vector stochastic processes can be interpreted as generating a panel of data.

2.1 Stochastic Processes

From the viewpoint of time series analysis, typically we are not interested in the 
outcome of a random variable at a single point in time, but in a sample path or reali-
zation of a sequence of random variables over an interval of time. The realizations 
are what we observe and collect for macroeconomic analysis, but it is important to 
realize that just as in tossing a coin, because we observe one particular outcome, for 
example the coin lands ‘heads’, this does not mean that was the only possible outcome. 
Moreover, to continue the analogy in the context of time series analysis, what we are 
interested in is a sequence of ‘coin tosses’, where that sequence is arranged in time; 
then a sample is a path or trajectory of length T, which comprises the realizations of 
T random variables. In a macroeconomic context, our ‘coin tosses’ are, for example, 
outcomes of the random processes generating GDP, exchange rates, unemployment 
and so on.

To establish some notation, let the sample space for the T random variables be denoted 
WT, then the generic element of WT, w, refers to a T- dimensional ordered sequence. If the 
random variables underlying the sample space are independent, then WT is the (Cartesian) 
product space of the sample spaces for each of the T random variables. Referring to the 
coin tossing example, the coin tosses are usually taken to be independent, in which case 
the sample space WT is the product space, WT 5 W1 3 W1 3 . . . 3 W1 5 WT

1 , where W1 
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is the sample space of a single random variable and the 3 symbol here indicates the 
Cartesian product.

A stochastic process conceptualizes how such sample paths or ‘trajectories’ arise; 
it is a collection of random variables, denoted Y, on a probability space (see, for 
example, Billingsley, 1995); usually it is indexed by t H T to emphasize time, although 
this aspect is not essential as a stochastic process is an example of a random vector 
for which one could equally use the index j 5 1, . . ., n. However, as the dominant 
 application in this Handbook involves the dimension of time, the former notation will 
be used.

For brevity we will focus on the discrete time case, where the components of the sto-
chastic process are denoted yt(w)  and t H T, where, typically T comprises the integers 
N 5 (0, 61, 62, . . . ) or the non- negative integers N1 5 (0, 1, 2, . . . ). A discrete- time 
stochastic process with T 8 N1 is then summarized as the following collection of random 
variables:

 Y 5 (yt(w) : t H T 8 N1, w H WT).

For given t H T, yt(w)  is a single random variable as a function of w H WT, with a 
distribution of outcomes at that point, one of which will be realized. For given w H WT, 
yt(w)  is a function of time, t H T. In this case an ‘outcome’ is a complete sample path, 
that is a function of t H T, rather than a single number. A description of the sample 
path would require a functional relationship rather than a single number. By varying 
w we now get a different sample path; that is (potentially) different realizations for all 
t H T.

We will often think of the index set T as comprising an infinite number of elements 
even in the case of discrete- time processes, where N is (countably) infinite; in the case of 
a continuous- time stochastic process even if T is a finite interval of time, such as [0, 1], 
the interval is infinitely divisible. In either case, the collection of random variables in Y is 
infinite. This is important in the context of taking the limit of partial sums, which appear 
in several contexts in the econometrics of macroeconomic analysis.

Often the reference to w H WT is suppressed and a single random variable in the sto-
chastic process is written yt, but the underlying dependence on the sample space should 
be noted. What is special about a stochastic process, other than that it is a sequence of 
random variables? In the case of a stochastic process, the sample space is the space of a 
sequence of length T in the case of a random variable with an inherent time dimension. 
By fixing w we fix a whole path, not just a single element at a particular time; thus as w is 
varied, the whole sample path is varied, at least potentially. This is why the appropriate 
space for a stochastic process is a function space: each sample path is a function, not a 
single outcome.

Replication of a stochastic process through simulation generates a distribution of 
sample paths associated with different realizations over the complete sample path. To 
illustrate this idea, Figure 2.1 shows four simulated trajectories for a Gaussian random 
walk defined by yt 5 yt21 1 et, where et is niid (0, 1), that is et is normally, independently 
and identically distributed with expected value of zero and variance of unity; the starting 
value is y0 5 0 and T 5 1000. The sample space is, therefore, the product space WT 51000

1 ; 
and in effect the random walk is a partial sum process (psp) defined on et as yt 5 g t

i 51ei. 
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The figure illustrates not only the nature of a random walk, but also the fundamental 
idea that a stochastic process relates to T- dimensional realizations of a sample path. It is 
this conceptual basis that underpins the analysis of macroeconomic time series.

2.2 Stationary Stochastic Processes

An important distinction in the analysis of macroeconomic series is whether the stochas-
tic process generating the component random variables is stationary or non- stationary. 
The reader is likely to be aware of the Dickey–Fuller test for a unit root, which is a fre-
quently used test for a particular form of non- stationarity; and throughout this volume, 
there is reference to the stationary/non- stationary distinction.

As a non- stationary process is one that is not stationary, we can focus on the defini-
tion of a stationary process. In an intuitive sense a stationary process is one that does 
not undergo any change, so that we can be assured that if we focus on one particular 
period then the process generating the data (the ‘trajectories’) is invariant if we then 
focus on another period or perhaps split one overall period into two sub- periods. This 
intuitive idea relates to the concept of strong or strict stationarity, which we now define. 
To simplify the definitions below, the focus is on discrete time, noting that the exten-
sion to continuous time is straightforward; further, the notation yt refers to a single 
random variable, that is the univariate case, whereas the multivariate case is considered 
in section 4.1.

Strict stationarity: let t Z s and T be arbitrary, if Y is a strictly stationary, discrete time 
process for a discrete random variable, yt, then:

 P( yt11,  yt12,  . . ., yt1T)  5 P( ys11,  ys12,  . . ., ys1T) , (2.1)
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Figure 2.1 Random walk trajectories
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where P(.) is the joint probability mass function for the sequence of length T, which 
starting at time t 1 1, is the same for any shift in the time index from t to s and for any 
choice of T. These results imply that moments of yt, including joint moments, such as the 
covariances, are invariant to arbitrary time shifts.

If the random variables are continuous, a strictly stationary random process satisfies 
the following condition:

 F( yt11,  yt12,  . . ., yt1T)  5 F( ys11,  ys12,  . . ., ys1T) , (2.2)

where F(.) is the joint distribution function of the random variables indicated in paren-
theses. If the probability density functions, f(.), exist, then an analogous condition holds, 
replacing F(.) by f(.).

Strict stationarity is generally too strong a requirement for macroeconomic (and 
econometric) analysis and it is replaced with weak stationarity, WS (also referred to as 
covariance or second order stationarity), defined by satisfaction of the following three 
conditions, for arbitrary t, s and k:

Weak stationarity

 E( yt)  5 E( ys) 5 m

 Var( yt)  5 Var( ys)  5 s2

 Cov( yt,  yt1k)  5 Cov( ys,  ys1k) ,

where Var(.) and Cov(.) indicate the variance and covariance, respectively. The first 
condition states that the mean is constant, the second that the variance is constant and 
the third that the kth order autocovariance is invariant to an arbitrary shift in the time 
origin.

To illustrate the use of the defining conditions of weak stationarity, consider the 
simple random walk yt 5 yt21 1 et, then:

 E( yt)  5 a t

i 51
E(ei)  5 0; Var( yt)  5 Varaa t

i 51
eib  5 ts2

e ;

 Cov( yt,  yt1k)  5 Covaa t

i51
ei,  aa t

i 51
ei  1   ak

i 5t11
eibb  5 Var( yt)  5 ts2

e .

The last two results use E(etes)  5 0 for t Z s. (This assumption is not essential to 
the  non- stationarity of the process generating yt, but it simplifies this illustrative 
example.)

The extension of the definition of stationarity to the multivariate case, where yt is a 
K 3 1 vector of random variables at time t, is considered in section 4.1. This is necessary 
to cover models such as variants of the vector autoregressive (VAR) models of Chapters 
6, 7, 22 and 23, and the dynamic stochastic general equilibrium models of Chapters 18 
to 21.
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3 UNIVARIATE MODELS

Even if the object of macroeconomic analysis is multivariate analysis, for example the 
determination of output and unemployment, as in Blanchard and Quah (1989) or the var-
iables of the IS–LM model of Gali (1992), this is often preceded by a univariate analysis 
of each component variable. Moreover, there are some influential studies, such as Nelson 
and Plosser (1982) and Perron (1989), whose primary concern is with macroeconomic 
variables considered individually. The most frequent parametric framework for such 
analysis is the autoregressive moving average, ARMA, model. An ARMA model is also 
an example of a linear time- invariant filter, which is considered more extensively, along 
with related concepts, by Stephen Pollock in Chapter 5 on filtering macroeconomic data.

3.1 ARMA( p, q) Models

The ARMA model of order p in the AR component and q in the MA component for the 
univariate process generating yt, is written as follows:

  (1  2   �1L  2   �2L 
2

  2 . . .  2   �pL 
p)yt 5 (1  1   q1L  1   q2L 

2
  1 . . .  1   qq L 

q)et, (2.3)

where L is the lag operator defined as L 
jyt ; yt2 j (sometimes referred as the backshift 

operator with equivalent notation Bjyt ; yt2 j). The sequence {et}T
t 51 comprises the 

random variables et, assumed to be independently and identically distributed for all t, 
with zero mean and constant variance, s2

e, denoted et ~ iid(0, s2
e), s2

e , `.
The ARMA model can be written more concisely by defining the AR and MA 

 polynomials, respectively, as:

 �(L)  5 (1  2   �1L  2   �2L 
2

  2 . . .  2   �p L 
p)  AR(p) polynomial (2.4a)

 q (L)  5 (1  1   q1L  1   q2L 
2

  1 . . .  1   qq L 
q)  MA(q) polynomial. (2.4b)

The ARMA model is then written as:

 �(L)yt 5 q (L)et. (2.5)

Pure AR and pure MA models are clearly just the special cases corresponding to q 5 0 
and p 5 0, respectively.

3.2 Deterministic Terms

For simplicity, the specification in (2.3) assumes E( yt)  5 0. If this is not the case, say 
E( yt)  5 mt Z 0, then yt is replaced by yt  2   mt, and the ARMA model is:

 �(L) (yt  2   mt)  5 q(L)et. (2.6)

The term mt has the interpretation of a trend function, the simplest and most frequently 
occurring cases being where yt has a constant mean, so that mt 5 m, and yt has a linear 
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trend, so that mt 5 b0  1   b1t. (There are other more complex models of the trend, and for 
an elaboration of the issues see Terence Mills in Chapter 3.) The ARMA model can then 
be written in deviations form by first defining y|t ; yt  2   mt, with the interpretation that 
y|t is the detrended (or demeaned) data, so that (2.6) becomes:

 �(L) y|t 5 q(L)et. (2.7)

In practice, mt is unknown and a consistent estimator, say m̂t, replaces mt, so that the 
estimated detrended data is ŷt

|  5 yt  2   ̂mt.

3.3 The Long Run and Persistence

An ARMA(p, q) model is described as being causal if there exists an absolutely  summable 
sequence of constants {wj}`

0 , such that:

 yt 5 a`

j 50
wjL 

jet

 5 w(L)et. (2.8)

The condition of absolute summability is g`

j 50 0wj 0  < q. The lag polynomial w (L)  is the 
causal linear filter governing the response of {yt} to {et}. The representation in (2.8) is 
the MA form of the original model, which will be MA(q) if �(L)  is not redundant. The 
causal ARMA(p, q) model is linear in the sense of (2.8), but it is not the only model that 
generates a linear form.

The MA polynomial is w (L)  5 g`

j 50wjL 
j 5 �(L)21q (L) , with w0 5 1; for this rep-

resentation to exist, the roots of �(z)  must lie outside the unit circle so that �(L)21 is 
defined. The MA form (2.8) provides the basis of a number of tools of interpretation 
of the original model. In particular, the concepts of the impulse response function, the 
long- run solution, persistence and the long- run variance are all based on (2.8) and extend 
quite naturally to the multivariate case, as in VAR modelling; see section 4.1.

The impulse response function maps out the response of yt to a one- unit (one- off) 
shock in et; contemporaneously the effect is w0 5 1, one period after the shock it is w1, 
two periods after the shock w2, and so on. The partial cumulative effect of the shock 
after s periods is g s

j 50wj and in the limit as s S ` this is w (1) , that is w (L)  evaluated 
at L 5 1. The geometric pattern associated with an AR(1) model is probably the most 
familiar example, so that w (L)  5 (1  2   �1L)21 5 1  1   g`

j 51�
j
1, which converges to 

(1  2   �1)21 iff 0�1 0  , 1. A measure of long- run persistence is, therefore, provided by 
w (1)  5 g`

j 50wj. As to the long- run solution, assuming that the roots of �(L)  lie outside 
the unit circle, the eventual response of yt to a one- unit, one- off shock in et is to return 
to its initial equilibrium, which is yt 5 0 on setting all et to their expected values of 
zero, or y|t 5 0 if there is a trend function so that the long- run is yt 5 mt. The long- run 
variance of yt is the variance of w (1)et which, given that mt, if it is present, is assumed 
to be a deterministic function, is also the long- run variance of yt, denoted w2, where 
w2 5 w (1)2s2

e.
No constraints are needed on the polynomial q (L)  to ensure stationarity other than 

that its order, q, is finite. Our ARMA(p, q) is said to be invertible when the roots of q (z)  
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lie outside the unit circle. This has clear parallels with stationarity and ensures that it is 
possible to invert q (L)  and represent yt as an AR(q) process.

3.4 A Unit Root

Consider the pth order polynomial �(z)  5 1  2   g p
i 51�i zi, then the solution to �(z)  5 0 

implies wp

i 51
(z  2   di)  5 0, where di are the p roots or solutions of �(z)  5 0. The general 

condition for stability is that the modulus of the roots of �(z)  must lie outside the unit 
circle. In the AR(1) lag polynomial, there is one root d1 5 �21

1  and 0d1 0  . 1 for 0�1 0  , 1; 
hence the stability condition is satisfied. (If the stability condition is stated in the appar-
ently opposite form as the roots must lie inside the unit circle, this refers to the reciprocals 
of di.)

A special but important case arises when one of the roots of the polynomial �(L)  is 
equal to one and the others have modulus greater than one. If there is a single unit root, 
then the original pth order polynomial can be rewritten as the product of a first order 
polynomial, given by the first difference operator (1 − L), and a polynomial of order 
p − 1. Multiplied together these polynomials are of the same order, p, as the original 
polynomial. This is as follows:

 �(L)  5 (1  2   �1L  2   �2L 
2

  2 . . .  2   �p L 
p)

 5 (1  2  L) (1  2   �*1 L  2 . . .  2   �*p21 L 
p21)

 5 (1  2  L)�*(L) , (2.9)

where �*(L)  is of one order lower than �(L) , and the model in terms of Dyt is 
�*(L)Dyt 5 et and thus by construction there are no further unit roots. It is for this 
reason that such a generating process is referred to as difference stationary.

This approach suggests a slightly different and informative way of (re)writing the 
ARMA(p, q) model that is more popular in the unit root literature, the idea being to 
isolate the potential unit root from the other stable roots. First, introduce (1  2   rL) , a 
first order polynomial, so that the unit root null hypothesis is H0: r 5 1. That is:

 (1  2   rL)yt 5 ut (2.10)

 f(L)ut 5 q (L)et, f(L)  5 (1  2   f1L  2   . . .  2   fp21L 
p21) (2.11)

1

 ut 5 f(L)21q (L)et. (2.12)

The components of the sequence {ut} are now referred to as errors rather than innova-
tions, which are by assumption weakly dependent, in the sense that their autocovariances 
are summable, and this specification is, therefore, sometimes referred to as the error 
dynamics form of the ARMA model. In the context of the unit root hypothesis, the 
problem is to find a unit root test that is robust to weakly dependent errors or a  modified 
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test statistic that takes such structure into account, as in Phillips and Perron (1988). 
Note that (1  2   rL)f(L)  5 �(L)  and if r 5 1, then f(L)  5 �*(L) . The principle can 
be applied to two unit roots first defining (1  2   r1L) (1  2   r2L) and then redefining f(L)  
accordingly; the null hypothesis becomes H0: r1 5 r2 5 1; see for example, Hasza and 
Fuller (1979), Dickey and Pantula (1987) and Haldrup and Lildholt (2002, 2005). The 
number of unit roots leads to the I(d) notation.

3.5 The I(d) Notation

Engle and Granger (1987) defined an I(d) series as follows: ‘A series with no deterministic 
component which has a stationary, invertible, ARMA representation after differencing 
d times, is said to be integrated of order d, denoted yt ~ I(d).’ (Note xt was used in the 
original definition.)

The I(d) property is readily apparent from the pure random walk yt 5 yt21 1 et, so that 
Dyt 5 et, hence yt ~ I(1). Some points arising from this definition follow. First note that 
d is the minimum number of times that yt has to be differenced to achieve stationarity 
since, for example, the second difference of the random walk yt is also stationary, but the 
(d − 1)th difference is not. If there is a deterministic component, for example the trend 
function mt, then the definition applies to y|t ; yt  2   mt. Whilst Engle and Granger (1987) 
had in mind that d is an integer, the definition may, with a suitable reinterpretation, be 
taken to apply to fractional d; see Patterson (2012, Chapter 3).

The qualification in the I(d) definition to a particular form of model after differ-
encing (that is ARMA) is overly restrictive. As an alternative definition of an I(0) 
process, Davidson (2009) notes that one can instead look to the desired properties 
of a suitably scaled version of the partial sum of yt, ST 5 gT

t 51yt (for convenience 
assume that E(yt)  5  0, otherwise subtract E( yt)  from yt). First note that this partial 
sum can be defined on the unit interval by introducing 0 # r # 1 and defining ST (r)  5 
g [Tr]

t 51yt, where [Tr] is the integer part of T times r. Let w2
T 5 Var(ST)  5 E(S 2

T) and w2 5 
 lim TS`

(T21E(S 2
T))  5  lim TS`

(T21w2
T) , where w2 is the long- run variance (of yt).

Definition of an I(0) process (Davidson, 2009): A time series {yt}
`

t51 is I(0) if the partial 
sum process defined on the unit interval by YT (r)  converges in distribution to standard 
Brownian motion, that is:

 YT (r)  K 
ST (r)
wT

 1 D B(r), 0 # r #1, (2.13)

where B(r) is standard Brownian motion ( 1 D refers to weak convergence or conver-
gence in distribution).

Whilst theoretically satisfactory, basing a test on such (2.13) is not possible because 
this condition is asymptotic. In part, the nature of the definition of an I(0) process 
depends on the problem being addressed. One possibility is that the distribution of an 
estimator based on yt in finite samples is better guided by assuming that (2.13) holds 
than otherwise; another interest, as in Nelson and Plosser’s (1982) original study, is what 
properties, especially as they relate to the persistence of shocks, better characterize such 
macroeconomic time series as GNP, unemployment and industrial production. The 
practical conclusion from the majority of the literature is that the Engle–Granger I(d) 
definition is useful partly because the parametric testing framework has largely focused 
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on a maintained regression of AR form for which the definition, suitably qualified, is 
appropriate.

3.6 Basic Testing Framework

The basic testing framework is familiar from the Dickey–Fuller approach; see Fuller 
(1976, 1996) and Dickey and Fuller (1979, 1981). Suppose that the data are generated 
by (1  2   L)yt 5 ut, so that there is a (single) unit root, r 5 1, and also that the errors are 
in fact innovations, so that ut 5 et. Then the maintained regression is the test regression 
that enables a distinction to be drawn between the null and alternative hypotheses, where 
the latter depends upon the specification of the trend function, mt. For example suppose 
under HA: mt 5 m and 0r 0  , 1, then the maintained regression is ŷ|t 5 r tŷ|

21  1 xt, where 
ŷ|t  ; yt  2   m̂, typically m̂ 5 y, that is the ‘global’ sample mean, T21gT

t 51yt, although other 
estimators, such as the recursive mean, are possible (see Shin and So, 2002), and xt 5 et 
1 (1  2   r) (m  2   ̂m) . Subtracting ŷ|t21 and rearranging leads to the basic DF regression:

 Dŷ|t 5 g ŷ|t21 1 xt, (2.14)

where g 5 (r  2   1) and a unit root, therefore, corresponds to g 5 0. Note that imposing 
the null gives Dyt 5 et, whereas under the alternative ŷ|t

 5 r ŷ|t21 1 xt, with 0r 0  , 1; more-
over the latter implies the estimated long- run solution yt 5 m̂, with stationary deviations 
about this long run, whereas the former does not have a well- defined long run.

The family of DF test statistics includes a joint F- type test on m and r (see Dickey and 
Fuller, 1979, 1981) and the more familiar t- type test on g, known as a t̂- type test (see 
Fuller, 1976, 1996). There are many extensions of these tests, especially the latter. Of 
particular interest in this context is how to deal with weakly dependent errors. For the 
moment assume that the errors are generated by an AR(p – 1) model, so that the MA 
component is redundant, then a simple rearrangement results in what is known as the 
augmented Dickey–Fuller (ADF) regression:

 Dŷ|t 5 g ŷ|t21 1 ap21
j 51ajDŷ|t2 j  1 xt, (2.15)

where g 5 �(1)   2   1 and �(1)  5 (1  2   r)f(1) ; thus, r 5 1 corresponds to g 5 0, so that 
the t̂ test is the t statistic corresponding to ĝ, with the distribution of the test statistic 
depending on the specification of the trend function. In the case that ŷ|t  ; yt  2   m̂, then 
current and lagged values of D ŷ|t  can be replaced by the corresponding values of Dyt.

In practice, the correct lag order is not known and a criterion, such as a fixed rule 
or data dependent method, has to be used to select p; see, for example, Schwert (1987, 
1989) and Ng and Perron (1995). A rule with good empirical properties is the modified 
AIC, MAIC, due to Ng and Perron (2001). The ADF regression can also be subject to 
standard diagnostic tests, for example to ensure that the test regression is not subject to 
remaining residual serial correlation. As an informal guide, it is often helpful to compute 
the test statistic for each of the lags up to a maximum order and only select a particular 
pair of the lag order and test value if the test outcome is practically invariant to changes 
in the lag order past the selected lag.

The presence of an MA component complicates the choice since now there is not a 
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single correct value of p, but a value of p that leads to a ‘sufficiently good’ approxima-
tion of the MA lag polynomial. Provided that the AR lag expands at an appropriate rate 
(see Said and Dickey, 1984 and Ng and Perron 1995), then the limiting distribution of t̂ 
remains as in the simple DF case.

An alternative to the DF approach is direct maximum likelihood (ML) estimation of 
the error dynamics model in ARMA form, as suggested in Shin and Fuller (1998); the 
‘exact’ taking into account the generation of the starting observation and leading to a 
difference in the estimator and the distribution of the test statistic compared to the case 
where estimation (by OLS, GLS or ML) is conditioned on the first observation (or first 
p observations in the more general case).

Other important developments include local detrending, a form of quasi- differencing 
familiar from the Cochrane–Orcut approach to AR(1) errors in the standard regres-
sion model, due to Elliott, Rothenberg and Stock (1996) and Elliott (1999); the former 
is usually referred to the ERS test and the latter differs only in how the initial value is 
treated. The importance of the initial value should not be overlooked as substantially dif-
ferent results can be obtained depending on how this is treated; see for example, Harvey 
and Leybourne (2005, 2006). Also, selecting the appropriate deterministic function for 
mt can be critical as superfluous deterministic terms can greatly reduce the power of unit 
root tests: for a discussion of the problem and possible solutions see the special issue of 
Econometric Theory (2009); and for an elaboration of different unit root tests and their 
properties see Patterson (2011, 2012).

The importance of a unit root has economic and econometric aspects. Many research-
ers since Nelson and Plosser’s (1982) article have been interested in the importance of 
the random walk component in macroeconomic series (see for example Campbell and 
Mankiw, 1987a, 1987b), and its implications for the persistence of shocks. The econo-
metric implications centre on avoiding spurious regressions (Granger and Newbold, 
1974), that is for example in the simplest bivariate case where a regression of two 
 unrelated random walks appears to be significant by conventional criteria such as R2.

3.7 The Spectral Density Function

There are a number of semi- parametric methods for the estimation of the long memory 
parameter d based on the spectrum of the long memory process (see for example 
Shimotsu and Phillips, 2006). More generally frequency domain methods have an 
important role in econometrics and in the analysis of macroeconomic data; they are, for 
example, used in seasonal adjustment and more generally in filtering out or identifying 
particular frequency- based components of a time series. Stephen Pollock in Chapter 5 
deals extensively with filters that have been applied to macroeconomic time series, for 
example the Hodrick–Prescott (HP) filter and the Butterworth filter.

This section introduces the power spectrum, which is an essential concept in the analy-
sis and filtering of time series with frequency domain methods. Consider a stationary sto-
chastic process, then the power spectrum is the Fourier transform of the auto covariance 
function, that is:

 f (l j)  5 
1

2p
eg0  1   2a`

k 51
gk cos (ljk) f ,  l j H [0, p], (2.16)
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 5 
1

2p
eg0  1   2a`

k 51
gke2i lj k f ,

where g0 is the (unconditional) variance of yt and gk is the kth order autocovariance 
of yt. Considered as a function of the (angular) frequency lj, (2.16) is the spectral 
density   function often referred as the sdf (for simplicity the subscript on l j is some-
times omitted from the definition). The range of l j assumes a real- valued time series. 
Anderson (1971, Chapter 7) contains an extensive discussion of these functions and 
the reader may also like to consult Hamilton (1994, Chapter 6). The power spectrum 
can be plotted as f(l j)  against l j H [0, p]; alternatively f(l j)  may be plotted against Fj 
using Fj 5 l j /2p, so that the horizontal axis extends from 0 to 0.5. (The definition in 
(2.16) follows Anderson (1971, section 7.3). Some authors alternatively take the spec-
tral density function to refer to the (scaled) Fourier transform of the autocorrelation 
 function, that is F(l j)  5 2pg(0)21f (l j) .

As the frequency l j is a key input in the sdf, we consider its meaning in more detail. 
Consider a simple case with the sine and cosine functions yt, sin  5 A sin (lt)  and yt, cos  5 
B cos (lt) , where l is the angular frequency, measured in radians from 0 through to 2p. 
These are periodic functions in the sense that yt, sin  5 yt1nP, sin  and yt, cos  5 yt1nP, cos , for n 
an integer and a period of length P 5 2p/l. Initially, consider the case with l 5 p, then 
each of these functions has a period of P 5 2p, so that one complete cycle of the process 
is completed as the index t moves from 0 through to 2p; as t extends past 2p, or before 
0, in integer multiples of 2p, a complete cycle is repeated. The amplitudes of these func-
tions are A and B, respectively; for example, if A 5 3, then the limits of yt, sin  are 63. The 
amplitude controls the importance of the contribution of each frequency to the whole 
when periodic signals are combined.

Different periods are obtained by varying the frequency l; for example, if l 5 p/6 
5 2p/12, then the period is P 5 2p/(2p/12) 5 12 time units. Notice that by writing 
the frequency in this form, with 2p as the numerator, the period can be read off as the 
denominator, so that l 5 2p/P. The period P is sometimes referred to as the ‘fundamen-
tal’ period, since for n 5 1 it is the smallest integer for which the periodicity condition 
yt 5 yt1nP is satisfied; and the corresponding l is then referred to as the ‘fundamental’ 
frequency. It is possible for a signal to have several different frequency components, and 
the different frequencies can then be distinguished by a subscript as in our notation; thus, 
l j is associated with the period Pj 5 2p/l j.

A time series may have more than one period suggesting a modification of the defini-
tion of periodicity, so that yt 5 yt1nPj indicates a repeating cycle with a period Pj. The 
period Pj is also the length, or span, of the cycle at the frequency l j. For example, if the 
time unit is a quarter and l j 5 2p/4, then Pj 5 2p/l j 5 4 quarters (¼ cycle per quarter), 
so that a complete cycle takes four quarters 5 one year to complete; if l j 5 2p/2, then 
Pj 5 2p/lj 5 2 quarters (½ cycle per quarter), so that a complete cycle takes two quar-
ters to complete and there are two cycles in a year. In the case of quarterly data, the two 
frequencies corresponding to one cycle a year and two cycles a year are the seasonal 
frequencies. The inverse of the period, that is Fj 5 1/Pj 5 lj /2p, is also referred to as 
a frequency, but in this case it has units of measurement that are the reciprocal of the 
time unit (not radians as in the case of lj). For example, if the time unit is a quarter and 
lj 5 2p/4, then Fj 5 lj /2p 5 ¼, with the interpretation that a ¼ of the cycle associated 
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with this frequency is completed in the time unit (a calendar quarter); and, as noted 
above, lj 5 2p/2 implies Fj 5 ½ cycle per calendar quarter. Note that Pj cannot be less 
than 2, implying that Fj cannot exceed ½; this follows from the observation that at least 
two time units are required to identify or resolve a cycle. This frequency is known as the 
Nyquist frequency which, in angular units, is simply lj 5 2p/2 5 p.

Returning to the interpretation of the (theoretical) sdf, a seasonal time series has 
peaks in the spectrum at the seasonal frequencies, lj 5 2pj/S, j 5 1, . . ., S/2 for S even 
and int [S/2] for S odd (where int[.] indicates the integer part of the expression); for 
example if S 5 4, then the seasonal periodicities are j 5 1, l1 5 p/2, P1 5 4, with one 
cycle per year; and j 5 2, l2 5 p, P2 5 2, with two cycles per year. In practice, as Granger 
(1966) observed, many economic time series after the removal of any trend in the mean 
or seasonal components have a peak in the spectrum as lj S 01; this is now easy to inter-
pret as it corresponds to fj S 01 and Pj S q; that is, the spectrum indicates that there is 
a very long (possibly) infinite cycle in the time series.

To estimate the sdf, g0 and gk are replaced by their sample counterparts, ĝ0 and ĝk, and 
the sample spectral density function f̂ (lj)  is:

 f̂ (lj)  5 
1

2p
e ĝ0  1   2aT21

k51
ĝk cos (ljk) f . (2.17)

A range of frequencies for evaluating f̂(lj)  is the set comprising lj 5 2pj/T, j 5 0, . . ., 
int[T/2].

There are a number of excellent texts to follow up spectral analysis. Two classics 
are Granger and Hatanka (1964) and Priestley (1981), the former being oriented to 
economic applications; and at an introductory level see Stoica and Moses (1997) and 
Warner (1998).

3.8 Conditional Heteroskedasticity

An important development in the econometric modelling of macroeconomic and finan-
cial time series is to allow for conditional heteroskedasticity, which is a particular form 
of stochastic volatility (see Baillie, 2006). The most popular framework is the ARCH/
GARCH model due to Engle (1982) and Bollerslev (1986), which we outline briefly here 
as a precursor to the more extensive coverage in Chapter 12 by Menelaos Karanasos and 
Ning Zeng.

Consider the AR(1) model given by yt 5 ryt21 + et where et ~ iid(0, s2
e). Solving the 

recursion we obtain yt 5 rty0 1g t

i51r
t2 iei and for simplicity assume that y0 5 0, hence 

E(yt)  5 g t

i51r
t2 iE(ei)  5 0. Now consider forecasting yt at time t – 1: should one use the 

unconditional mean E(yt)  5 0 or the conditional mean E(yt 0   yt21)  5 ryt21? Using the 
latter rather than former is second nature, but it embodies a simple but important lesson, 
which is to allow the forecast to reflect past information on yt, that is yt21 in the context 
of an AR(1) model. However, forecasting focuses not only on a levels forecast, but also 
on forecast intervals; however, the variance that is paired with the use of the conditional 
mean is the conditional variance, that is Var(yt 0   yt21) , but this is assumed constant, it is 
just s2

e; thus whilst the mean forecast takes the past into account, the conditional variance 
is assumed constant, that is it is assumed to be conditionally  homoscedastic. Although 
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the forecasts vary with yt21, the intervals around them do not. Engle, therefore, con-
sidered how to allow past information to affect the conditional variance, Var(yt 0   yt21) , 
and so allow the forecast intervals to vary depending on the heteroskedasticity in the 
 conditional variance.

The scheme of conditional heteroskedasticity suggested by Engle (1982) took the 
 following form, known as autoregressive conditional heteroskedasticity, ARCH(s):

 et 5 utst (2.18)

 s2
t  5 a0 1 a1e

2
t21  1   . . .  1   ase

2
t2s, (2.19)

where ut ~ iid(0, 1), a0 . 0 and ai $ 0 for i 5 1, . . ., s. The variable st can be viewed 
as rescaling the innovation sequence {ut} in a way that is time dependent. The condi-
tional variance is constant if ai 5 0 for i $ 1, otherwise it will depend on the s lags of e2

t . 
In practice, êt replaces et, where êt 5 yt 2 r̂yt21, or more generally êt 5 yt 2 x rtb

| where 
xt 5 (xt1,  xt2,  . . .,  xtK)r, b 5 (b1,  b2,  . . .,  bk)r and b|  is a consistent estimator of b. Given êt, 
this will enable estimates of the aj coefficients and the process can then be iterated. Engle 
(1982) suggested a maximum likelihood approach with the iterations based on a scoring 
algorithm. A test for an ARCH effect can be based on the joint significance of the aj.

An important development of the ARCH model was due to Bollerslev (1986) who 
introduced the generalized ARCH model, known as GARCH(r, s), which nests the 
ARCH(r) model:

 et 5 utst

 s2
t  5 a0 1 a (L)e2

t  1 g(L)s2
t ,

where a (L)  5 g s

i51aiL 
i and g(L)  5 g r

j51gjL 
j. Engle’s original ARCH(s) specification 

results when g(L)  5 0. Sufficient conditions for s2
t  . 0 are a0 . 0, ai $ 0 and gj $ 0, 

and a necessary and sufficient condition for stationarity is a (1) 1 g(1)  , 1 (Bollerslev, 
1986); this condition together with the assumption that all of the roots of the polyno-
mials 1 2 a (L) 2 g(L)  and 1 2 g(L)  lie outside the unit circle is sufficient for strict 
stationarity and ergodicity of {et}, with finite variance (see Bougerol and Picard, 1992; 
Ling and McAleer, 2002; Wang, 2006; and Wang and Mao, 2008). The unconditional 
variance of et is s2 5 a0 (1 2 a (1) 2 g(1))21, hence for s2 to be positive given a0 > 0, 
requires 1 2 a (1) 2 g(1)  . 0. Weak stationarity of the GARCH (r, s) process requires 
0 , a (1) 1 g(1)  , 1; however, applications often find that a (1) 1 g(1)  is very close to 
1, particularly in the popular GARCH(1, 1) model.

There have been many developments of GARCH models and good references are 
Engle (1995) and Baillie (2006), and for references to multivariate ARCH/GARCH 
models see Brooks (2006). Developments include introducing explanatory variables 
into the GARCH function (for example Lamoureux and Lastrapes, 1990), introduc-
ing a function of volatility into the regression model (Engle et al., 1987) and deriving 
the minimum mean squared error predictor explicitly accounting for the GARCH 
process (Baillie and Bollerslev, 2002). Variants of the basic GARCH model include 
the integrated GARCH, IGARCH, when a (1) 1 g(1)  L 1, the extension to fractional 
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integration in the FIGARCH model and asymmetric versions of GARCH including the 
exponential GARCH and the asymmetric GARCH. Bollerslev (2010) and Hamilton 
(2010) provide synoptic summaries of the many ARCH/GARCH variants. Although the 
dominant area of applications of these forms of stochastic volatility model is in finance, 
they also find applications in empirical macroeconomics; an example involving inflation 
and output is given in Chapter 12 and Hamilton (2010) gives two examples based on 
interest rates.

4 MULTIVARIATE MODELS

Univariate analysis is often undertaken as a precursor to multivariate modelling, which is 
the subject of this section. There is, however, no single dominant approach to multivari-
ate model building, with a number of albeit related approaches existing side by side. Had 
a snapshot been taken in the mid- 1970s, the dominant framework would have been that 
of the simultaneous equations model (SEM), which grew out of the pathbreaking work 
of Tinbergen (for example Tinbergen, 1939; and see also Klein, 1950), and the develop-
ment of econometric methods associated with the Cowles Commission approach. For an 
outline of the latter approach see Bennion (1952), which in turn led to the development 
of large- scale macroeconometric models, such as the Wharton and Brookings models 
(Evans and Klein, 1967; Duesenberry, 1965), which came to dominate the 1970s and 
early 1980s. However, as with univariate analysis, the early 1980s marked a period of 
change. There were three central developments that have had (so far) permanent effects: 
Sims’ (1980) critique of SEMs, especially of the reality of the identifying restrictions that 
were needed, was influential, and led to structural vector autoregressive, SVAR, models; 
cointegrated VARs, CVARs, with a seminal article by Engle and Granger (1987), explic-
itly recognized the importance of the distinction between non- stationary and stationary 
variables, and was more in the tradition of SEM model building with the interpretation 
of cointegrating vectors often depending upon exclusion type identifying restrictions; 
and dynamic stochastic general equilibrium, DSGE, models brought the ideas of micro-
economic type optimizing models to the construction of models operating at a macro-
economic level (a section of this Handbook comprising Chapters 18–21 is devoted to the 
DSGE approach). One element that is, however, a common theme, is that of the VAR 
in its different forms.

4.1 Vector Autoregressions, VARs

A VAR is the natural extension of an AR model to more than one variable. Typically the 
notation used is either yt or xt to denote a vector of K random variables. The notation 
adopted here follows Lutz Kilian in Chapter 22, with yt 5 (y1t,  y2t,  . . .  ,yKt)r.

The VAR of order p, VAR(p), is written:

 yt 5 h 1 ap

j51
Ajyt2 j 1 et

 5 h 1 ap

j51
AjL 

jyt 1 et. (2.20)
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1
 A(L)yt 5 h + et (2.21)

where A(L)  5 IK 2g p

j51AjL 
j and h 5 (h1,  h2,. . .,  hK)r is a vector of intercepts. Aj is a 

K 3 K matrix of lag coefficients, et 5 (e1t,  e2t,. . .,  eKt)r is a vector of shocks with K 3 K 
autocovariance matrices given by E(eters)  5 Se (s) , with typical element E(eitejs) , so that 
the contemporaneous, time t, K 3 K (co)variance matrix is E(etert)  5 Se (0) , and the lag 
s autocovariance matrix is Se (s) ; where there is no ambiguity Se (0)  is often written more 
simply as Se. We assume that Se (s)  5 0 for t ? s, so that et is the multivariate extension of 
an innovations process. There are no subscripts on Se (s) , indicating that the covariance 
structure is the same for any translation of the t and s indices.

A VAR is a form of vector stochastic process in yt, which is said to be weakly (or 
second order) stationary if the following three conditions are satisfied (see section 1.2 for 
the univariate case):

 Mean:   E(yt)  5 m, which is finite, for all t;
 Variance:  E(yt 2 m) (yt 2 m)r 5 Sy (0)  for all t;
 Autocovariance:  E(yt 2 m) (yt2s 2 m)r 5 Sy (s)  5 Sy ( 2s)r for all t and s $ 1.

The first condition states that the mean of each variable in the VAR is constant over 
time (bear in mind that m is now a vector, interpreted as the vector of long- run means, 
which will be defined below); the second condition states that the contemporaneous 
variance–covariance matrix of yt is invariant to t; the third condition requires that the 
autocovariance matrix just depends on the lag s. The second condition is the special case 
of the third with s 5 0. (For the link between the covariance process for yt and that for 
et, see Lütkepohl, 2005.)

A VAR with two variables and two lags is:

 y1t 5 h1 1 a11,1y1t21 1 a12,1y2t21 1 a11,2 y1t22 1 a21,2 y2t22 + e1t

 y2t 5 h2 1 a21,1y1t21 1 a22,1y2t21 1 a21,2 y1t22 1 a22,2 y2t22 1 e2t.

Each of these equations is like a univariate, autoregressive model but, in addition, 
includes lagged values of the other variable(s). The next step is to write the equations 
together using a matrix- vector notation:

 yt 5 h 1 A1Lyt 1 A2L 
2yt 1 et

1

 (I2 2 A1L 2 A2L 
2)yt 5 h 1 et

 A1L 5 ca11,1L a12,1L
a21,1L a22,1L

d ; A2L 
2 5 ca11,2L 

2 a12,2L 
2

a21,2L 
2 a22,2L 

2 d .
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Just as in the univariate case, the sum of the lag weights is obtained by setting L 5 1 
in the lag polynomial A(L), the shorthand for which is A(1). Some other properties 
of the stationary VAR also follow by analogy with an AR model. The correspond-
ing inverse matrix has the property that A(L)21A(L)5 IK and, for future reference, 
adopting the notation of Lütkepohl (2005), define F(L)  ; A(L)21. Note that A(z)21 5 
adj [A(z) ] /det[A(z) ], where adj indicates the adjoint matrix, that is the transpose 
of the matrix of cofactors, and invertibility requires that the determinant of A(z), 
det [A(z) ] ? 0 for |z| , 1. Note that det [A(z) ] 5 0 for a non- stationary VAR, which 
leads to the concept of cointegration, considered below in section 4.3.

The VAR can also be expressed in deviations form, in this case as deviations from the 
vector of means (or trends), that is yt 2 m (respectively yt 2 mt). On letting m 5 A(1)21a 
5 F(1)a, then:

 A(L) (yt 2 m)  5 et, (2.22)

where m has the interpretation of the long- run vector of means, an interpretation that 
can be maintained provided that the VAR is stable, so that A(L) is invertible. (Note that 
in Chapter 6, Helmut Lütkepohl uses a slightly different notational convention; in the 
constant mean case, the model is set up as yt 5 m 1 xt so that the VAR may be defined 
in terms of xt; since xt 5 yt 2 m, one can equivalently write A(L)xt 5 et; the VAR of 
(2.20) in yt is then known as the levels form of the VAR. In this chapter the notation xt is 
reserved for an exogenous variable or vector of such variables.)

Stability can be expressed in one of two equivalent ways. However, before stating the 
condition note that the VAR(p) can always be written as a first order system by putting 
it in companion form, as follows:

 Yt 5 P0 1 P1Yt21 1 Et

1

 P (L)Yt 5 Et,

where P (L)  5 IKp 2 P1L and IKp is the identity matrix of order Kp 3 Kp; Yt 5 
(yt,  yt21,  . . .  ,yt2p11)r, Et 5 (et,  0,  . . .  ,0)r and remember that, for example, yt is 
itself a K 3 1 vector, so that Yt is Kp 3 1. Explicitly, the companion form of the 
VAR(p) is:

 ± yt

yt21

(
yt2p11

≤  5 ± h

  0K

(
  0K

≤  1 ≥A1 A2 . . . Ap21 Ap
IK 0K . . . 0K 0K

0K IK . . . 0K 0K

( ( f ( (
0K 0K . . . IK 0K

¥ ± yt21

yt22

(
yt2p

≤ ¥  1 ± et

  0K

(
  0K

≤ , (2.23)

where 0K is a K 3 1 vector of 0s and 0K is a K 3 K matrix of 0s. Stability requires that 
the eigenvalues of P1 have modulus less than 1, where the eigenvalues are the roots of 
the characteristic polynomial det [P1 2 lIKp ] 5 0. Equivalently, in terms of the reverse 
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characteristic polynomial, the roots of P (r)  5 IKp 2 P1r have modulus greater than 1, 
where the roots of P (r)  are obtained as the solutions of det [IKp 2 rP1 ] 5 0, which is 
identical to:

 det [IK 2 rA1 2 r2A2  2 . . . 2   rpAp ] 5 0.

We may also note (see Lütkepohl, 2005, Proposition 2.1), that stability implies 
 stationarity of the VAR(p) process (but not vice versa).

The stationary VAR(p) has a vector MA (VMA) representation as follows:

 yt 5 m 1 F(L)et (2.24)

 5 m + a`

i50
Fiet2 i

As in the univariate case, the VMA provides the basis of a number of tools of analysis, 
such as the impulse response function and measures of persistence.

The VAR given by (2.20) is a closed VAR in the sense that there are the same number 
of equations as variables; an open VAR has more variables than equations, which implies 
that the variables are now treated asymmetrically, with some variables  considered to be 
exogenous (or predetermined) to the system.

To illustrate, the VAR(2) amended to include two exogenous variables xt 5 (x1t,  x2t)r, 
with a first order lag, is given by:

 yt 5 h  1   A1yt21  1  A2 yt22 1 C1xt21 1 et. (2.25)

Just as in the single equation case, the long- run value of yt can be obtained conditional on 
constant values for the exogenous variables. First write (2.25) collecting terms:

 A(L)yt 5 h 1 C(L)xt 1 et, (2.26)

 A(L) 5 (I 2 A1L 2 A2L 
2)  and C(L) 5 C1L.

Multiplying through by A (L)21 gives:

 yt 5 A(1)21h 1 A(L)21C(L)xt 1 A(L)21et (2.27)

 5 F(1)h 1 F(L)C(L)xt 1 F(L)et

 5 m 1 D(L)xt 1 ut,

where m 5 F(1)h, D(L)  5 F(L)C(L)  and ut 5 F(L)et. Equation (2.27) is sometimes 
referred to as the final form of the open VAR, with the matrix D(L) referred to as the 
transfer function, which summarizes the effect of a unit change in the exogenous vari-
ables on the endogenous variables. D(L) is the analogue of the rational lag function w(L) 
in the single equation case and D(1) is the matrix of long- run multipliers.

The VAR is a powerful way of analysing the evolution of data from one point in 
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time to another. Most estimation techniques are based around the assumption that the 
evolution of the economic variables and the collection of the data occur simultaneously. 
In some circumstances, however, it may be preferable to allow the possibility that the 
process generating the data is operating more frequently than the resulting data is col-
lected, for example, if households make decisions on the level of their consumption each 
month but data is only collected every quarter. Estimating the parameters of an equation 
like (2.20) when the available data suffer from such time aggregation is the subject of 
Chapter 13 by Michael Thornton and Marcus Chambers, which also extends the VAR 
framework to continuous time, where the analogue of (2.20) is written as a stochastic 
differential equation.

4.2 Structural VARs

The structural VAR, SVAR, is widely used in macroeconomics, and Chapter 22 by Lutz 
Kilian contains many examples that illustrate the macroeconomic context of SVARs. 
Given that extensive treatment, here we just draw out the distinction between the 
(reduced form) VAR of (2.20) and the corresponding SVAR and some implications for 
identification. For simplicity, in this section deterministic terms are assumed to be absent 
(otherwise yt is replaced by yt 2 mt).

The VAR of (2.20) is a reduced form in the sense that no current dated values of the 
K variables in yt appear in any of the equations: the right- hand side variables are prede-
termined. The genesis of the reduced form VAR could be as the solution of a dynamic 
structural form and in this sense structural refers to the representation of behavioural 
equations, such as aggregate demand and aggregate supply functions or demand 
for money functions and term structure equations. (However, see Sims, 2002, for a 
 discussion of the distinction between structural and behavioural equations.)

The structural VAR is given by:

 B0 yt 5 ap

j51
Bjyt2 j 1 ut (2.28)

1

 B(L)yt 5 ut,

where B(L)  5 (B0 2 B1L 2 . . . 2 BpL 
p) , and B(L)21 is assumed to exist. B0 ? I is a 

non- singular K 3 K matrix that summarizes the contemporaneous (or ‘instantaneous’) 
links between components of yt; if B0 5 I, then (2.28) is a reduced form rather than a 
structural VAR as there are no such links. The instantaneous variance matrix of the 
structural shocks, ut, is E(uturt ) 5 Su.

Multiplying (2.28) through by B21
0  gives the reduced form, which was previously 

referred to as the VAR:

 yt 5 ap

j51
B21

0 Bjyt2 j 1 B21
0 ut (2.29)

 5 ap

j51
Ajyt2 j 1 et.
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On comparison with the reduced form VAR of (2.20), the coefficient matrices are 
related as follows:

 Aj 5 B21
0 Bj, for j 5 1, . . ., p, (2.30)

 et 5 B21
0 ut 1 ut 5 B0et. (2.31)

The relationship between the covariance matrices of ut and et is Su 5 B0SeB r0, which 
will be of interest later in identifying B0; and, as B21

0  is assumed to exist, Se 5 B21
0 SuB r21

0 . 
A usual distinction in terminology is that the ut and et are referred to as structural shocks 
and (reduced form) innovations, respectively (note that Blanchard and Quah, 1989, refer 
to the ut as disturbances and the innovations may be referred to as errors).

The VMA for the (reduced form) VAR is (see 2.24):

 yt 5 F(L)et (2.32)

 5 a`

i50
Fiet2 i.

Whereas the corresponding VMA for the SVAR is:

 yt 5 Q(L)ut (2.33)

 5 a`

i50
Qiut2 i

 Q(L)  5 B(L)21

 5 F(L)B21
0 .

Suppose interest centres on the response of yt to shocks (as in obtaining the impulse 
response functions), then one has to be precise about which shocks are being referred 
to and which are appropriate for the case at hand. From an economic point of view it is 
of interest to identify shocks as, for example, supply side shocks or demand side shocks 
but, for example, looking at the response of yt to a one- unit shock to a component of 
et is unlikely to have any economic meaning as et 5 B21

0 ut, so that the reduced form 
 innovations/errors are a non- linear function of the structural shocks and it is these latter 
that are likely to have more economic interest.

The VMA for the SVAR is the more meaningful representation for the analysis of 
shocks (although the reduced form VMA is more attractive from a forecasting perspec-
tive); however, the SVAR representation requires B0, which was not required for the 
reduced form VAR. Why not, therefore, work with the structural form VAR and seek 
estimates of the Bj coefficients? The problem that has to be overcome in that approach, 
familiar from introductory econometrics texts, is that it requires that the structural form 
(or instantaneous) coefficients B0 are identified. Identification in this sense means that 
there is a unique mapping from the reduced form coefficients back to the underlying 
structural form coefficients.

In the dynamic simultaneous equations model (SEM), identification is usually 
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achieved by first imposing a set of normalization restrictions, namely that the diagonal 
elements of B0 are unity, and then imposing a sufficient number of zero (exclusion) 
restrictions on the individual equations of (2.28), which correspond to the effect that 
not all equations contain all variables. In the case of the demand and supply of an 
agricultural good, a favoured example in textbooks, the normalization first implies that 
one equation is the demand equation and that the other is the supply equation; and, in 
respect of the exclusion restrictions, that income is a variable in the demand function but 
not in the supply function, and a weather indicator is a variable in the supply function 
but not in the demand function.

This SEM approach is distinguished from the SVAR approach in that it does not 
typically make any assumptions about a particular structure for Su, whereas that is the 
leading case for SVARs using the relationship Su 5 B0SeB r0. Identification in an SEM 
first focuses on normalizing B0, whereas in an SVAR the focus is first on normalizing Su, 
that is the variance–covariance matrix of the structural shocks. The shocks are assumed 
to be orthogonal so that Su is a diagonal matrix, thus the shocks are uncorrelated or, 
further, independent if Gaussian. Next, once the initial focus switches to the role of 
the shocks, Su, then by scaling each of the equations the individual variances can be set 
to unity so that Su 5 I and, hence, a perturbation to a shock is in units of the shock’s 
standard deviation. This normalization will have implications for B0, which will not now 
be normalized as unit elements on the diagonal as in the SEM approach. With these 
 normalizations B0SeB r0 5 I, that is Se 5 B21

0 B r  21
0 .

A consistent estimator of Se, say S|e, can be obtained from LS estimation of (2.29), 
since that is in effect a system of seemingly unrelated equations (SURE). With S|e replac-
ing Se, the equations to be solved are S|e 5 B|21

0 B r|
0

21, where B|0 is the resulting estimator 
of B0; identification, and hence whether this set of equations satisfies the necessary con-
dition for B|0 to be obtained, then depends on the relationship between the number of 
equations and the number of unknowns in B0. As in the standard SEM, this gives rise to 
an order (or necessary) condition comparing the number of unrestricted elements in Se 
and the number of unknowns. The former is the number of elements in Se excluding the 
diagonal elements, that is K(K11)/2. If B0 is unrestricted it has K 2 elements, therefore the 
minimum number of restrictions that it is necessary to impose on B0 is K 2 2   K(K 1 1) /2 
5 K(K 2 1) /2, imposing more restrictions results in B0 being overidentified by the order 
condition. The nature of restrictions that are imposed in practice look like, for example, 
the zero and proportionality restrictions that are often applied in SEMs, but the focus in 
an SVAR is on the relationship between the shocks.

Setting Su 5 I or the diagonal elements of B0 to unity are not the only normalization 
options (see Kilian in Chapter 22 and Lütkepohl in Chapter 6), and for some applica-
tions that illustrate the selection of restrictions in an economic context (see, for example, 
Blanchard and Quah, 1989; Blanchard and Perotti, 2002; and Sims and Zha, 2005, 2006). 
A popular choice is to seek a recursively identified structure so that B21

0  is lower triangu-
lar K 3 K matrix, with a positive main diagonal; this imposes just enough restrictions to 
meet the order condition as there are K(K 2 1) /2 zero elements on the upper triangle. 
Kilian (Chapter 22) gives macroeconomic examples of this kind of identification scheme 
and of several others that have been used in the macroeconomics literature.

It has so far been assumed that the VAR is a stationary process and indeed the typical 
practice in macroeconomic applications is to transform the variables so that the yt vector 
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comprises only I(0) variables. For example, Blanchard and Quah (1989) use a two- variable 
VAR where y1t is the first difference of the logarithm of GNP and y2t is the unemployment 
rate, and each variable is assumed to be I(0) resulting in a stationary VAR. However, some 
aspects of VAR modelling are still valid in the presence of I(1) variables (see Toda and 
Phillips, 1993 and Toda and Yamamoto, 1995), and Lütkepohl provides more details and 
references in Chapter 6. If the multivariate system includes I(d) variables, d $ 1, the more 
usual macroeconomic modelling framework is that of the cointegrating VAR, CVAR.

4.3 Cointegration

As noted, one possible response to a unit root is to formulate the VAR in the first dif-
ferences of the variables. However, such a formulation provides no information on the 
relationship between the levels of the variables in the VAR, and it is this aspect on which 
economic theory is usually most informative. This option is not, therefore, generally 
satisfactory even though a VAR in terms of Dyt models is stationary.

A satisfactory alternative arises when the variables in yt are cointegrated. Suppose 
that each of the variables in yt is non- stationary, but on differencing once they become 
stationary, that is they are I(1) and so modelling them jointly using a VAR in levels 
would reveal a unit root in the autoregressive polynomial. A linear combination of I(1) 
variables can be I(0), a situation summarized with the shorthand CI(1,1) to indicate that 
I(1) variables are reduced by one order of integration in a linear combination. In this 
case the candidate I(0) variables are, therefore, not just the first differences but also the 
cointegrating combination(s) formed from the I(1) variables. Note the use of the plural 
here: when K.2 there may be more than one linear combination of the K I(1) variables 
which is stationary, each of which is a candidate regressor. Hence, a more promising way 
forward is to formulate models that capture short- run responses and the long- run rela-
tionships as represented in the cointegrating combinations. This is the topic of Chapter 7 
by James Davidson, with some preliminary concepts reviewed here.

A result due to Engle and Granger (1987), which is part of what is known as the 
Granger Representation Theorem (implication 4), is of relevance; it states that if the 
K 3 1 vector of variables yt is CI(1, 1) then there exists an error correction representation 
of the general form:

 Dyt 5 A(1)21h 1 azt21 1ap21

j51
GjL 

jDyt 1 q (L)et (2.34a)

 5 m 1 Pyt21 1ap21

j51
Gj Dyt2 j 1 q (L)et, (2.34b)

where m 5 A(1)21h, zt21 5 b ryt21 are r linear, cointegrating combinations amongst the 
K variables, b r is the r 3 K matrix of r cointegrating vectors, a is the K 3 r matrix of 
adjustment or error correction coefficients and P 5 ab r. The coefficient vectors are 
related to those in the VAR as P 5 g p

j51Aj 2 I  and Gj 5 2g p
i5 j11Ai. There may be a 

moving average ‘disturbance’, q (L)et, with q (L)  a lag polynomial but often, for practical 
purposes, q (L)  is degenerate, that is the identity matrix, which is an assumption we will 
adopt for this chapter.

The interpretation of the error correction representation is appealing: the long- run 
or equilibrium relationships amongst the levels of the variables are captured by the 
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 cointegrating combinations zt21 5 b ryt21; non- zero values of zt21 indicate (lagged) dis-
equilibria that are eradicated through the adjustment coefficients in a, with each column 
of a associated with one of the r stationary cointegrating combinations; short- run 
dynamic adjustments are captured by non- zero values for the elements in Gj. The error 
correction representation thus models entirely in I(0) space: b ryt21 is I(0) through cointe-
gration and Dyt2 j is I(0) by differencing; hence, the VAR is balanced in mean and, given 
cointegration, it may be referred to as a CVAR, a vector error correction model, VECM, 
or a vector equilibrium correction model, VEqCM.

Note that the cointegration ‘space’ can be isolated but not the cointegrating vector(s). 
The component matrices of P, that is a and b, are not unique and so to refer to the former 
as the adjustment coefficients and the latter as the cointegrating coefficients is subject 
to a qualification. For example, if b r is scaled by a full rank r 3  r matrix L, such that 
b
4
r 5 Lb r, with corresponding adjustment coefficients a4, then we can write P as P 5 

4a
4
b r 5 aL21Lb r 5 ab r. Hence, both b

4
 and b are matrices of cointegrating vectors and a 

normalization refers to a choice of the L matrix. A normalization is usually chosen that 
corresponds to an interpretation of a and b r in an economic context; for example, typical 
normalizations seek to interpret individual equations by way of a normalization such that 
a different coefficient in each of the r vectors in b r is set to unity (as in a traditional SEM 
normalization). For more on the role of normalization in a CVAR context see Phillips 
(1991), Boswijk (1996) and Luukkonen et al. (1999), and for examples see Juselius (2006).

Will it always be the case that a cointegrating vector or vectors exist? Intuition sug-
gests that this cannot be the case. For example, in a bivariate VAR suppose that y1t is 
unrelated to y2t, or y1t and y2t are part of a larger system, then we should not be able to 
find a cointegrating vector for y1t and y2t or y1t and y2t alone. This prompts the question: 
what particular features of a VAR indicate the existence of cointegrating vectors? P is an 
example of a matrix which does not have independent rows or columns and, therefore, 
is a matrix with less than full rank; it is said to have reduced or deficient rank. Whilst a 
matrix of reduced rank will have a determinant of zero, this does not tell us the order of 
the deficiency in rank. Another more fruitful possibility is to obtain the eigenvalues of P, 
for which it is necessary to solve the characteristic equation given by:

 det [P 2 lI ] 5 0. (2.35)

where l is a scalar. A zero value for one of the eigenvalues alerts us to the deficient rank 
of P and, in general, the number of non- zero eigenvalues of P is its rank, which in turn is 
the number of cointegrating vectors. (Note that an eigenvalue of zero for P corresponds 
to an eigenvalue of unity in the corresponding VAR.) The implications of the rank of P 
are summarized in Table 2.1.

Table 2.1 Implication of the rank of P

Rank Implications

r 5 K (maximum) VAR is stationary in levels
1 # r # K − 1 Cointegration with r cointegrating vectors
r 5 0 VAR can be reformulated entirely in first differences
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Consider the following first order VECM in two variables:

 aDy1t

Dy2t
b  5 c21/2 1/16

1/2 21/16
d ay1t21

y2t21
b  + ae1t

e2t
b

 5 a21/2
1/2
b (1 2 1/8) ay1t21

y2t21
b  1 ae1t

e2t
b.

The single cointegrating vector is y1t 2 1/8y2t, with adjustment coefficients of –½ for 
the first equation and ½ for the second equation. The eigenvalues of P are obtained as 
follows:

 c21/2 1/16
1/2 21/16

d 2 cl 0
0 l

d  5 c2(1/2 1 l) 1/16
1/2 2 (1/16 1 l) d ,

so that 0P 2 lI 0  is:

 cc2(1/2 1 l) 1/16
1/2 2(1/16 1 l) dd  5 (1/2 1 l) (1/16 1 l) 2 (1/2) (1/16)

 5 l2 1 (9/16)l 5 l [l 1 (9/16) ].

Hence, setting this expression to zero gives the eigenvalues l1 5 0 and l2 5 −9/16; as one 
of these is zero, the rank of P is deficient, indeed the rank of P is one and there is one 
cointegrating vector.

Johansen’s procedure for testing for the cointegrating rank is based on the number of 
eigenvalues that are statistically different from zero using a likelihood ratio- based prin-
ciple (see Johansen, 1988, 1995; Johansen and Juselius, 1990; and Juselius, 2006). There 
are two versions of the test known as the trace test and the lmax (or maximal eigenvalue) 
test, although the former is more often used than the latter. The details of these and some 
other tests are given in Chapter 7.

4.4 Dynamic Panel Data

The recent growth in the quantity and coverage of macroeconomic data has made it 
possible to estimate a range of models where the vector of dependent variables, Yt, and 
the matrix of exogenous variables, Xt, contain equivalent economic variables observed 
for a group of n countries. As n becomes large, however, the number of parameters to 
be estimated in a standard VAR rapidly becomes prohibitive. For example, the open 
VAR(2) given in equation (2.26) with one exogenous variable per country contains 
n 1 3n2 1 n(n11)/2 coefficients, which for a modest sample of 10 countries equates to 
365 coefficients. To overcome this problem of dimensionality, panel data techniques 
from microeconomics have been adapted to the particularities of macroeconomic data, 
for example modelling with lagged endogenous variables and, quite often, longer time 
spans. This is discussed further in Chapter 10, by Badi Baltagi, which begins with a 
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model that can be thought of as an open VAR(1) with restrictions on the parameters so 
that the heterogeneity between countries is captured in the vector h.

The availability of some very large macroeconomic datasets, such as the Penn World 
Table, has led to the   development of methods that allow for a sophisticated treatment 
of the error term to capture unexplained correlations between the dependent variables. 
Chapter 11, by Jörg Breitung and In Choi, discusses models where the error has a factor 
structure; that is the error for each country contains a part that is idiosyncratic and the 
effects of a number of common factors which depend on the so- called factor loadings for 
that country.

5 ESTIMATION METHODS

As far as estimation is concerned, introductory texts in econometrics focus on the 
method of ordinary least squares, OLS, perhaps also including an outline of classical 
maximum likelihood, ML, estimation. The reader will note from the contents of this 
Handbook that the key estimation methods are the generalized method of moments, 
GMM, ML and Bayesian estimation, and these methods are briefly introduced in this 
chapter. Alastair Hall deals more extensively with GMM in Chapter 14 and Francisco 
Ruge- Murcia considers GMM estimation of DSGE models in Chapter 20; Tommaso 
Proietti and Alessandra Luati consider ML estimation and the Kalman Filter in 
Chapter 15; while Bayesian methods are the subject of Chapter 16 by Luc Bauwens and 
Dimitris Korobilis and their application to macroeconomic modelling is considered in 
Chapters 18, 21 and 24.

5.1 The Method of Moments

The method of moments (MM) first identifies a set of population moments that are equal 
to zero; the parameter estimates are then obtained by mimicking the chosen population 
moments by the corresponding sample moments. This is a unifying principle of estima-
tion, which includes ordinary least squares, instrumental variables (IV), two- stage least 
squares (2SLS), and other methods for simultaneous equations, and maximum likeli-
hood; it can be applied equally to data comprising time series observations, cross- section 
observations or a combination of both; it can be applied to situations where there is het-
eroskedasticity and/or serial correlation and to inherently non- linear models. When there 
are more moment conditions than parameters to be estimated, analogous to the case of 
over- identification in a standard simultaneous equations framework, it is not generally 
possible to simultaneously satisfy all of the sample moment conditions, and the develop-
ment of MM for this case is referred to as the generalized method of moments (GMM).

MM and GMM not only include standard methods of estimation, they offer a general 
method of estimation that has found particular applications in macroeconomics and 
finance. (For a very readable introduction to GMM see Wooldridge, 2001, and a book 
length exposition with many examples is provided by Hall, 2005.) The moment condi-
tions are essentially orthogonality conditions, which are familiar from standard models, 
such as the errors are orthogonal to the regressors or the errors are orthogonal to a set 
of instrumental variables (which may include some of the regressors). In an economic 
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context the key is to obtain orthogonality conditions that derive from the underlying 
theory (for illustrations see, for example, Hansen and West, 2002). For example, a 
leading case is that the errors from a rational forecast based on an information set at time 
t, say Wt, are orthogonal to Wt. Orthogonality conditions also arise, and are exploited in 
a GMM framework, in dynamic stochastic general equilibrium (DSGE) models, and a 
section of this Handbook is devoted to that topic; see Chapters 18–21. Given the cover-
age of those chapters, this section provides a more basic underlying motivation for MM 
and GMM. Alastair Hall in Chapter 14 gives examples that show the flexibility of GMM 
applications in a macroeconomic context.

The notation used here emphasizes the standard linear regression model as a means of 
introducing the key unifying principles of estimation by MM and GMM, which are then 
extended later in the Handbook. The notation is, therefore, framed in terms of the param-
eter vector b. Considering the problem more generally, as in Chapter 17, the usual nota-
tional convention is to seek an estimator of the parameter vector generically denoted q.

To continue let E [gt(b) ]denote the population moment function for index t, where 
gt(b)  is a chosen function of the variables and parameter vector b. The simplest case 
for motivation is where E(yt)  5 b, and b is a constant, with yt a stationary, ergodic 
random variable; let gt(b)  5 yt 2 b, then the (population) moment condition is E [gt(b) ] 
5 E [yt 2 b ] 5 0. The sample analogue of this condition is then formed and solved to 
provide an estimator b| of b, that is:

 T21aT

t51
gt(b

|)  5 T21aT

t51
yt 2 b

| 5 0 1 b| 5 T21aT

t51
yt.

The MM estimator b| uses the ensemble average T21gT
t51yt as an estimator of E(yt) , 

hence the need for ergodic stationarity of yt.
Two cases relevant to econometrics will serve to illustrate the principle of MM esti-

mation. The first case is the standard linear regression model where the regressors are 
random variables:

 yt 5 x rtb 1 et  t 5 1, . . ., T, (2.36)

where xt 5 (xt1,  xt2,  . . .,  xtK)r and b 5 (b1,  b2,  . . .,  bk)r. In familiar matrix- vector notation, 
this is:

 y 5 Xb 1 e, (2.37)

where y 5 (y1,  y2,  . . .,  yT)r, e 5 (e1,  e2,  . . .,  eT)r and x rt  is the tth row of X; further E(xtx rt)  
5 Sxx and E(xtyt)  5 Sxy are K 3 K and K 3 1 population moment matrices invariant to t. 
(In general the random variables in this and subsequent models are assumed to be jointly 
stationary and ergodic; see for example Hayashi, 2000.) For simplicity initially assume 
that E(eer)  5 s2

eI. (When the identity matrix is not subscripted it is of order T.) Note that 
in general a subscripted S indicates a population moment whereas the corresponding 
sample moment is indicated by Ŝ; for example, the sample moment analogues of Sxx and 
Sxy are Ŝxx 5 T21gT

t51xtx rt  and Ŝxy 5 T21gT
t51xtyt.

In this set- up xtk is a random variable, in contrast to the ‘fixed in repeated samples’ 
assumption of elementary texts, with the property that for all t 5 1, . . ., T, it is 
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 orthogonal to the error at time t, et; hence (2.37) is described as a regression model. The 
moment conditions of interest relate to gt(b)  5 xtet and collecting these (orthogonality) 
conditions they can be expressed as:

 E [gt(b) ] 5 E(xtet)  5 0K  for all t, (2.38)

where 0K is a K 3 1 vector of zeros as indicated by the K subscript.
As Wooldridge (2001) notes, these moment conditions are the weakest sense in which 

the xtk can be regarded as ‘exogenous’ in (2.36). Note that (2.38) implies E(xtket)  5 0 for 
all t and k 5 1, . . ., K. If xt1 5 1, then this includes the condition that E(et)  5 0 for all t, 
the other conditions being interpreted as that each of the regressors is uncorrelated with 
the error term for all t. If the set (2.38) is satisfied, then the regressors are referred to as 
‘predetermined’, whereas ‘strict exogeneity’ is a strengthening of (2.38) to E(xset)  5 0 for 
all s and t, so that the et are orthogonal not only to xt, but also to past regressors, s , t, 
and future regressors, s . t.

The sample analogue of (2.38) is:

 Ŝx ê 5 T21aT

t51
xtêt 5 0K. (2.39)

That is apart from T21, the K 3  1 vector in (2.39) is given by:

 ± x11

x12

(
x1K

≤ ê1 1 ± x21

x22

(
x2K

≤ ê2 1 . . . ± xT1

xT2

(
xTK

≤ êT 5 ± gT
t51xt1êt

gT
t51xt2êt

(gT

t51xtK êt

≤  5 ± 0
0
(
0

≤ . (2.40)

This is written more familiarly as X rê 5 0, which follows from the normal equations 
derived from minimizing the residual sum of squares. If xt1 5 1, then the first column 
element is gT

t51 êt 5 0. Substituting for êt 5 yt 2 x rt b̂, where b̂ is the estimator of b that 
solves (2.39), results in the usual OLS estimator:

 b̂OLS 5 caT

t51
xtx rt d 21

aT

t51
xtyt

 5 Ŝ21
xx Ŝxy

 5 (X rX)21X ry. (2.41)

An interesting way of deriving the OLS estimator, which enables its interpretation as a 
method of moments estimator, is to premultiply (2.37) by X r to obtain:

 X ry 5 X rXb 1 X re. (2.42)

The population moment conditions set E(X re)  5 0, whereas the sample counterparts 
set T21X re|  5 0 for the choice of e|  5 y 2 Xb

|, where b|  5 b̂OLS 5 (X rX)21X ry. In this 
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case the limiting distribution of b̂OLS is summarized as !T(b̂OLS 2 b)  1 D N(0,  s2
eS

21
xx ) , 

bearing in mind that p lim(T21ST
t51xtxrt)  5 Sxx. The asymptotic distribution (denoted 

1 A) of b̂OLS is then b̂OLS 1 A N(b,  s2
eT21S21

xx ) ; estimating Sxx by Ŝxx and s2
e by 

ŝ2
e 5 g ê2

t / (T 2 k) , where ŝ2
e 5 yt 2 xrtb̂OLS, the estimated asymptotic variance (EAVAR) 

of b̂OLS is EAVAR(b̂OLS)  5 ŝ2
e (X rX)21.

The second case to consider is where some or all of the required orthogonality condi-
tions do not hold, which in least squares terms leads to the instrumental variables (IV) 
estimator. Suppose that the orthogonality conditions of (2.38) hold for a set of random 
variables zt 5 (zt1,  zt2,  . . .,  ztL)r, which are not necessarily the regressors in (2.36), so that:

 E(ztet)  5 0L. (2.43)

We can return to (2.38) by assuming that zt 5 xt and, therefore, K 5 L; however, the new 
set- up allows some or all of the original orthogonality conditions to fail, as in simultane-
ous equation systems or in an errors in variables framework. For example, suppose the 
first K1 conditions are valid, but the remaining K2 fail and, initially, assume that K 5 L; 
then zt 5 (xt1,  . . .,  xtK1

,  ztK111, . . .,  ztK)r, so that zrt  is the tth row of the matrix Z.
The method of moments approach proceeds as in the OLS case by using the sample 

analogue of the population moment conditions:

 g(b|)  5 T21aT

t51
zte

|
t 5 T21Z re|  5 0K. (2.44)

Resulting in:

 b
|

MM  5 cT21aT

t51
ztxrt d 21

T21aT

t51
ztyt (2.45)

 5 Ŝ21
zx Ŝzy

 5 (Z rX)21Z ry,

 EAVar(b|MM)  5 s|2
e (Z rX)21Z rZ(X rZ)21 (2.46)

 5 s|2
eT21Ŝ21

zx ŜzzŜ
21
xz

 s|2
e 5 T21aT

t51
e|2

t

 e|t 5 yt 2 x rtb
|

MM.

b
|

MM is also the instrumental variables estimator, b|IV, where xtj, j 5 1, . . ., K1 are their own 
instruments and (ztK111. . .,  ztK)  is a set of instruments for (xtK111,  . . .,  xtK) . Given L 5 K, 
the dimension of b, the solution is unique requiring that (Z rX)21 exists,  equivalently 
(Z rX)  is of full rank.

If L . K, and there are no linear dependencies amongst the Z variables, then in a sense 
there are ‘too’ many orthogonality conditions, a situation that leads to the generalized 
method of moments considered in the next section. In a simultaneous equations context 
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this is referred as over- identification, which leads to non- uniqueness in the parameter 
estimates (in the sense that L – K of the orthogonality conditions can be discarded to 
obtain a solution). The IV (also two- stage least squares, 2SLS) solution to this problem 
is to regress the columns of X on Z and use the predicted values of X. Consider:

 X 5 Zg 1 u. (2.47)

The OLS estimator of the L 3  K vector g is ĝ 5 (Z rZ)21Z rX, with fitted values X̂ 5 
Zĝ. The corresponding IV estimator uses the linear combinations given by X̂ in place of 
Z, that is:

 b̂IV 5 Ŝ21
xx̂ Ŝx̂y

 5 [ (X rZ) (Z rZ)21 (Z rX) ]21 (X rZ) (Z rZ)21Z rXy (2.48)

 EAVar(b̂IV)  5 ŝ2
e [ (X rZ) (Z rZ)21 (Z rX) ]21 (2.49)

 ŝ2
e 5 T21aT

t51
ê2

t

 êt 5 yt 2 x rt b̂IV.

When a column (or columns) of X is (are) in Z, then it (they) will be reproduced in X̂.

5.2 The Generalized Method of Moments

Continuing with the case L . K, the problem from this perspective is that there are more 
moment equations than there are parameters, hence it will not in general be possible 
to simultaneously satisfy all of the sample moment conditions by a choice, say, b| of b 
of dimension K 3  1. Instead, GMM proceeds by choosing a b| that results in g(b|)  as 
‘close’ to 0L as possible in a well defined sense. At this stage to show the generality of the 
approach, let E(eer)  5 F, thus heteroskedasticity and serial correlation may be present.

Given that not all of the sample moment conditions can be satisfied, the ‘close’ to 0L 
criterion refers to converting the L- dimensions of the sample moment conditions to a 
scalar using a particular metric. To this end let Ŵ and W be L 3  L symmetric positive 
definite matrices, referred to as weighting matrices, such that Ŵ S p W as T S  q. (In 
some notations, Ŵ is indexed or subscripted by T to emphasize its sample dependence; 
also Ŵ can be relaxed to be positive semi- definite, see Chapter 14, Definition 2.) Then the 
solution to the following minimization problem is the GMM estimator (indexed by Ŵ):

 min
|b

 [g(b|)r ]Ŵ [g(b|) ]. (2.50)

The function to be minimized is a weighted quadratic form in the sample moment con-
ditions where g(b|)  5 T21gT

t51zte
|(b|)  5 T21Z re|(b|)  and e|(b|)  5 y 2 Xb

|. Making the 
substitutions, b|GMM solves:

 min
|b

 T22e| rZŴZ re|. (2.51)
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This can then be viewed as minimizing the weighted sum of squares e|rV e|, where V 5 
ZŴZ r. The explicit solution to this minimization problem is:

 b
|

GMM 5 (X rZŴZrX)21X rZŴZry. (2.52)

The GMM residuals are then defined using b|GMM. The GMM estimator can be expressed 
in terms of the sample moments and Ŵ as:

 b
|

GMM 5 (ŜrzxŴ Ŝzx)21ŜrzxŴ Ŝzy. (2.53)

There is not a unique GMM estimator (although b|GMM is unique for a particular choice 
of Ŵ), but rather a class of GMM estimators indexed by a choice of Ŵ. Comparison of 
b
|

GMM of (2.53) with b̂IV of (2.48) shows that b̂GMM 5 b̂IV for the choice Ŵ 5 (Z rZ)21.
As in the case of the OLS estimator, the GMM estimator can be viewed as first pre-

multiplying (2.37) by Z r to obtain:

 Z ry 5 Z rXb 1 Z re. (2.54)

In this context, the population moment conditions set E(Z re)  5 0; in seeking an estima-
tor by setting Z re|  5 0 for some choice of e|, note that E [Z re(Z re)r ] 5 E(Z ree rZ)  5 
Z rFZ ; W. The estimator taking into account W (as in a GLS approach) sets Ŵ 5 W21 
5 (Z rFZ)21, thus:

 b
|

GMM 5 [ (X rZ)W21 (Z rX) ]21 (X rZ)W21Z rXy

 5 [ (X rZ) (Z rFZ)21 (Z rX) ]21 (X rZ) (Z rFZ)21Z rXy. (2.55)

If F is unknown, as is generally the case, then b|GMM is infeasible. The particular case F 5 
s2

eI  has already been considered (that is the IV/2SLS case), and then b|GMM reduces to:

 b
|

GMM 5 [ (X rZ) (Z rZ)21 (Z rX) ]21 (X rZ) (Z rZ)21Z rXy. (2.56)

This is the 2SLS/IV estimator of (2.48); moreover, when F ? s2
eI, b|GMM in (2.55) can be 

viewed as the generalized IV estimator, GIVE (that is IV for the case when E(eer)  5 F).
The next question to consider is whether there is an optimal choice of Ŵ in the sense 

of minimizing the asymptotic variance matrix of b|GMM. The answer is yes, and it corre-
sponds to the lower bound for b|GMM given by using Ŵ such that Ŵ S p W21; with this 
choice the GMM estimator is said to be efficient, for example see Chamberlain (1987).

Estimation is usually undertaken in two steps (and can be iterated). The first step uses a 
consistent but inefficient estimator of b, such as b|GMM of (2.56), to obtain residuals that are 
used in the second stage to define Ŵ 5 Ŵ21, and then g(b|)rŴg(b|)  is minimized to obtain 
the feasible (efficient) version of b|GMM. This procedure includes several familiar estimators. 
For example, if E(Z re)  5 0, and the errors are heteroscedastic, then one possibility is to 
use Ŵ 5 I in the first stage, which obtains the IV/2SLS residuals êt, and then in the second 
stage form Ŵ 5 T21gT

t51ê
2
t ztzrt, which is a consistent estimator of W 5 T21gT

t51s
2
t ztz rt. Using 

Ŵ21 in place of W21 in (2.55) gives the two- step feasible GMM estimator.
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Whilst this section has shown that GMM includes estimators such as OLS, IV and 
2SLS as special cases, GMM does more than unifying other estimators, it offers an 
estimation method that is valuable in an empirical macroeconomics context where the 
moment conditions arise from an underlying non- linear economic model; examples of 
this kind are included in Chapter 14.

5.3 Maximum Likelihood

The reader is likely to be familiar with the application of ML to the simple regression 
model, hence we use this as a simple way to link into the rather more complex cases as 
preparation for later chapters in this Handbook. Consider the simple linear model of 
(2.36) restated here for convenience:

 yt 5 x rtb 1 et   t 5 1, . . ., T, (2.57)

where xt 5 (xt1,  xt2,  . . .,  xtK)r is a vector of K random variables (the first of these may in 
practice be set equal to unity, that is xt1 5 1 for all t, to allow a constant in the regression, 
but the argument is easily modified in that case). Rather than simply add the assumption 
that et is normally distributed and form the likelihood function based on et 5 yt 2 x rtb, it 
is more satisfactory conceptually to first consider f(yt,  xt) , the joint (probability) density 
function for yt and xt.

The joint density may then be factored as the product of a conditional density and a 
marginal density:

 f(yt,  xt;  y)  5 f(yt 0   xt;  y1)f(xt;  y2) . (2.58)

(Recall the simple rule in discrete probability calculus that p(A  d   B)  5 p(A 0   B)p(B)  
where A and B are two random events.) The parameter vector y 5 (yr1,  yr2)r recognizes 
that, in principle, both the conditional and marginal densities will involve parameters. In 
the linear regression model the vector y1 5 (br,  s2

e)r contains the parameters of interest, 
which combined with the standard assumption that there is no relationship between y1 
and y2, implies that the ML estimator may then be obtained by maximizing the condi-
tional likelihood function, where the conditioning is on xt.

The likelihood function takes the data as given and views the density functions as 
a function of a parameter vector y|1, so that the true value y1 is one element of y|1. To 
distinguish the pdf from the conditional likelihood function, the latter is written as 
L(y|1  0   yt;  xt)  and the ML estimator of y1 is the one that maximizes this function. To 
proceed with this estimator it is necessary to make an assumption about the form of 
the pdfs; again this is done in two steps, first that yt and xt have a bivariate normal dis-
tribution, second it follows as an implication that the conditional pdfs, f(yt 0   xt;  y1)  and 
f(xt 0   yt;  y1) , are each univariate normal. This may now be put in context with the linear 
regression model, where the conditional pdf for the tth random variable is:

 f(yt  0   xt,  y1)  5 
1

(2ps2
y 0x) 1/2 exp e2 (yt 2 x rtb)2

2s2
y 0x f    t 5 1, . . ., T,
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 5 
1

(2ps2
e) 1/2 exp e2 e2

t

2s2
e

f    t 5 1, . . ., T, (2.59)

where et 5 yt 2 x rtb. Note that the variance of yt conditional on xt, s2
y 0x 5 s2

e, is assumed 
to be invariant to t (that is homoscedastic conditional variances). To consider T such 
random variables requires an assumption about E(etes)  for t ? s, the usual ‘starting’ 
assumption being that E(etes)  5 0, so that the conditional pdf for all T random variables 
is the product of the T individual pdfs:

 f(Y  0   X,  y1)  5 qT

t51

1
(2ps2

e) 1/2 exp e2 (yt 2 x rtb) 2

2s2
e

f ,  t 5 1, . . ., T. (2.60)

Next, taking logarithms and considering this as a function to be maximized over y|1 5 
(b|r,  s|2

e)r gives the (conditional) log- likelihood (LL) function:

 LL(y|1  0   Y,  X)  5 2
T
2

ln(2p) 2
T
2

ln(s|2
e) 2

1
2s|2

e
aT

t51
(yt 2 x rtb

|) 2 (2.61)

 5 2
T
2

ln(2p) 2
T
2

ln(s|2
e) 2

1
2s|2

e

(y 2Xb
|)r (y 2X b

|) .

Maximizing LL(y|1  0   Y,  X)  with respect to b|, taking s|2
e as given, results in the ML esti-

mator of b, which coincides with the (O)LS estimator; then setting b|  to the ML estima-
tor in the log- likelihood function, known as concentrating the function, and minimizing 
that function results in the ML estimator of s2

e.
In practice many macroeconomic applications involve dynamic models so that lagged 

values of yt are in the xt vector. The simplest case will illustrate the distinction between 
the unconditional and the conditional likelihood function and the implications for the 
corresponding ML estimators. Suppose data are generated as yt 5 ryt21 + et, et ~ N(0, 
s2

e), t 5 2, . . ., T, then the likelihood function depends on how the initial observation 
y1 is dealt with. To consider the difference, note that the joint density function for all T 
observations, {yt}T

t51, is:

 f({yt}T
t51)  K f(yT,  yT21,  . . .,  y2,  y1)  (2.62)

 5 f(yT  0   YT21)f(yT21  0   YT22)   . . .  f (y2  0   Y1) f(y1) ,

where Yt 5 (yt,  . . .,  y1) . Apart from f(y1) , the log conditional densities are of the 
 following form (for t 5 2, . . ., T):

 ln[f(yt  0   Yt21) ] 5 2
1
2

ln(2p) 2
1
2

ln(s2
e) 2

1
2s2

e

(yt 2 ryt21)2. (2.63)

The complete joint density function also depends on how y1 is generated; perhaps the 
leading case is to assume that it has been generated from the unconditional distribution 
for yt, thus y1 ~ N(0, s2

y) where s2
y 5 (1 2 r2)21s2

e (see Pantula et al., 1994); this is referred 
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to as the stationarity assumption, as it implies that the process generating yt does not 
differ comparing t 5 1 and t 5 2, . . ., T. In this case the log of f(y1)  is:

 ln[f(y1) ] 5 2
1
2

ln(2p) 2
1
2

ln(s2
e) 2

1
2s2

e

y2
1. (2.64)

Taking the sum of the (T – 1) identical terms and the one due to the generation of y1, the 
log of the joint density function is:

 aT

t52
ln[ f(yt  0   Wt21) ] 1 ln[ f(y1) ] 5

 2
(T21)

2
ln(2p)2

(T21)
2

ln(s2
e)2

1
2s2

e
aT

t52
(yt2ryt21) 2

  2
1
2

ln(2p) 2   

1
2

ln
s2

e

(12 r2) 2
1

2s2
e

y2
1 

 5 2
T
2

ln(2p) 2
T
2

ln(s2
e) 2

1
2s2

e
aT

t52
(yt 2 ryt21) 2 1

1
2

ln(1 2 r2) 2
1

2s2
e

y2
1.

Treating this as a function of the parameters rather than the data gives the likeli-
hood function, and maximizing accordingly over r|  gives the unconditional (or exact) 
ML estimator. It is referred to as the unconditional ML estimator because it includes 
the terms relating to the generation of y1, whereas the conditional likelihood func-
tion does not include these terms. Notice that the contribution of y1 does involve the 
parameter of interest r, so that maximizing the conditional likelihood function is not 
the same as maximizing the unconditional likelihood function. Indeed the latter is a 
non- linear estimator that involves the solution of a cubic equation if the mean of the 
process is assumed known (here for simplicity it was set equal to zero) and a fifth order 
equation otherwise. For a unit root test based on the exact ML estimator, see Shin 
and Fuller (1998), and note that whilst maximizing the conditional likelihood func-
tion leads to a unit root test statistic with the same asymptotic distribution as its least 
squares counterpart, that is not the case for the same test statistic derived from exact 
ML estimation.

Whilst the AR(1) model is a simple illustration of the difference between the exact and 
conditional ML estimator, the implications carry across to VAR models including vari-
ants such as reduced form VARs, SVARs and cointegrating VARs; the exact ML will 
differ from the conditional ML estimator as it includes the terms in the likelihood that 
account for the generation of the initial vector y1 5 (y11,  y12,  . . .,  y1K)r.

A second consideration arises from macroeconomic applications in which maximiz-
ing the conditional log- likelihood function does not result in maximization of the joint 
 likelihood function. Consider the following simple example:

 c 1 2 g12

2g21 1
d ay1t

y2t
b  5 cb11 b12

b21 b22
d ax1t

x2t
b  1 au1t

u2t
b. (2.65)

This is an example of the following general (SEM) specification:

 Gyt 5 Bxt 1 ut. (2.66)
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The parameters of interest are y 5 (g12,  g21,  b11,  b12,  b21,  b22,  Su) . This is a ‘traditional’ 
SEM in the sense that yt is a vector of endogenous variables assumed to be jointly nor-
mally distributed conditional on xt, where xt is a vector of exogenous variables; restric-
tions will have to be imposed if the structural coefficients are to be identified, typically 
these will be in the nature of exclusion restrictions such as b12 5 b21 5 0.

To obtain the ML estimators, we might think of starting by factorizing the joint 
density as:

 f(y1t,  y2t,  x1t,  x2t)  5 f(y1t  0   y2t,  x1t,  x2t)f(y2t  0   x1t,  x2t)f(x1t,  x2t) . (2.67)

However, basing ML estimation on f(y1t  0   y2t,    x1t,  x2t) , which conditions y1t on y2t,  x1t,  x2t, 
is incorrect as, assuming that g12 ? 0, there is a functional relationship between y1t and 
y2t. Maximizing a LL function based on this conditioning will not result in maximization 
of the LL based on the joint density. The correct factorization is:

 f(y1t,  y2t,  x1t,  x2t)  5 f(y1t    y2t  0   x1t,  x2t)f(x1t,  x2t) . (2.68)

In the general case, with M endogenous variables, the log likelihood function based on 
all T observations is:

 LL(y,  Su  0   Y,  X)  5

 2
MT

2
ln(2p)1T ln[det(G) ]2

T
2

ln[det(Su)] 2
1
2a

T

t51
(Gyt 2Bxt)rS21

u (Gyt2Bxt).
 (2.69)

Estimation is based on maximizing this likelihood function and the resulting estimator is 
referred to as the full information ML (FIML) estimator; for excellent expositions of the 
FIML procedure see Greene (2011) and Hayashi (2000). A frequently used estimation 
method for cointegrating systems is based on the FIML method, and the log- likelihood 
on which that approach is based can be obtained as a specialization of (2.69) (see 
Johansen, 1995).

The maximum likelihood approach is attractive when one can be reasonably sure that 
the form of the density function is known and when a FIML approach is taken that 
the complete model is well specified. The method of GMM works with a much weaker 
assumption than that the form of the density function is known, focusing instead on 
conditions that specify that certain population moments are zero; GMM is also likely 
to be the estimation method of choice when moment conditions are available from an 
underlying economic model.

5.4 Bayesian Econometrics

Underlying the method of maximum likelihood the generalized method of moments esti-
mation and the classical approach to statistics in general is the assumption that there is a 
‘true model’ or data generating process and the job of the econometrician is to estimate 
the predetermined parameters, y, of that data generating process. Bayesian methods, on 
the other hand, acknowledge the uncertainty around y and attempt instead to describe 
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this uncertainty in the form of a probability distribution. In contrast to the classical 
view, the process of estimation is not the discovery of an objective true value, but the 
ongoing refinement of the analyst’s subjective views on the values that y might take. 
This distinction reflects two rival views on the nature of probability itself: the Bayesian 
view that probability is a subjective measure of the analyst’s degree of belief that an event 
will happen; and, the ‘frequentist’ view that probability is an objective measure of how 
frequently an event will happen.

In Bayesian estimation, the analyst begins with some prior beliefs about the parameter 
vector captured by a density function f(y) . The requirement to provide such a prior, 
which could be the result of economic theory or of previous analyses, is the first and 
most obvious distinction between Bayesian and classical statistics. The prior is then 
updated in the light of the data, Y, to produce a posterior density, f(y 0Y) , using Bayes 
theorem:

 f(y 0Y) 5
f(Y 0y) f(y)

f(Y) , (2.70)

where f(Y 0y) is the familiar likelihood function and f(Y)  is the marginal distribution of 
Y, which can be calculated as:

 f(Y) 5 3f(y)f(Y 0y)dy.

Equation (2.70) can be read as: the posterior density is proportional to the likelihood 
function times the prior density. The posterior density provides a richer picture of y 
than is available through classical methods. In order to derive a single point estimate of 
y from this density, a loss function, C(ŷ,y) which specifies the cost of using ŷ when the 
parameter is y, for example the quadratic loss function C(ŷ,y)5 (ŷ 2 y) 2, is deployed. 
The chosen point estimate, y*, minimizes the expected value of the loss function, where 
the expectation is relative to the posterior density,

 y 5 argminŷ3C(ŷ,y)f(y 0Y)dy.

The estimation of an interval analogous to a 100(1−a) per cent confidence inter-
val can then be made by choosing the smallest region within the support of y that 
contains 100(1−a) per cent of the posterior density, known as the highest posterior 
density.

Unfortunately, in many applications of interest to the macroeconomist, the updat-
ing  in equation (2.70) cannot be performed analytically. Instead posterior den-
sities  are often elicited using Monte Carlo simulations, an approach that has 
increased  greatly in popularity as computing power has risen. This approach has 
proven particularly popular in estimating DSGE models, which is the topic of Chapter 
18 by  Christiano  Cantore, Vasco Gabriel, Paul Levine, Joseph Pearlman and Bo 
Yang  and Chapter 21 by Pablo Guerrón- Quintana and James Nason. The use of 
the  Dynare computer package for estimation is the subject of Chapter 25 by João 
Madeira.
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6 CONCLUDING REMARKS

Many of the key developments in econometrics, especially over the last thirty years, 
have been focused on or motivated by applications in macroeconomics. For a historical 
perspective prior to 1991, see Bodkin et al. (1991). Some key developments include the 
following: (i) The seminal article by Nelson and Plosser (1982) drew attention to the dif-
ference between deterministic and stochastic trends in the context of 14 macroeconomic 
and financial time series. (ii) Hansen’s (1982) generalized method of moments (GMM) 
estimation method has found many applications in macroeconomics, for example 
consumption and investment (Hansen and Singleton, 1982), and in estimating DGSE 
models (see for example, Long and Plosser, 1983 and Christiano and Eichenbaum, 1992 
on modelling the real business cycle). (iii) Cointegration (Engle and Granger, 1987), and 
especially Johansen’s (1988, 1995) methods for estimation and hypothesis testing, led to 
a fundamental rethinking of the way that macroeconometric models were specified and 
estimated. (iv) Sims (1980) called into question the validity of the traditional method 
of modelling simultaneous equations in the Cowles Commission approach, leading 
to SVARs that seek identification conditions through restrictions on the covariance 
matrix of the shocks rather than (primarily) through exclusion restrictions, an approach 
that has led to many macroeconomic applications. There is little doubt that the future 
developments in empirical macroeconomics will go hand in hand with developments in 
econometrics.
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3 Trends, cycles and structural breaks
Terence C. Mills

EARLY MODELLING OF TRENDS AND CYCLES

The analysis of cycles in macroeconomic time series began in earnest in the 1870s with 
the sunspot and Venus theories of William Stanley Jevons and Henry Ludwell Moore 
and the rather more conventional credit cycle theory of Clément Jugler (see Morgan, 
1990, Chapter 1). Secular, or trend, movements were first studied somewhat later, with 
the term ‘trend’ only being coined in 1901 by Reginald Hooker when analysing British 
import and export data (Hooker, 1901). The early attempts to take into account trend 
movements, typically by detrending using simple moving averages or graphical interpo-
lation, are analysed by Klein (1997), while the next generation of weighted moving aver-
ages, often based on actuarial graduation formulae using local polynomials, are surveyed 
in Mills (2011, Chapter 10).

The first half of the twentieth century saw much progress, both descriptive and 
 theoretical, on the modelling of trends and cycles, as briefly recounted in Mills 
(2009a), but it took a further decade for techniques to be developed that would, in due 
course, lead to a revolution in the way trends and cycles were modelled and extracted. 
The seeds of this revolution were sown in 1961 – a year termed by Mills (2009a) as the 
‘annus mirabilis’ of trend and cycle modelling – when four very different papers, by 
Klein and Kosobud (1961), Cox (1961), Leser (1961) and Kalman and Bucy (1961), 
were  published. The influence of Klein and Kosobud for modelling trends in macro-
economic time series – the ‘great ratios’ of macroeconomics – is discussed in detail in 
Mills (2009b), and that of Cox in Mills (2009a). It is the last two papers that are of 
prime interest here. As is discussed in the next section, Leser’s paper, in which he con-
sidered trend extraction from an observed series using a weighted moving average with 
the weights derived using the principle of penalized least squares, paved the way for 
one of the most popular trend extraction methods in use today, the Hodrick–Prescott 
filter. Kalman and Bucy (1961), along with its companion paper, Kalman (1960), set 
out the details of the Kalman filter algorithm, an essential computational compo-
nent of many trend and cycle extraction techniques (see Young, 2011, for both his-
torical perspective and a modern synthesis of the algorithm with recursive  estimation 
techniques).

FILTERS FOR EXTRACTING TRENDS AND CYCLES

Leser (1961) implicitly considered the additive unobserved component (UC) 
 decomposition of an observed series xt into a trend, mt, and a cycle, yt, that is, 
xt 5 mt 1 yt. He invoked the penalized least squares principle, which minimizes, with 
respect to mt, t 5 1, 2, . . ., T, the criterion:
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 a
T

t51

(xt 2 mt) 2 1 la
T

t53

(D2mt) 2 (3.1)

The first term measures the goodness of fit of the trend, the second penalizes the 
departure from zero of the variance of the second differences of the trend, so that it is 
a measure of smoothness: l is thus referred to as the smoothness parameter. Successive 
partial differentiation of (3.1) with respect to the sequence mt leads to the first order 
conditions:

 D2mt12 2 2D2mt11 1 D2mt 5 (l 2 1) (xt 2 mt)  (3.2)

given T and l, mt will then be a moving average of xt with time- varying weights. Leser 
developed a method of deriving these weights and provided a number of examples in 
which the solutions were obtained in, it has to be said, laborious and excruciating detail, 
which must certainly have lessened the impact of the paper at the time!

Some two decades later, Hodrick and Prescott (1997) approached the solu-
tion of (3.1) rather differently. By recasting (3.1) in matrix form as 
(x 2 m)r (x 2 m) 1 lmrD2rD2m, where x 5 (x1, . . ., xT)r, m 5 (m1, . . ., mT)r and D is the 
T 3 T  ‘first  difference’ matrix with elements dt,t 5 1, dt21,t 5 21 and zero elsewhere, 
so that Dm 5 (m1, m2 2 m1, . . .,mT 2 mT21)r, then differentiating with respect to m allows 
the first- order conditions to be written as:

 m 5 (I 1 lD2rD2) 21x (3.3)

with the rows of the inverse matrix containing the filter weights for estimating the trend 
mt at each t. Hodrick and Prescott suggested setting l 5 1600 when extracting a trend 
from a quarterly macroeconomic series and other choices are discussed in, for example, 
Ravn and Uhlig (2002) and Maravall and del Rio (2007).1

In filtering terminology the H–P filter (3.3) is a low- pass filter. To understand this ter-
minology, some basic concepts in filtering theory are useful. Define a linear filter of the 
observed series xt to be the two- sided weighted moving average:

 yt 5 a
n

j5 2n
ajxt2 j 5 (a2nB2n 1 a2n11B2n11 1  . . . 1 a0 1  . . . 1 anBn)xt 5 a(B)xt

where use is made of the lag operator B, defined such that Bjxt ; xt2 j. Two conditions 
are typically imposed upon the filter a(B) : (i) that the filter weights either (a) sum to zero, 
a(1) 5 0, or (b) sum to unity, a(1) 5 1; and (ii) that these weights are symmetric, aj 5 a2 j. 
If condition (i)(a) holds, then a(B)  is a ‘trend- elimination’ filter, whereas if (i) (b) holds, 
it will be a ‘trend- extraction’ filter. If the former holds, then b(B) 5 1 2 a(B)  will be the 
corresponding trend- extraction filter, having the same, but oppositely signed, weights as 
the trend- elimination filter a(B)  except for the central value, b0 5 1 2 a0, thus ensuring 
that b(1) 5 1.

The frequency response function of the filter is defined as a(w) 5 a j
aje2 iwj for a 

 frequency 0 # w # 2p. The power transfer function is then defined as:
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 0a(w) 0 2 5 aa j
aj cos wjb  2

1 aa j
aj sin wjb  2

and the gain is defined as 0a(w) 0 , measuring the extent to which the amplitude of the 
w – frequency component of xt is altered through the filtering operation. In general, 
a(w) 5 0a(w) 0e2 iq(w), where

 q (w) 5  tan 21
a j

aj sin wj

a j
aj cos wj

is the phase shift, indicating the extent to which the w – frequency component of xt 
is displaced in time. If the filter is indeed symmetric then a(w) 5 a( 2w) , so that 
a(w) 5 0a(w) 0  and q (w) 5 0, known as phase neutrality.

With these concepts, an ‘ideal’ low- pass filter has the frequency response function:

 aL (w) 5 e1 if w , wc

0 if w . wc
 (3.4)

Thus aL(w)  passes only frequencies lower than the cut- off frequency wc, so that just 
slow- moving, low- frequency components of xt are retained. Low- pass filters should also 
be phase- neutral, so that temporal shifts are not induced by filtering. The ideal low- pass 
filter will take the form:

 aL (B) 5
wc

p
1 a

`

j51

 sin wc j
pj

(Bj 1 B2 j)

In practice, low- pass filters will not have the perfect ‘jump’ in aL(w)  as is implied by 
(3.4). The H–P trend extraction filter, that is, the one that provides an estimate of the 
trend component m̂t 5 aH2P (B)xt, where the weights are given by (3.3), has the frequency 
response function

 aH2P (w) 5
1

1 1 4l (1 2  cos w) 2 (3.5)

while the H–P trend- elimination filter, which provides the cycle estimate 
ŷt 5 bH2P (B)xt 5 (1 2 aH2P (B))xt, has the frequency response function:

 bH2P (w) 5 1 2 aH2P (w) 5
4l (1 2  cos w) 2

1 1 4l (1 2  cos w) 2

The H–P frequency response function for l 5 1600 is compared to the ideal low- pass 
filter with cut- off at wc 5 1/16 in Figure 3.1. Rather than setting the smoothing param-
eter at an a priori value such as l 5 1600 for quarterly data or, as is often suggested, 100 
for annual data, it could also be set at the value that equates the gain to 0.5, that is, at the 
value that separates frequencies between those mostly associated with the trend and those 
mostly associated with the cycle. Since the H–P weights are indeed symmetric, the gain 
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is given by (3.5), so equating this to 0.5 yields l 5 1/4(1 2  cos w0.5) 2, where w0.5 is the 
frequency at which the gain is 0.5 (for more on this idea, see Kaiser and Maravall, 2005).

The ideal low- pass filter removes high- frequency components while retaining low- 
frequency components. A high- pass filter does the reverse, so that the complementary 
high- pass filter to (3.4) has aH(w) 5 0 if w , wc and aH(w) 5 1 if w $ wc. The ideal 
band- pass filter passes only frequencies in the range wc,1 # w # wc,2, so that it can be 
constructed as the difference between two low- pass filters with cut- off frequencies wc,1 
and wc,2 and it will have the frequency response function aB (w) 5 ac,2 (w) 2 ac,1 (w) , 
where ac,2 (w)  and ac,1 (w)  are the frequency response functions of the two low- pass filters, 
since this will give a frequency response of unity in the band wc,1 # w # wc,2 and zero 
elsewhere. The weights of the band- pass filter will thus be given by ac,2, j 2 ac,1, j, where 
ac,2, j and ac,1, j are the weights of the two low- pass filters, so that:

 aB (B) 5
wc,2 2 wc,1

p
1 a

`

j51

 sin wc,2 j 2  sin wc,1 j
pj

(Bj 1 B2 j)  (3.6)

A conventional definition of the business cycle emphasizes fluctuations of between 
one and a half and eight years (see Baxter and King, 1999), which leads to wc,1 5 2p/8s 
and wc,2 5 2p/1.5s, where s is the number of observations in a year. Assuming that xt is 
observed quarterly, then a band- pass filter that passes only frequencies corresponding to 
these periods, that is, wc,1 5 p/16 and wc,2 5 p/3, is defined as yt 5 aB,n (B)xt with weights

 aB,0 5 ac,2,0 2 ac,1,0 5
1
3 2

1
16 2 (zc,2,n 2 zc,1,n)

0.0

0.2 Ideal H–P

0.4

0.6

0.8

1.0
a(�)

�/16 �/8 �/4
�

Figure 3.1  Frequency response functions for the ideal low- pass filter with wc 5 p/16 and 
H–P filter with l 5 1600
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 aB, j 5 ac,2, j 2 ac,1, j 5
1
pj
a sin 

pj
3

2  sin 
pj
16
b 2 (zc,2,n 2 zc,1,n)  j 5 1, . . ., n (3.7)

where

 zc,i,n 5 2
an

j5 2n
ac,i,n

2n 1 1
  i 5 1, 2

The infinite length filter in (3.6) has been truncated to have only n leads and lags and the 
appearance of the zc,i,n terms ensures that the filter weights sum to zero, so that aB,n (B)  
is a trend- elimination (i.e., cycle) filter. The filter in (3.7) is known as the Baxter–King 
(B–K) filter, with further extensions being provided by Christiano and Fitzgerald (2003). 
The frequency response functions of the B–K and ideal band- pass filters for wc,1 5 p/16 
and wc,2 5 p/3 (i.e., for quarterly data (s 5 4)) and filter truncation n 5 12 are shown in 
Figure 3.2: the ‘ripples’ in the former are a consequence of the truncation of the latter, an 
effect known as the Gibbs phenomenon.

FILTERS AND STRUCTURAL MODELS

Several filters in common use can be shown to be optimal for the following class of 
 structural UC models:

 xt 5 mt 1 yt

–0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
a(�)

�/2 �
�

Ideal B–K

Figure 3.2  Frequency response functions for the ideal band- pass filter with wc,1 5 p/16 
and wc,2 5 p/3 and the B–K filter for s 5 4 and n 5 12
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 Dmmt 5 (1 1 B)rxt xt ~WN(0,s2
x)

 yt ~WN(0,ls2
x)  E(xtyt2 j) 5 0 for all j

Here the notation yt ~WN(0,s2
y)  is to be read as stating that the variable yt is white 

noise (i.e., identically and independently distributed) with zero mean and variance s2
y. 

For (doubly) infinite samples, the minimum mean square error (MMSE) estimates 
of  the components are m̂t 5 am (B)xt and ŷt 5 xt 2 m̂t 5 (1 2 am (B))xt 5 ay (B)xt, 
where

 am (B) 5
(1 1 B) r

(1 1 B) r 1 (1 2 B)m

and

 0am (B) 0 5 01 1 B 0 2r01 1 B 0 2r 1 l 01 2 B 0 2m (3.8)

and the notation 0a (B) 0 5 a (B)a (B21)  is used. This result uses Weiner–Kolmogorov fil-
tering theory and its derivation may be found in, for example, Proietti (2009a). This filter 
is therefore defined by the order of integration of the trend, m, which regulates its flex-
ibility, by the parameter r (which technically is the number of unit poles at the Nyquist 
frequency and which thus regulates the smoothness of Dmmt) and by l, which measures 
the relative variance of the noise component.

The H–P filter is obtained for m 5 2 and r 5 0, so that D2mt 5 xt. If m 5 1 and 
r 5 0, Dmt 5 xt and the filter corresponds to a two- sided exponentially weighted 
moving average with smoothing parameter ( (1 1 2l) 1 "1 1 4l) /2l. If r 5 0 then 
any setting of m defines a Butterworth filter, as does setting m 5 r, which is known as 
the Butterworth square- wave filter (see Gómez, 2001). Setting m 5 r 5 1 and l 5 1 
produces the multi- resolution Haar scaling and wavelet filters (see Percival and Walden, 
1999).

Using (3.8) and the idea that the cut- off frequency can be chosen to be that at which 
the gain is 0.5 (as above) enables the smoothing parameter to be determined as:

 l 5 2r2m
(1 1  cos w0.5) r

(1 2  cos w0.5)m

Detailed development of the models and techniques discussed in this and the preceding 
section may be found in Pollock (2009) and Proietti (2009a).

MODEL- BASED FILTERS

The set- up of the previous section is very assumption laden and implies, amongst other 
things, that the observed series is generated as
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 Dmxt 5 (1 1 B) rzt 1 (1 2 B)myt 5 qq (B)at

that is, as a heavily restricted ARIMA(0,m,q)  process, where qq (B) 5 
1 2 q1B 2  . . . 2 qqBq with q 5 max(r,m)  (the subscript q denoting the order of the 
polynomial will be dropped when appropriate to simplify notation). A less restric-
tive approach is to begin by assuming that the observed series has an ARIMA(p,d,q)  
representation:

 �p (B) (Ddxt 2 c) 5 qq (B)at at~WN(0,s2
a)

where �p (B)  has p stationary roots and qq (B)  is invertible, and to derive filters with the 
desired properties from this representation. This is done by exploiting the idea that at 
can be decomposed into two orthogonal stationary processes (see, for example, Proietti, 
2009a, 2009b, for technical details):

 at 5
(1 1 B) rzt 1 (1 2 B)mkt

fq* (B)  (3.9)

where q* 5 max(r,m) , zt~WN(0,s2
a) , kt~WN(0,ls2

a)  and

 0fq* (B) 0 2 5 01 1 B 0 2r 1 l 01 2 B 0 2m (3.10)

Given (3.9) and (3.10), the following orthogonal trend- cycle decomposition xt 5 mt 1 yt 
can be defined:

 �(B)f(B) (Ddmt 2 c) 5 (1 1 B) rq (B)zt (3.11)

 �(B)f(B)yt 5 Dm2dq (B)kt

The trend, or low- pass component, has the same order of integration as xt, regard-
less of m, whereas the cycle, or high- pass component, is stationary provided that 
m $ d. The MMSE estimators of the trend and cycle are again given by (3.8) and its 
‘complement’.

Band- pass filters may be constructed by decomposing the low- pass component in 
(3.11). For fixed values of m and r and two cut- off frequencies wc,1 and wc,2 . wc,1, corre-
sponding to smoothness parameters l1 and l2 , l1, Proietti (2009a) shows that xt may be 
decomposed into low- pass (trend), band- pass (cycle) and high- pass (noise) components 
as:

 xt 5 mt 1 yt 1 et

 Ddmt 5 c 1
(1 1 B) r

f1 (B)
q (B)
�(B) zt zt~WN(0,s2

a)
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yt 5
(1 1 B) r(1 2 B)m

f1 (B)f2 (B)
q (B)

Dd�(B) k1t
k1t~WN(0,(l1 2 l2)s2

a)

et 5
(1 2 B)m

f2 (B)
q (B)

Dd�(B) k2t
k2t~WN(0,l2s

2
a)

E(zjk1t) 5 E(zjk2t) 5 0 E(k1jk2t)  for all j, t0fi(B) 0 2 5 01 1 B 0 2r 1 li 01 1 B 0 2m i 5 1, 2

The H–P and B–K filters are often referred to as being ad hoc, in the sense that they 
are invariant to the process actually generating xt. This has the potential danger that 
such filters could produce a cyclical component, say, that might display cyclical features 
that are absent from the observed series, something that is known as the Slutsky–Yule 
effect. For example, it has been well documented that when the H–P filter is applied to a 
random walk, which obviously cannot contain any cyclical patterns, the detrended series 
can nevertheless display spurious cyclical behaviour. The (ARIMA) model- based filters 
are designed to overcome these limitations.

STRUCTURAL TRENDS AND CYCLES

An alternative approach to modelling trends and cycles is to take the UC decomposition 
xt 5 mt 1 yt 1 et and to assume particular models for the components. The most general 
approach is that set out by Harvey and Trimbur (2003), Trimbur (2006) and Harvey et 
al. (2007), who consider the UC decomposition

 xt 5 mm,t 1 yn,t 1 et et~WN(0,s2
e)

where the components are assumed to be mutually uncorrelated. The trend component 
is defined as the mth order stochastic trend

m1,t 5 m1,t21 1 zt zt~WN(0,s2
z)

mi,t 5 mi,t21 1 mi21,t i 5 2, . . . ,m

Note that repeated substitution yields Dmmm,t 5 zt. The random walk trend is thus 
obtained for m 5 1 and the integrated random walk, or ‘smooth trend’, with slope m1,t 
for m 5 2.

The component yn,t is an nth order stochastic cycle, for n . 0, if

 cy1,t

y*1,t
d 5 r c  cos .  sin .

2  sin .
 

cos .
d cy1,t21

y*1,t21
d1 ckt

0
d   kt~WN(0,s2

k)  (3.12)
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 cyi,t

y*i,t
d 5 r c  cos .  sin .

2 sin .
 cos . d cyi,t21

y*i,t21
d1 cyi21,t

0
d   i 5 2, . . . ,n

Here 0 # . # p is the frequency of the cycle and 0 , r # 1 is the damping factor. The 
reduced form representation of the cycle is

 (1 2 2r cos .B 1 r2B2)  nyn,t 5 (1 2 r cos .B)  nkt

and Harvey and Trimbur (2003) show that, as m and n increase, the optimal estimates 
of the trend and cycle approach the ideal low- pass and band- pass filters, respectively. 
Defining the ‘signal to noise’ variance ratios qz 5 s2

z/s
2
e and qk 5 s2

k/s2
e, the low- pass 

filter (of order m, n) is:

 m̂t(m,n) 5
qz/ 01 2 B 0 2m

qz/ 01 2 B 0 2m 1 qk 0c(B) 0 n 1 1

where c(B) 5 (1 2 r cos .B) / (1 2 2r cos .B 1 r2B2) . The corresponding band- pass 
filter is

 ŷt(m,n) 5
qk 0c(B) 0 n

qz/ 01 2 B 0 2m 1 qk 0c(B) 0 n 1 1

Harvey and Trimbur (2003) discuss many of the properties of this general model. They 
note that applying a band- pass filter of order n to a series that has been detrended by 
a low- pass filter of order m will not give the same result as applying a generalized filter 
of order (m, n), as a jointly specified model enables trends and cycles to be extracted by 
filters that are mutually consistent. Using higher order trends with a fixed order band- 
pass filter has the effect of removing lower frequencies from the cycle. However, setting 
m greater than 2 will produce trends that are more responsive to short- term movements 
than is perhaps desirable.

Replacing the zero component in the right- hand side of (3.12) by a white noise uncor-
related with kt produces a balanced cycle, the statistical properties of which are derived in 
Trimbur (2006). For example, for n 5 2 the variance of the cycle is given by

 s2
y 5

1 1 r2

(1 2 r2) 3 s2
k

as opposed to s2
k/ (1 2 r2)  for the first- order case, while its autocorrelation function is

 r2 (t) 5 rt cos .ta1 1
1 2 r2

1 1 r2 tb,  t 5 0, 1, 2, . . .

compared to r1 (t) 5 rt cos .t. Harvey and Trimbur prefer the balanced form as it 
seems to give better fits in empirical applications and offers computational advantages 
over (3.12).

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   53HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   53 01/07/2013   09:4301/07/2013   09:43



54  Handbook of research methods and applications in empirical macroeconomics

MODELS WITH CORRELATED COMPONENTS

A feature of all the models introduced so far has been the identifying assumption that all 
component innovations are mutually uncorrelated, so that the components are orthogo-
nal. Such an assumption can be relaxed: for example, Morley et al. (2003) consider the 
UC model xt 5 mt 1 yt with contemporaneously correlated innovations:

mt 5 mt21 1 c 1 zt zt~WN(0,s2
z)  (3.13)

yt 5 �1yt21 1 �2yt22 1 kt kt ~WN(0,s2
k)

with szk 5 E(ztkt) 5 rszsk, so that r is the contemporary correlation between the 
innovations. The reduced form of (3.13) is the ARIMA(2,1,2)  process

 (1 2 �1B 2 �2B2) (Dxt 2 c) 5 (1 2 q1B 2 q2B2)at

Morley et al. (2003) show that the structural form is exactly identified, so that the cor-
relation between the innovations can be estimated and the orthogonality assumption 
szk 5 0 tested.

A related model decomposes an ARIMA(p,1,q)  process �(B) (Dxt 2 c) 5 q (B)at into 
a random walk trend

 mt 5 mt21 1 c 1
q (1)
�(1) at 5

q (1)
�(1)

�(B)
q (B) xt

and a cyclical (or transitory) component

 yt 5
�(1)q (B) 2 q (1)�(B)

�(1)�(B)D
at 5

�(1)q (B) 2 q (1)�(B)
�(1)�(B) xt

which has a stationary ARMA(p,max(p,q) 2 1) representation. Thus for the ARIMA
(2,1,2)  process, the random walk trend will be:

 mt 5 mt21 1 c 1 a 1 2 q1 2 q2

1 2 �1 2 �2
bat

while the ARMA(2,1)  cycle will be:

 (1 2 �1B 2 �2B2)yt 5 (1 1 �B) aq1 1 q2 2 (�1 1 �2)
1 2 �1 2 �2

bat

 � 5
�2 (1 2 q1 2 q2) 1 q2 (1 2 �1 2 �2)

q1 1 q2 2 (�1 1 �2)
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The two components are seen to be driven by the same innovation, at, and hence are 
perfectly correlated. Whether this correlation is +1 or −1 depends upon the persistence 
q (1) /�(1) : if this is less (greater) than 1, the correlation is 1 1 (−1). This decomposition 
is familiarly known as the Beveridge–Nelson decomposition (Beveridge and Nelson, 
1981).

MULTIVARIATE EXTENSIONS OF STRUCTURAL MODELS

Since co- movement between macroeconomic series is a key aspect of business cycles, 
many of the filters and structural models have recently been extended to multivariate set- 
ups (see, for example, Kozicki, 1999). Multivariate structural models have been intro-
duced by Carvalho and Harvey (2005) and Carvalho et al. (2007). Suppose there are N 
time series gathered together in the vector xt 5 (x1t, . . ., xNt)r, which may be decomposed 
into trend, mt, cycle, yt, and irregular, et, vectors such that

xt 5 mt 1 yt 1 et et~MWN(0,Se)

where MWN(0,Se)  denotes zero mean multivariate white noise with N 3 N positive 
semi- definite covariance matrix Se. The trend is defined as:

mt 5 mt21 1 bt21 1 ht ht~MWN(0,Sh)  (3.14)

bt 5 bt21 1 zt zt~MWN(0,Sz)

With Sz 5 0 and Sh positive definite, each trend is a random walk with drift. If, on the 
other hand, Sh 5 0 and Sz is positive definite, the trends are integrated random walks 
and will typically be much smoother than drifting random walks.

The similar cycle model is

 cyt
y*t d 5 cra cos .  sin .

2  sin .
 cos .
b # IN d cyt21

y*
t21
d 1 ckt

k*t
d

where yt and y*t  are N- vectors and kt and k*t  are N- vectors of mutually uncorrelated 
zero mean vector multivariate white noise with the same covariance matrix Sk. As the 
damping factor r and cyclical frequency . are the same for all series, the individual 
cycles have similar properties, being centred around the same period as well as being 
contemporaneously correlated, on noting that the covariance matrix of yt is

 Sy 5 (1 2 r2)21Sk

Suppose Sz 5 0 in (3.14). The model will have common trends if Sh is less than full rank. 
If the rank of Sh is 1, then there will be a single common trend and

 xt 5 qmt 1 a 1 yt 1 et (3.15)
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where the common trend is

mt 5 mt21 1 b 1 ht m0 5 0 ht ~WN(0,s2
h)

and q and a are N- vectors of constants. If Sh 5 0, the existence of common trends 
depends on the rank of Sz. When this rank is less than N some linear combinations of the 
series will be stationary. A rank of 1 again leads to the model (3.15) but with

mt 5 mt21 1 bt21 bt 5 bt21 1 zt zt ~WN(0,s2
z)

When q 5 i, where i is an N- vector of ones, there is balanced growth and the difference 
between any pair of series in xt is stationary.

A mechanism for capturing convergence to a common growth path can be  incorporated 
by specifying the decomposition

 xt 5 a 1 mt 1 yt 1 et

with

mt 5 Fmt21 1 bt21 bt 5 Fbt21 1 zt

where F 5 �I 1 (1 2 �) i� and � is a vector of weights. With this set- up, a convergence 
mechanism can be defined to operate on both the gap between an individual series and 
the common trend and on the gap in the growth rates of the individual series and the 
common trend. When � is less than but close to unity, the convergence components tend 
to be quite smooth and there is a clear separation of long- run movements and cycles. The 
forecasts for each series converge to a common growth path, although they may exhibit 
temporary divergences. If � 5 1 there will be no convergence.

Extensions to incorporate multivariate mth order trends and nth order cycles may 
also be contemplated, as indeed may multivariate low- pass and band- pass filters (see 
Trimbur, 2010, for some analysis).

ESTIMATION OF STRUCTURAL MODELS

All the structural models introduced here may be estimated by recasting them in state 
space form, whence they can be estimated using the Kalman filter algorithm. This 
will produce a MMSE estimator of the state vector, along with its mean square error 
matrix, conditional on past information. This is then used to build the one- step- ahead 
predictor of xt and its mean square error matrix. The likelihood of the model can be 
evaluated via the prediction error decomposition and both filtered (real time) and 
smoothed (full sample) estimates of the components may then be obtained using a set 
of recursive equations. Harvey and De Rossi (2006) and Proietti (2009a) are conven-
ient references for technical details, while comprehensive software for the estimation 
and analysis of structural models is provided by the STAMP package (see Koopman 
et al., 2009).
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STRUCTURAL BREAKS

A noticeable feature of many macroeconomic time series is the presence of ‘structural 
breaks’, typically characterized by shifts in the coefficients of the deterministic variables, 
perhaps a constant or a low- order polynomial trend, used to parameterize the trending 
non- stationarity of the series. Such breaks often play a decisive role in economic policy 
making and forecasting, where they are regularly a major source of forecast failure (see, 
for example, Hendry, 2000).

The literature on breaks in individual time series, and in particular on the impact such 
breaks have on unit root tests, has grown rapidly since the publication of Perron (1989), 
who showed that the presence of breaks has a major impact on unit root testing, requir-
ing a new set of models and tests to determine the appropriate form of non- stationarity 
generating the data. A recent authoritative survey of the literature is Perron (2006), 
while Harris et al. (2009) contains the latest developments in testing for a unit root in 
the presence of a possible break of trend. A framework for modelling multiple structural 
breaks in multivariate regression is provided by Qu and Perron (2007) and forecasting 
time series that are subject to possible multiple structural breaks occurring in the future 
is discussed in Pesaran et al. (2006).

Rather than discuss such a widely disseminated literature, the focus here will be on 
the more recently developed modelling of breaks across a set of time series, known as co- 
breaking, as synthesized by Hendry and Massmann (2007). Their basic definition of co- 
breaking again focuses on the vector xt 5 (x1t, . . .,  xNt)r, which is now assumed to have 
an unconditional expectation around an initial parameterization of E(x0) 5 b0, where b0 
depends only on deterministic variables whose parameters do not change: for example, 
b0 5 bc,0 1 bt,0t. A location shift in xt is then said to occur if, for any t, E(xt 2 b0) 5 bt 
and bt 2 bt21, that is, if the expected value of xt around its initial parameterization in one 
time period deviates from that in the previous time period. (Contemporaneous mean) 
co- breaking is then defined as the cancellation of location shifts across linear combina-
tions of variables and may be characterized by there being an n 3 r matrix W, of rank 
r , n, such that Wrbt 5 0. It then follows that WrE(xt 2 b0) 5 Wrbt 5 0, so that the 
parameterization of the r co- breaking relationships Wrxt is independent of the location 
shifts.

Various extensions of contemporaneous mean co- breaking may be considered, such 
as variance co- breaking and intertemporal mean co- breaking, defined as the cancella-
tion of deterministic shifts across both variables and time periods. Co- breaking may 
also be related to cointegration: the ‘common trends’ incorporated in a VECM can be 
shown to be equilibrium- mean co- breaking while the cointegrating vector itself is drift 
co- breaking.

To formalize the co- breaking regression approach, consider the following regression 
model for xt:

 xt 5 p0 1 kdt 1 dwt 1 et (3.16)

where wt is a vector of exogenous variables and dt is a set of k . n deterministic shift vari-
ables. Assuming that the rank of k is n 2 1 allows it to be decomposed as k 5 xhr, where 
x is n 3 (n 2 1), h is k 3 (n 2 1) and both x and h are of full rank n 2 1. There will 
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then exist an n 3 1 vector x' such that xr'x 5 0, which then implies that the linear com-
bination xr'xt 5 xr'p0 1 xrdwt 1 xret will not contain the shift variables dt. Partitioning 
xt as (yt ( zt)  and partitioning and normalizing x' as (1 ( 2xr',1)  defines the structural 
 break- free co- breaking regression:

 yt 5 xr',1zt 1 p|0 1 d
|wt 1 e|t (3.17)

where p|0 5 xr'p0, and so on. This co- breaking regression procedure may be implemented 
in two steps. First, test whether the k shifts dt are actually present in each of the n com-
ponents of xt by estimating (3.16) and testing for the significance of k: second, augment 
(3.17) by dt and test whether the shifts are now insignificant, with the co- breaking vector 
either estimated or imposed. Various extensions of this basic approach are discussed by 
Hendry and Massmann (2007), who also relax the assumption that the number of co- 
breaking relationships is known (assumed to be 1 above), so that the rank of k is n 2 r, 
where r is to be estimated. Although such procedures are still in their infancy, they repre-
sent an important advance in the co- breaking framework, in which linear combinations 
of the form Wrxt depend on fewer breaks in their deterministic components than does xt 
on its own.

WHAT ACTUALLY CONSTITUTES A TREND?

While cycles have been shown to be relatively straightforward to define in macro-
economics, there is much less consensus on what actually constitutes a trend, and 
trying to pin this down has attracted some attention recently for, as Phillips (2005) has 
memorably remarked, ‘no one understands trends, but everyone sees them in the data’, 
and that to ‘capture the random forces of change that drive a trending process, we need 
sound theory, appropriate methods, and relevant data. In practice, we have to manage 
under shortcomings in all of them’.

White and Granger (2011) have set out ‘working definitions’ of various kinds of trends 
and this taxonomy may prove to be useful in developing further models of trending 
processes, in which they place great emphasis on ‘attempting to relate apparent trends 
to appropriate underlying phenomena, whether economic, demographic, political, legal, 
technological or physical’. This would surely require taking account of possible co- 
breaking phenomena of the type discussed in the previous section as well, thereby pro-
ducing a richer class of multivariate models for trending and breaking macroeconomic 
processes.

NOTE

1. Hodrick and Prescott (1997) was originally published as a discussion paper in 1980, but the widespread use 
of the H–P filter (3) eventually led to the paper’s publication in the Journal of Money, Credit and Banking 
almost two decades later. That the penalized least squares approach, in various forms, anteceded the H–P 
filter by several decades was well known by Leser and Hodrick and Prescott, although the latter appear to 
be unaware of the former’s paper. Pedregal and Young (2001) provide both historical and multidiscipli-
nary perspective.
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4 Unit roots, non- linearities and structural breaks*
Niels Haldrup, Robinson Kruse, Timo Teräsvirta and 
Rasmus T. Varneskov

1 INTRODUCTION

It is widely accepted that many time series in economics and finance exhibit trending 
behaviour in the level (or mean) of the series. Typical examples include asset prices, 
exchange rates, real GDP, real wage series and so forth. In a recent paper White and 
Granger (2011) reflect on the nature of trends and make a variety of observations that 
seem to characterize these. Interestingly, as also noted by Phillips (2005), even though 
no one understands trends everybody still sees them in the data. In economics and other 
disciplines, almost all observed trends involve stochastic behaviour and purely determin-
istic trends are rare. However, a combination of stochastic and deterministic elements 
including structural changes seems to be a model class which is likely to describe the data 
well. Potentially the series may contain non- linear features and even the apparent deter-
ministic parts like level and trend may be driven by an underlying stochastic process that 
determines the timing and the size of breaks.

In recent years there has been a focus on stochastic trend models caused by the pres-
ence of unit roots. A stochastic trend is driven by a cumulation of historical shocks to the 
process and hence each shock will have a persistent effect. This feature does not necessar-
ily characterize other types of trends where the source of the trend can be different and 
some or all shocks may only have a temporary effect. Time series with structural changes 
and unit roots share similar features, which makes it difficult to discriminate between 
the two fundamentally different classes of processes. In principle, a unit root (or differ-
ence stationary) process can be considered as a process where each point in time has a 
level shift. On the other hand, if a time series process is stationary but is characterized by 
infrequent level shifts, certain (typically large) shocks tend to be persistent whereas other 
shocks have only a temporary influence. Many stationary non- linear processes contain 
features similar to level shifts and unit root processes. Some types of regime switching 
models belong to this class of processes.

It is not surprising that discriminating between different types of trend processes is 
difficult. Still, there is an overwhelming body of literature which has focused on unit 
root processes and how to distinguish these from other trending processes, and there are 
several reasons for this. One reason is the special feature of unit root processes regarding 
the persistence of shocks which may have important implications for the formulation of 
economic models and the measurement of impulse responses associated with economic 
policy shocks. Another reason concerns the fact that the presence of unit roots can result 
in spurious inference and hence should be appropriately accounted for in order to make 
valid inference when analysing multivariate time series. The development of the notion 
of cointegration by Granger (1981, 1983) and Engle and Granger (1987) shows how time 
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series with stochastic trends can be represented and modelled to avoid spurious relations. 
This field has grown tremendously since the initial contributions. For the statistical 
theory and overview, see Johansen (1995) and Davidson in Chapter 7 of this volume.

The purpose of the present chapter is to review recent advances and the current status 
in the field of unit root testing when accounting for deterministic trends, structural breaks 
and non- linearities. We shall also consider some of the difficulties that arise due to other 
special features that complicate inference. There is a vast amount of literature on these 
topics. Review articles include Haldrup and Jansson (2006) who focus on the size and 
power of unit root tests, and Perron (2006) who deals with structural breaks in stationary 
and non- stationary time series models. See also Mills in Chapter 3 of this volume. Other 
general overviews of unit root testing can be found in Stock (1994), Maddala and Kim 
(1998), and Phillips and Xiao (1998). The present review updates the present state of the 
art and includes a number of recent contributions in the field.

In section 2 we introduce a general class of basic processes where the focus is on unit 
root processes that can be mixed with the presence of deterministic components that 
potentially may exhibit breaks. In section 3 we review existing unit root tests that are 
commonly used in practice, that is the augmented Dickey–Fuller, Phillips and Perron, 
and the trinity of M class of tests suggested by Perron and Ng (1996). We also briefly 
touch upon the literature on the design of optimal tests for the unit root hypothesis. The 
following two sections extend the analysis to the situation where the time series have a 
linear trend or drift and the initial condition is likely to affect inference. In particular, 
we address testing when there is general uncertainty about the presence of trends and 
the size of the initial condition. Section 6 extends the analysis to unit root testing in the 
presence of structural break processes for the cases where the break date is either known 
or unknown. Section 7 is concerned with unit root testing in non- linear models followed 
by a section on unit root testing when the data exhibit particular features such as being 
bounded by their definition or exhibiting trends in both the levels and growth rates of the 
series. The chapter finishes with an empirical illustration.

There are numerous relevant research topics which for space reasons we cannot 
discuss in this presentation. These include the literature on the design of optimal tests for 
the unit root hypothesis but also the highly relevant area of using the bootstrap in non- 
standard situations where existing procedures are likely to fail due to particular features 
of the data.

2 TRENDS IN TIME SERIES

We begin by reviewing some of the basic properties of unit root and trend- stationary 
processes including the possible structural breaks in such processes. Consider T 1 1 
observations from the time series process generated by

 yt 5 f (t) 1 ut, t 5 0,1,2,. . .,T  (4.1)

where

 (1 2 aL)ut 5 C(L)et,

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   62HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   62 01/07/2013   09:4301/07/2013   09:43



Unit roots, non- linearities and structural breaks   63

ut is a linear process with et ,
i.i.d.N(0,s2

e)  and C(L) 5 g`

j50cjL 
j, g`

j51 j 0cj 0 , `, and c0 5 1. 
L is the lag operator, Lxt 5 xt21; f (t)  is a deterministic component to be defined later. 
When a 5 1 the series contains a unit root, and a useful decomposition due to Beveridge 
and Nelson (1981) reads

 Dut 5 C(1)et 1 DC*(L)et,

where C(1) 2 0 and C*(L)  satisfies requirements similar to those of C(L) . With this 
representation

 yt 5 y0 1 f(t) 1 C(1)a
t

j51
ej 1 a

t21

j51
c*j et2 j (4.2)

where tt 5 C(1)g t
j51ej is a stochastic trend component and C*(L)et is a stationary 

component.
When ut has no unit root, 0a 0 , 1, and setting vt 5 C(L)et, the process reads

 yt 5 f (t) 1 (1 2 aL)21vt

 5 aty0 1 f (t) 1 a
t21

j50
a jvt2 j. (4.3)

Equations (4.2) and (4.3) encompass many different features of unit root and trend 
stationary processes. As seen from (4.2), the presence of a unit root means that shocks 
will have a permanent effect and the level of the series is determined by a stochastic trend 
component in addition to the trend component f (t). In principle, each period is char-
acterized by a level shift through the term gt21

j50vt2 j. In the trend stationary case 0a 0 , 1 
shocks will only have a temporary effect, but each period also has a level shift through 
the deterministic component f (t).

The models point to many of the statistical difficulties concerned with unit root testing 
in practice and the complications with discriminating between the different types of 
processes. For instance, in (4.2) and (4.3) we have not made any assumptions regarding 
the initial condition. This could be assumed fixed, or it could be stochastic in a certain 
way. However, the assumptions made are not innocuous with respect to the properties 
of unit root tests, as we shall discuss later. The presence of deterministic components 
may also cause problems since deterministic terms can take many different forms. For 
instance the trend function can be prime linear in the parameters: f (t) 5 d rtm where dt 
is a k- vector, for instance an intercept, a linear trend, and possibly a quadratic trend 
where d rt 5 (1,t,t2) , and m is an associated parameter vector. Moreover, these different 
terms could have parameters that change over time within the sample. For example, the 
trend function may include changes in the level, the slope, or both, and these structural 
breaks may be at known dates (in which case the trend is still linear in parameters) or the 
break time may be generated according to a stochastic process, for example a Markov 
 switching process.

Other difficulties concern the assumptions about the nature of the innovations gov-
erning the process. Generally, the short- run dynamics of the process are unknown, the 
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innovation variance may be heteroscedastic, and et need not be Gaussian. We are going 
to address many of these complications and how to deal with these in practice. First, we 
want to consider a range of specifications of the trend function f (t)  that are essential for 
practical unit root testing.

2.1 Assumptions about the Deterministic Component f (t)

Linear trend
Following the empirical analysis of Nelson and Plosser (1982) it has been commonplace 
to consider the unit root model against one containing a linear trend. Fundamentally, 
the question asked is whether the trending feature of the data can be best described as 
a trend that never changes versus a trend that changes in every period. Assume that 
f (t) 5 m 1 bt is a linear- in- parameters trend, in which case (4.3) becomes

 yt 5 m 1 bt 1 (1 2 aL)21C(L)et (4.4)

and

 Dyt 5 (a 2 1)yt21 1 m (1 2 a) 1 ab 1 (1 2 a)bt 1 C(L)et. (4.5)

By comparing (4.4) and (4.5) it is seen that the role of deterministic components is dif-
ferent in the levels and the first differences representations. When a unit root is present, 
a 5 1, the constant term m (1 2 a) 1 ab 5 b in (4.5) represents the drift, whereas the 
slope (1 2 a)b 5 0. This shows the importance of carefully interpreting the meaning of 
the deterministic terms under the null and the alternative hypothesis. Note that when 
b 2 0, the linear trend will dominate the series even in the presence of a stochastic trend 
component.

Structural breaks
As emphasized by Perron (2006), discriminating between trends that either change every 
period or never change can be a rather rigid distinction. In many situations a more 
appropriate question could be whether a trend changes at every period or whether it only 
changes occasionally. This line of thinking initiated research by Rappoport and Reichlin 
(1989) and Perron (1989, 1990) who considered the possibility of certain events having 
a particularly strong impact on trends. Examples could include the Great Depression, 
World War II, the oil crises in the 1970s and early 1980s, the German reunification 
in 1990, the recent financial crisis initiated in 2007 and so forth. In modelling, such 
events may be ascribed stochastic shocks but possibly of a different nature than shocks 
 occurring each period. The former are thus likely to be drawn from a different statistical 
distribution than the latter.

Perron (1989, 1990) suggested a general treatment of the structural break hypothesis 
where four different situations were considered that allowed a single break in the sample: 
(a) a change in the level, (b) a change in the level in the presence of a linear trend, (c) a 
change in the slope and (d) a change in both the level and slope. In implementing these 
models, two different transition mechanisms were considered following the terminol-
ogy of Box and Tiao (1975); one is labelled the additive outlier (AO) model where the 
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transition is instantaneous and the trend break function is linear in parameters, and one 
is labelled the innovation outlier (IO) model where changes occur via the innovation 
process and hence a gradual adjustment of a ‘big’ shock takes place in accordance with 
the general dynamics of the underlying series. We will consider hypothesis testing later 
on and just note that distinguishing between these classes of break processes is important 
in the design of appropriate testing procedures.

Additive outlier models with level shift and trend break
Define the dummy variables DUt and DTt such that DUt 5 1 and DTt 5 t 2 T1 for 
t . T1 and zero otherwise. The dummy variables allow various breaks to occur at 
time T1. Using the classifications of Perron (2006) the following four AO models are 
considered:

 

AOa  : yt 5 m1 1 (m2 2 m1)DUt 1 (1 2 aL)21C(L)et

AOb  : yt 5 m1 1 bt 1 (m2 2 m1)DUt 1 (1 2 aL)21C(L)et

AOc  : yt 5 m1 1 b1t 1 (b2 2 b1)DTt 1 (1 2 aL)21C(L)et

AOd  :   yt 5 m1 1 b1t 1 (m2 2 m1)DUt 1 (b2 2 b1)DTt 1 (1 2 aL)21C(L)et.

We assume that b1 2 b2 and m1 2 m2. Notice that under the null of a unit root, the dif-
ferenced series reads Dyt 5 Df (t) 1 C(L)et where Df (t)  takes the form of an impulse at 
time T1 for the AOa and AOb models, whereas the AOc model will have a level shift and 
the AOd model will have a level shift plus an impulse blip at the break date.

Innovation change level shift and trend break models
The nature of these models depends on whether a unit root is present or absent. Assume 
initially that 0a 0 , 1. Then the IO models read

 
IOa  : yt 5 m 1 (1 2 aL)21C(L) (et 1 qDUt)
IOb  : yt 5 m 1 bt 1 (1 2 aL)21C(L) (et 1 qDUt)
IOd  :   yt 5 m 1 bt 1 (1 2 aL)21C(L) (et 1 qDUt 1 gDTt) .

Hence, the impulse impact of a change in the intercept at time T1 is given by q and 
the long- run impact by q(1 2 a)21C(1). Similarly, the immediate impact of a change 
in slope is given by g with long- run impact g(1 2 a)21C(1). Note that these models 
have similar characteristics to those of the AO models apart from the temporal 
dynamic adjustments of the IO models. Note that model c is not considered in the IO 
case because linear estimation methods cannot be used and will cause difficulties for 
 practical applications.

Under the null hypothesis of a unit root, a 5 1, the meaning of the breaks in the IO 
models will cumulate unintentionally to higher order deterministic processes. It will 
therefore be necessary to redefine the dummies in this case whereby the models read

 
IOa0  : yt 5 yt21 1 C(L) (et 1 d (1 2 L)DUt)
IOb0  : yt 5 yt21 1 b 1 C(L) (et 1 d (1 2 L)DUt)
IOd0  :   yt 5 yt21 1 b 1 C(L) (et 1 d (1 2 L)DUt 1 hDUt) .
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where (1 2 L)DUt is an impulse dummy and (1 2 L)DTt 5 DUt. The impulse impact 
on the level of the series is given by d and the long- run impact is by dC(1) , whereas for 
the IOd0 model the impulse impact on the trend slope is given by h with long- run slope 
equal to hC(1) . Qualitatively, the implications of the various break processes are thus 
similar to each other under the null and the alternative hypothesis.

2.2 Some Other Examples of Trends

It is obvious from the examples above that in practice it can be difficult to discriminate 
between unit root (or difference stationary) processes and processes that are trend sta-
tionary with a possibly changing trend or level shifts. A stochastic trend has (many) 
innovations that tend to persist. A break process implies the existence of ‘big’ structural 
breaks that tend to have a persistent effect. It goes without saying that distinguishing 
between these fundamentally different processes is even harder when one extends the 
above illustrations to cases with multiple breaks which potentially are generated by a 
stochastic process like a Bernoulli or Markov regime switching process.

As an example of this latter class of models, consider the so- called ‘mean- plus- noise’ 
model in state space form, see for example Diebold and Inoue (2001):

 yt 5 mt 1 et

 mt 5 mt21 1 vt

 vt 5 e 0 with probability (1 2 p)
wt with probability p

where wt ,
i.i.d.N(0,s2

w )  and et ,
i.i.d.N(0,s2

e ). Such a process consists of a mixture of shocks 
that have either permanent or transitory effect. If p is relatively small, then yt will exhibit 
infrequent level shifts. Asymptotically, such a process which is really a generalization of 
the additive outlier level shift model AOa, will behave like an I(1)  process. Granger and 
Hyung (2004) consider a related process in which the switches caused by a latent Markov 
chain have been replaced by deterministic breaks. A similar feature characterizes the 
STOPBREAK model of Engle and Smith (1999). A special case of the Markov- switching 
process of Hamilton (1989) behaves asymptotically as an I (0)  process: it has the same 
stationarity condition as a linear autoregressive model, but due to a Markov- switching 
intercept, it can generate a very high persistence in finite samples and can be difficult to 
discriminate from unit root processes, see for example Timmermann (2000) and Diebold 
and Inoue (2001). The intercept- switching threshold autoregressive process of Lanne 
and Saikkonen (2005) has the same property. It is a weakly stationary process but gen-
erates persistent realizations. Yet another model of the same type is the non- linear sign 
model by Granger and Teräsvirta (1999) that is stationary but has ‘misleading linear 
properties’. This means that autocorrelations estimated from realizations of this process 
show high persistence, which may lead the practitioner to think that the data have been 
 generated by a non- stationary (long- memory), that is, linear, model.

It is also possible to assume a deterministic intercept and generate realizations that 
have ‘unit root properties’. The Switching- Mean Autoregressive model by González and 
Teräsvirta (2008) may serve as an example. In that model the intercept is characterized 
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by a linear combination of logistic functions of time, which make both the intercept and 
with it the model quite flexible.

3  UNIT ROOT TESTING WITHOUT DETERMINISTIC 
COMPONENTS

In this section we will present unit root tests that are parametric or semiparametric 
 extensions of the Dickey–Fuller test, see Dickey and Fuller (1979). We will state the 
underlying assumptions and consider generalizations in various directions.

3.1 The Dickey–Fuller Test

Historically, the Dickey–Fuller test initiated the vast literature on unit root testing. Let 
us consider the case when (4.1) takes the simplified form of an AR(1) process

 yt 5 ayt21 1 et (4.6)

where we assume that the initial observation is fixed at zero and et , i.i.d (0,s2
e ) . The 

hypothesis to be tested is H0  :  a 5 1, and is tested against the one- side alternative 
H1  :  a , 1. The least squares estimator of a reads

 â 5
aT

t51yt21yt

aT
t51y2

t21

.

The associated t- statistic of the null hypothesis is

 ta 5
â 2 1

s/ÅaT
t51y

2
t21

where s2 5
1
TgT

t51 (yt 2 âyt21)2 is the estimate of the residual variance. Under the 
null hypothesis it is well known that these quantities have non- standard asymptotic 
 distributions. In particular,

 T(â 2 1) Sd
e1

0W(r)dW(r)

e1
0 W 2 (r)dr

 (4.7)

and

 ta S
d e1

0 W(r)dW(r)"e1
0 W 2 (r)dr

 (4.8)

where W(r)  is a Wiener process (or standard Brownian motion) defined on the unit 
interval and Sd  indicates convergence in distribution. These distributions are often 
referred to as the Dickey–Fuller distributions even though they can be traced back to 
White (1958).
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3.2 The Augmented Dickey–Fuller Test

Because rather strict assumptions have been made regarding model (4.6) the limiting 
distributions (4.7) and (4.8) do not depend upon nuisance parameters under the null, that 
is the distributions are asymptotically pivotal. In particular, the assumption that innova-
tions are i.i.d. is restrictive and a violation will mean that the relevant distributions are 
not as indicated above. To see this, assume that

 yt 5 ayt21 1 ut (4.9)

where ut 5 C(L)et with C(L)  satisfying the properties given in (4.1). We also assume 
that y0 5 0.

This model allows more general assumptions regarding the serial correlation pattern 
of yt 2 ayt21 compared to the AR(1) model (4.6). Phillips (1987) shows that under these 
assumptions, the distributions (4.7) and (4.8) are modified as follows:

 T(â 2 1) Sd
e1

0 W(r)dW(r) 1 l

e1
0 W 2 (r)dr

 (4.10)

and

 ta S
d w

s

e1
0 W(r)dW(r) 1 l"e1

0 W 2 (r)dr
 (4.11)

where l 5 (w2 2 s2) / (2w2) , s2 5 E [u2
t ] 5 s2

e (g`

j50 c2
j )  is the variance of ut, and 

w2 5  lim TS`T21E [ (gT
t51ut)2 ] 5 s2

e (g`

j50 cj)2 is the ‘long- run variance’ of ut. In fact, 
w2 5 2pfu (0)  where fu (0)  is the spectral density of ut evaluated at the origin. When the 
innovations are i.i.d., w2 5 s2, the nuisance parameters vanish and the limiting distribu-
tions coincide with those given in (4.7) and (4.8).

Various approaches have been suggested in the literature to account for the presence 
of nuisance parameters in the limiting distributions of T(â 2 1) and ta in (4.10) and 
(4.11). It was shown by Dickey and Fuller (1979) that when ut is a finite order AR process 
of order k, then T(â 2 1) and ta (known as the augmented Dickey–Fuller tests) based 
on the regression

 yt 5 ayt21 1 a
k21

j51
gj Dyt2 j 1 vtk (t 5 k 1 1,. . .,T)  (4.12)

have the asymptotic distributions (4.7) and (4.8). However, this result does not apply to 
more general processes when ut is an ARMA(p,q)  process (with q $ 1). In this case a 
fixed truncation of the augmented Dickey–Fuller regression (4.12) with k 5 ` provides 
an inadequate solution to the nuisance parameter problem. Following results of Said 
and Dickey (1984) it has been shown by Chang and Park (2002), however, that when ut 
follows an ARMA(p,q)  process, then the limiting null distributions of T(â 2 1) and ta 
coincide with the nuisance parameter free Dickey–Fuller distributions, provided that et 
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has a finite fourth moment and k increases with the sample such that k 5 o(T 1/22d)  for 
some d . 0.

It has been documented in numerous studies, see for example Schwert (1989) and 
Agiakloglou and Newbold (1992), that the augmented Dickey–Fuller tests suffer from 
size distortion in finite samples in the presence of serial correlation, especially when 
the dependence is of (negative) moving average type. Ng and Perron (1995, 2001) have 
further scrutinized rules for truncating long autoregressions when performing unit root 
tests based on (4.12). Consider the information criterion

 IC(k) 5 logs|2
k 1 kCT /T, s|2

k 5 (T 2 k)21 a
T

t5k11
v|2

tk. (4.13)

Here {CT} is a positive sequence satisfying CT 5 o(T) . The Akaike Information 
Criterion (AIC) uses CT 5 2, whereas the Schwarz or Bayesian Information Criterion 
(BIC) sets CT 5 logT. Ng and Perron (1995) find that generally these criteria select 
too low a value of k, which is a source for size distortion. They also show that by using 
a sequential data dependent procedure, where the significance of coefficients of addi-
tional lags is sequentially tested, one obtains a test with improved size. This procedure, 
however, often leads to overparametrization and power losses. An information criterion 
designed for integrated time series which alleviates these problems has been suggested by 
Ng and Perron (2001). Their idea is to select some lag order k in the interval between 0 
and a preselected value kmax, where the upper bound kmax satisfies kmax 5 o(T). As a prac-
tical rule, Ng and Perron (2001) suggest that kmax 5  int(12(T/100)1/4) . Their modified 
form of the AIC is given by

 MAIC(k) 5 log
?

s2
k 1 2(tT (k) 1 k) / (T 2 kmax), (4.14)

where 
?

s2
k 5 (T 2 kmax)21gT

t5kmax11v|2
tk  and tT (k) 5

?

s22
k (r| 2 1)2gT

t5kmax11y2
t21. Note that 

the penalty function is data dependent which captures the property that the bias in 
the sum of the autoregressive coefficients (i.e., â 2 1) is highly dependent upon the 
selected truncation k. Ng and Perron have documented that the modified informa-
tion criterion is superior to conventional information criteria in truncating long 
 autoregressions with integrated variables when (negative) moving average errors are 
present.

3.3 Semi- parametric Z Tests

Instead of solving the nuisance parameter problem parametrically as in the augmented 
Dickey–Fuller test, Phillips (1987) and Phillips and Perron (1988) suggest to transform 
the statistics T(â 2 1) and tâ  based on estimating the model (4.6) in such a way that 
the influence of nuisance parameters is eliminated asymptotically. This can be done 
after consistent estimates of the nuisance parameters w2 and s2 have been found. More 
 specifically, they suggest the statistics

 Za 5 T(â 2 1) 2
ŵ2 2 ŝ2

2T22gT
t51y2

t21
 (4.15)
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and

 Zta
5

ŝ

ŵ
t

â
2

ŵ2 2 ŝ2

2"ŵ2T22gT
t51y2

t21

. (4.16)

The limiting null distributions of Phillips’ and Perron’s Z statistics correspond to the 
pivotal distributions (4.7) and (4.8).

A consistent estimate of s2 is

 ŝ2 5 T21a
T

t51
û2

t ,  ût 5 yt 2 âyt21,

whereas for the estimate of the long- run variance w2 a range of kernel estimators can 
been considered. These are typically estimators used in spectral density estimation and 
are of the form

 ŵ2
KER 5 T21a

T

t51
û2

t 1 2a
T21

j51
w( j/MT) aT21 a

T

t5 j11
ûtût2 jb, (4.17)

where w( # )  is a kernel (weight) function and MT is a bandwidth parameter, see for 
example Newey and West (1987) and Andrews (1991).

Even though kernel estimators of the long- run variance w2 such as (4.17) are com-
monly used to remove the influence of nuisance parameters in the asymptotic distribu-
tions it has been shown by Perron and Ng (1996) that spectral density estimators cannot 
generally eliminate size distortions. In fact, kernel- based estimators tend to aggravate 
the size distortions, which is also documented in many Monte Carlo studies, for example 
Schwert (1989), Agiakloglou and Newbold (1992) and Kim and Schmidt (1990). The 
size distortions arise because the estimation of a and w2 are coupled in the sense that the 
least squares estimator â is used in constructing ût and hence affects ŵ2

KER. The finite (and 
even large) sample bias of â is well known when ut exhibits strong serial dependence, and 
hence the nuisance parameter estimator ŵ2

KER is expected to be very imprecise.
Following work by Berk (1974) and Stock (1999), Perron and Ng (1996) have sug-

gested a consistent autoregressive spectral density estimator which is less affected by the 
dependence on â. The estimator is based on estimation of the long autoregression (4.12):

 ŵ2
AR 5

s| 2
k

(1 2 gk21
j51 g|j) 2, (4.18)

where k is chosen according to the information criterion (4.14). The filtered estimator 
(4.18)  decouples estimation of w2 from the estimation of a and is therefore unaffected by 
any bias that â may otherwise have due the presence of serial correlation.

3.4 The M  Class of Unit Root Tests

When comparing the size properties of the Phillips–Perron tests using the estimator ŵ2
AR 

and the tests applying the commonly used Bartlett kernel estimator of w2 with linearly 
decaying weights, Perron and Ng (1996) found significant size improvements in the most 
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critical parameter space. Notwithstanding, size distortions can still be severe and remain 
so even if ŵ2

AR is replaced by the (unknown) true value w2. This suggests that the bias of 
â is itself an important source of the size distortions. With this motivation Perron and 
Ng (1996) and Ng and Perron (2001) suggest further improvements of existing tests with 
much better size behaviour compared to other tests. Moreover, the tests can be designed 
in such a way that they satisfy desirable optimality criteria.

The trinity of M tests belongs to a class of tests which was originally suggested by 
Stock (1999). They build on the Z class of semiparametric tests but are modified in a 
particular way to deal with the bias of â and exploit the fact that a series converges at 
different rates under the null and the alternative hypothesis. The first statistic can be 
formulated as

 MZa 5 Za 1
T
2

(â 2 1)2. (4.19)

Since the least squares estimator â is super- consistent under the null, that is 
â 2 1 5 Op (T21) , it follows that Za and MZa have the same asymptotic distribution. In 
particular, this implies that the limiting null distribution of MZa is the one given in (4.7). 
The next M statistic reads

 MSB 5 Åŵ22
ART22a

T

t52
y2

t21, (4.20)

which is stochastically bounded under the null and Op (T21)  under the alternative; see 
also Sargan and Bhargava (1983) and Stock (1999). Note that Zta

5 MSB # Za, and 
hence a modified Phillips–Perron t- test can be constructed as

 MZta
5 Zta

1
1
2
aÅŵ22

ARa
T

t52
y2

t21b (â 2 1)2. (4.21)

The correction factors of MZa and MZta
 can be significant despite the super- 

consistency of â. Perron and Ng show that the M tests have lower size distortion 
relative to competing unit root tests. The success of the test is mainly due to the use of 
the sieve autoregressive spectral density estimator ŵ2

AR in (4.18) as an estimator of w2. 
Interestingly, the M tests also happen to be robust to, for example, measurement errors 
and additive outliers in the observed series; see Vogelsang (1999).

4  UNIT ROOT TESTING WITH DETERMINISTIC 
COMPONENTS BUT NO BREAKS

Since many macroeconomic time series are likely to have some kind of deterministic 
component, it is commonplace to apply unit root tests that yield inference which is invar-
iant to the presence of a particular deterministic component. In practice, a constant term 
is always included in the model so the concern in most cases is that of whether to include 
or not to include a linear trend in the model. In many cases auxiliary information may 
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be useful in ruling out a linear trend, for instance for interest rate data, real exchange 
rates, or inflation rates. However, for many other time series a linear trend is certainly a 
possibility such as GDP per capita, industrial production, and consumer prices (in logs).

In the previous section we excluded deterministic components from the analysis. Now 
we consider the model (4.1) in the special case where

 f(t) 5 d rtm. (4.22)

In (4.22) dt is a k- vector of deterministic terms, (k $ 1), and m is a parameter vector of 
matching dimension. Hence the trend considered is linear- in- parameters. In particular, 
we will consider in this section the cases where dt 5 1 or dt 5 (1,t)r since these are the 
most relevant situations in applications. In principle, however, the analysis can even be 
extended to higher- order polynomial trends. Consequently we assume the possibility of 
a level effect or a level plus trend effect (without breaks) in the model. In fact, the linear- 
in- parameters specification also includes structural breaks of the additive outlier form 
discussed in section 2.1 when the break date is known. We return to this case later.

4.1 Linear- in- parameters Trends without Breaks

When allowing for deterministic components the augmented Dickey–Fuller (or Said–
Dickey) regressions should take the alternative form

 yt 5 d rtm 1 ayt21 1 a
k21

j51
gjDyt2 j 1 vtk. (4.23)

In a similar fashion the Phillips–Perron Z tests allow inclusion of deterministic compo-
nents in the auxiliary regressions, but alternatively one can also detrend the series prior 
to testing for a unit root. In all cases where the models are augmented by deterministic 
components the relevant distributions change accordingly; Brownian motion processes 
should be replaced with demeaned and detrended Brownian motions of the form

 Wd(r) 5 W(r) 2 D(r)ra31

0
D(s)D(s)rdsb21a31

0
D(s)W(s)dsb, (4.24)

where D(r) 5 1 when dt 5 1 and D(r) 5 (1, r)r when dt 5 (1,t)r. The relevant 
 distributions of the ADF and Phillips–Perron tests are reported in Fuller (1996).

Concerning the M tests discussed in section 3.4, Ng and Perron (2001) suggest an 
alternative way to treat deterministic terms. They recommend to adopt the local GLS 
detrending/demeaning procedure initially developed by Elliott et al. (1996). This has the 
further advantage that tests are ‘nearly’ efficient in the sense that they nearly achieve the 
asymptotic power envelopes for unit root tests. For a time series {xt}T

t51 of length T  and 
any constant c, define the vector xc 5 (x1,Dx2 2 cT21x1, . . .,DxT 2 cT21xT21)r. The so- 
called GLS detrended series {y|t} reads

 y|t 5 yt 2 dtrb
|,  b

|
5 arg min

b
(yc 2 dcrb)r (yc 2 dcrb). (4.25)
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Elliott et al. (1996) suggested c 5 27 and c 5 213.5 for dt 5 1 and dt 5 (1,t)r, respec-
tively. These values of c correspond to the local alternatives against which the local 
asymptotic power envelope for 5 per cent tests equals 50 per cent. When the M tests 
are constructed by using GLS detrended data and the long- run variance estimator is 
ŵ2

AR defined in (4.18) together with the modified information criterion (4.14), the tests 
are denoted MZGLS

a , MSBGLS, and MZGLS
t , respectively. Ng and Perron (2001) show that 

these tests have both excellent size and power when a moving average component is 
present in the error process.

The efficient tests suggested by Elliott et al. (1996) have become a benchmark ref-
erence in the literature. A class of these tests which we will later refer to is the GLS 
detrended or demeaned ADF tests, ADFGLS

t . Basically these tests are constructed from 
the Dickey–Fuller t- statistic based on an augmented Dickey–Fuller regression without 
deterministic terms, like (4.12), where y|t in (4.25) is used in place of yt. The lag trunca-
tion again needs to be chosen via a consistent model selection procedure like the MAIC 
criterion in (4.14). These tests can be shown to be near asymptotically efficient. The 
GLS detrended or demeaned ADF and M  tests can thus be considered parametric and 
semi- nonparametric tests designed to be nearly efficient. Regarding the t- statistic- based 
tests ADFGLS

t  and MZGLS
t , the distribution for dt 5 1 is the Dickey–Fuller distribution 

for the case without deterministics (4.8) for which the critical values are reported in 
Fuller (1996). When dt 5 (1,t)r the relevant distribution can be found in Elliott et 
al. (1996) and Ng and Perron (2001) where the critical values for c 5 213.5 are also 
reported.

As a final note, Perron and Qu (2007) have shown that the selection of k using MAIC 
with GLS demeaned or detrended data may lead to power reversal problems, meaning 
that the power against non- local alternatives may be small. However, they propose a 
simple solution to this problem: first select k using the MAIC with OLS demeaned or 
detrended data and then use this optimal autoregressive order for the GLS detrended 
test.

4.2 Uncertainty about the Trend

The correct specification of deterministic components is of utmost importance to 
conduct consistent and efficient inference of the unit root hypothesis. Regarding the 
Dickey–Fuller class of tests one would always allow for a non- zero mean at least. 
However, it is not always obvious whether one should also allow for a linear trend. A 
general (conservative) advice is that if it is desirable to gain power against the trend- 
stationary alternative, then a trend should be included in the auxiliary regression (4.23), 
that is, dt 5 (1,t)r. Note that under the null hypothesis the expression (4.5) shows that 
the coefficient of the trend regressor is zero in the model (4.23). However, if one does not 
include a linear time trend in (4.23) it will be impossible to have power against the trend- 
stationary alternative, that is asymptotic power will be trivial, leading to the conclusion 
that a unit root is present when the alternative is in fact true. In other words, the distribu-
tion of the unit root test statistic allowing for an intercept but no trend is not invariant 
to the actual value of the trend.

Although the use of a test statistic which is invariant to trends seems favourable in 
this light, it turns out that the costs in terms of power loss can be rather significant 
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when there is no trend; see Harvey et al. (2009). In fact, this is a general finding for 
unit root tests where the decision of demeaning or detrending is an integral part of the 
testing procedure. Therefore, it would be of great value if some prior knowledge were 
available regarding the presence of a linear trend, but generally such information does 
not exist.

A possible strategy is to make pre- testing for a linear trend in the data an integral part 
of the unit root testing problem, that is the unit root test should be made contingent on 
the outcome of the trend pre- testing. However, this is complicated by the fact that we do 
not know whether the time series is I(1) or I(0) (this is what is being tested), and in the 
former case spurious evidence of trends may easily occur. A rather large body of litera-
ture exists on trend testing where test statistics are robust to the integration order of the 
data; a non- exhaustive list of references includes Phillips and Durlauf (1988), Vogelsang 
(1998), Bunzel and Vogelsang (2005), and Harvey et al. (2007). It turns out that testing 
for a trend prior to unit root testing generally is statistically inferior to alternative 
approaches.

Harvey et al. (2009) discuss a number of different approaches to dealing with the 
uncertainty about the trend. In particular, they consider a strategy which entails pre- 
testing of the trend specification, a strategy based on a weighting scheme of the Elliott et 
al. (1996) GLS demeaned or detrended ADF unit root tests, and finally a strategy based 
on a union of rejections of the GLS demeaned and detrended ADF tests. They find that 
the last procedure is better than the first two. It is also straightforward to apply since it 
does not require an explicit form of trend detection via an auxiliary statistic. Moreover, 
the strategy has practical relevance since it embodies what applied researchers already 
do, though in an implicit manner. Even though it is beyond the study of Harvey et al. 
(2009), our conjecture is that the strategy can be equally applied to the GLS filtered 
MZGLS

t  tests.
The idea behind the union of rejections strategy is a simple decision rule stating 

that one should reject the I(1)  null if either ADFGLS,1
t  (demeaning case) or ADFGLS, (1,t)

t  
(detrending case) rejects. The union of rejection test is defined as

 UR 5 ADFGLS,1
t I(ADFGLS,1

t , 21.94)1ADFGLS, (1,t)
t I(ADFGLS,1

t $21.94).

Here I(.)  is the indicator function. If UR 5 ADFGLS,1
t  the test rejects when UR , 21.94 

and otherwise, if UR 5 ADFGLS, (1,t)
t  a rejection is recorded when UR , 22.85. 

Alternatively, the MZGLS,1
t  and MZGLS, (1,t)

t  tests can be used in place of the ADFGLS
t  tests; 

the asymptotic distributions will be the same. Based on the asymptotic performance and 
finite sample analysis, Harvey et al. (2009) conclude that despite its simplicity the UR 
test offers very robust overall performance compared to competing strategies and is thus 
useful for practical applications.

5 THE INITIAL CONDITION

So far we have assumed that the initial condition y0 5 0. This may seem to be a rather 
innocuous requirement since it can be shown that as long as y0 5 op (T 1/2)  the impact of 
the initial observations is asymptotically negligible. For instance, this is the case when the 
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initial condition is modelled as a constant nuisance parameter or as a random  variable 
with a known distribution. However, problems occur under the alternative hypothesis 
and hence have implications for the power of unit root tests.

To clarify the argument, assume that yt follows a stationary Gaussian AR(1) process 
with no deterministic components and let the autoregressive parameter be a. In this situ-
ation y0 , N(0,1/(1 2 a2)) . If we assume a local discrepancy from the unit root model, 
that is by defining a 5 1 1 c/T  to be a parameter local to unity where c , 0, then it 
follows that T21/2y0 , N(0,21/(2c)). For the initial value to be asymptotically negligi-
ble we thus require this to be of a smaller order in probability than the remaining data 
points, which seems to be an odd property. Since stationarity is the reasonable alterna-
tive when testing for a unit root, this example shows that even for a rather simple model 
the impact of the initial observation is worth examining.

In practical situations it is hard to rule out small or large initial values a priori. As 
noted by Elliott and Müller (2006) there may be situations where one would not expect 
the initial condition to be exceptionally large or small relative to other observations. 
Müller and Elliott (2003) show that the influence of the initial condition can be rather 
severe in terms of power of unit root tests and the fact that what we observe is the initial 
observation, not the initial condition, see Elliott and Müller (2006). In practice this 
means that different conclusions can be reached with samples of the same data which 
only differ by the date at which the time series begins. Müller and Elliott (2003) derive a 
family of efficient tests which allow attaching different weighting schemes to the initial 
condition. They explore the extent to which existing unit root tests belong to this class 
of optimal tests. In particular they show that certain versions of the Dickey–Fuller class 
of tests are well approximated by members of efficient tests even though a complete 
removal of the initial observation influence cannot be obtained.

Harvey et al. (2009) undertake a very detailed study of strategies for dealing with 
uncertainty about the initial condition. The study embeds the set- up in the papers by 
Elliott and Müller as special cases. Interestingly, Harvey et al. find that when the initial 
condition is not negligible asymptotically, the ADFGLS

t  class of tests of Elliott et al. 
(1996) can perform extremely poorly in terms of asymptotic power which tends to zero 
as the magnitude of the initial value increases. This contrasts with the performance of 
the ADFGLS

t  tests when the initial condition is ‘small’. However, the usual ADF  tests 
using demeaned or detrended data from OLS regressions have power that increases 
with the initial observation, and hence are preferable when the initial value is ‘large’. 
This finding made Harvey et al. suggest a union of rejections- based test similar to the 
approach adopted when there is uncertainty about the presence of a trend in the data. 
Their rule is to reject the unit root null if either the detrended (demeaned) ADFGLS

t  and 
the OLS detrended (demeaned) ADF  test rejects. Their study shows that in terms of 
both asymptotic and finite sample behaviour the suggested procedure has properties 
similar to the optimal tests suggested by Elliott and Müller (2006). This means that 
despite its simplicity the procedure is extremely useful as a practical device for unit root 
testing.

In practical situations there will typically be uncertainty about both the initial condi-
tion and the deterministic components when testing for a unit root. In a recent paper 
Harvey et al. (2012) provide a joint treatment of these two major problems based on the 
approach suggested in their previous works.
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6 UNIT ROOTS AND STRUCTURAL BREAKS

In section 2.1 it was argued that when structural breaks are present in the time series, they 
share features similar to unit root processes. This is most apparent when analysing the 
statistical properties of unit root tests in the presence of breaks. It follows from the work 
of Perron (1989, 1990) that in such circumstances inference can be strongly misleading. 
For instance, a deterministic level shift will cause â from the augmented Dickey–Fuller 
regression to be biased towards 1 and a change in the trend slope makes the estimator 
tend to 1 in probability as the sample size increases. Thus, the DF test will indicate the 
presence of a unit root even when the time series is stationary around the deterministic 
break component. In fact, these problems concern most unit root tests including the tests 
belonging to the Phillips–Perron class of tests; see Montañés and Reyes (1998, 1999). A 
practical concern therefore is how to construct appropriate testing procedures for a unit 
root when breaks occur and power against the break alternative is wanted. In practice, 
what is important is to identify any major breaks in the data since these would otherwise 
give rise to the largest power loss of unit root tests. Minor breaks are more difficult to 
detect in finite samples than large ones, but then they only lead to minor power reduc-
tions. Hence the importance of focusing on ‘large’ breaks.

6.1 Unit Root Testing Accounting for a Break at Known Date

Additive outlier breaks
The way unit root tests should be formulated under the break hypothesis depends on 
the type of break considered. Also, it is crucial for the construction of tests that both the 
null and alternative is permitted in the model specification with the autoregressive root 
allowed to vary freely. Here we present variants of the Dickey–Fuller tests where the 
breaks allowed for are those of Perron (1989, 1990) with a known single break date. This 
corresponds to the models discussed in section 2.1.

First we consider breaks belonging to the additive outlier class. In this situation the 
testing procedure relies on two steps. In the first step the series yt is detrended, and in the 
second step an appropriately formulated augmented Dickey–Fuller test with additional 
dummy regressors included is applied to the detrended series. For the additive outlier 
models AOa 2 AOd the detrended series are obtained by regressing yt on all the relevant 
deterministic terms that characterize the model. That is, the detrended series in the addi-
tive outlier model with breaks in both the level and the trend, (model AOd), is constructed 
as

 yt 5 m| 1 1 b
|
t 1 m|*1DUt 1 b

|
*DTt 1 y|t (4.26)

where the parameters are estimated by the least squares method and y|t is the detrended 
series. The detrended series for the other AO models are nested within the above detrend-
ing regression by appropriate exclusion of irrelevant regressors for the particular model 
considered. The unit root null is tested via a Dickey–Fuller t- test of y|t. For the addi-
tive outlier model (AOc)  (with DUt absent from (4.26)) the Dickey–Fuller regression 
is like (4.12) applied to y|t. For the remaining AO models which all include DUt as a 
 deterministic component, the auxiliary regression takes the form
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 y|t 5 ây|t21 1 a
k21

j51
d̂j(1 2 L)DUt2 j 1 a

k21

j51
ĉjDy| t2 j 1 et  (t 5 k 1 1,. . .,T)  (4.27)

where k can be selected according to the criteria previously discussed. Note, however, 
that the selection of k using the MAIC criterion can be affected by the presence of breaks 
and hence other information criteria may by considered as well; see Ng and Perron 
(2001, Theorem 3). Observe that the inclusion of consecutive impulse dummy variables 
(1 2 L)DUt2 j is a temporary level shift patch that is caused by the general dynamics of 
the model. From this it can also be seen why this component is absent in the AOc model. 
It can be shown that the null distribution of the Dickey–Fuller t- test from this regression 
will depend upon the actual timing of the break date T1. If l1 determines the in- sample 
fraction of the full sample where the break occurs, that is l1 5 T1/T, then the  distribution 
reads

 ta (l1) S
d e1

0 Wd (r,l1)dW(r)"e1
0 Wd (r,l1) 2dr

 (4.28)

where Wd (r,l1)  is a process which is the residual function from a projection of W(r)  on 
the relevant continous time equivalent of the deterministic components used to detrend 
yt, that is 1, I(r . r1),r,I(r . l1) (r 2 l1)  depending on the model. The relevant distri-
butions (4.28) are tabulated in Perron (1989, 1990). Critical values for the AOc case are 
reported in Perron and Vogelsang (1993).

Innovation outlier breaks
The innovation outlier models under both the null and alternative hypotheses can all be 
encompassed in the model

 yt 5 m 1 qDUt 1 bt 1 gDTt 1 d (1 2 L)DUt 1 ayt21 1 a
k21

j51
ciDyt2 j 1 et. (4.29)

The regressors t and DTt are absent from the IOa model. The IOb model does not contain 
DTt. Under the null hypothesis a 5 1 and for a components representation this would 
generally imply that many of the coefficients of the deterministic components would 
equal zero, even though these restrictions are typically not imposed when formulating 
tests. Note, however, that when there is in fact a level shift under the null, then d 2 0, 
whereas under the alternative d 5 0 and the remaining coefficients will typically be 
non- zero. By construction, the Dickey–Fuller t- statistic from this regression is invariant 
to the mean and trend as well as a possible break in them, provided the break date is 
correct. The distribution of tâ(l1)  is in this case identical to that given in (4.28).

The tests of Perron with known break dates have been generalized and extended in a 
number of directions. Saikkonen and Lütkepohl (2002) consider a class of the AO type 
of models that allow for a level shift whereas Lütkepohl et al. (2001) consider level shift 
models of the IO type. They propose a GLS- type detrending procedure and a unit root 
test statistic which has a limiting null distribution that does not depend upon the break 
date. Invariance with respect to the break date is a result of GLS detrending and in fact 
the relevant distribution is that of Elliott et al. (1996) for the case with a constant term 
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included as a regressor in their model. This approach has been shown (see Lanne and 
Lütkepohl, 2002), to have better size and power than the test proposed by Perron (1990).

It is important to stress, however, that there are many ways of misspecifying break 
dates, and choosing an incorrect break model will affect inference negatively. The dates 
of possible breaks are usually unknown unless they refer to particular historical or eco-
nomic events. Hence procedures for unit root testing when the break date is unknown are 
necessary. Such procedures will be discussed next.

6.2 Unit Root Testing Accounting for Break at Unknown Date

For the tests of Perron (1989, 1990) to be valid, the break date should be chosen 
 independently of the given data, and it has been argued by Christiano (1992), for 
instance, that treating the break date as fixed in many cases is inappropriate. In practi-
cal situations the search and identification of breaks implies pretesting that will distort 
tests that use critical values for known break date unit root tests. Of course this criti-
cism is only valid if in fact a search has been conducted to find the breaks. On the other 
hand, such a procedure, despite having a correct size, may result in power loss if the 
break date is given without pretesting. When the break date is unknown Banerjee et al. 
(1992) suggested to consider a sequence of rolling or recursive tests and then to use the 
minimal value of the unit root test and reject the null if the test value is sufficiently small. 
However, because such procedures will be based on sub- sampling, it is expected (and 
proven in simulations) that finite sample power loss will result.

Zivot and Andrews (1992) suggested a procedure which in some respects is closely 
linked to the methodology of Perron (1989) whereas in other respects it is somewhat 
different. Their model is of the IO type. For the IOd model they consider the auxiliary 
regression model

 yt 5 m 1 qDUt 1 bt 1 gDTt 1 ayt21 1 a
k21

j51
ciDyt2 j 1 et (4.30)

which essentially is (4.29) leaving out (1 2 L)DUt as a regressor. The test that a 5 1 is 
based on the minimal value of the associated t-ratio, ta (l1) , over all possible break dates 
in some range of the break fraction that is pre- specified, that is [e,1 2 e ]. Typically one 
sets e 5 0.15 even though Perron (1997) has shown that trimming the break dates is 
unnecessary. The resulting test statistic has the distribution

 t*a 5  inf 
l1[ [e, 12e]

ta (l1) Sd  inf 
l1[ [e, 12e]

e1
0 Wd (r,l1)dW(r)"e1

0 Wd (r,l1)2dr
 (4.31)

with Wd (r, l1)  defined in section 6.1.
The analysis of Zivot and Andrews (1992) has been extended by Perron and Vogelsang 

(1992a) and Perron (1997) for the non- trending and trending cases, respectively. They 
consider both the IO and AO models based on the appropriately defined minimal value 
t- statistic of the null hypothesis. They also consider using the test statistics ta (l1)  for 
the case of known break date where the break date T1 is determined by maximizing the 
numerically largest value of the t- statistic associated with the coefficient of the shift 
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dummy DUt (in case of a level shift) and DTt (in case of slope change). Regarding the IO 
model they also consider using the regression (4.29) rather than (4.30) since this would 
be the right regression with a known break date.

A problem with the tests that build upon the procedure of Zivot and Andrews (1992) 
is that a break is not allowed under the null hypothesis of a unit root but only under 
the alternative. Hence the deterministic components are given an asymmetric treat-
ment under the null and alternative hypotheses. This is a very undesirable feature, and 
Vogelsang and Perron (1998) showed that if a unit root exists and a break occurs in the 
trend function the Zivot and Andrews test will either diverge or will not be invariant to 
the break parameters. This caveat has motivated Kim and Perron (2009) to suggest a test 
procedure which allows a break in the trend function at unknown date under both the 
null and alternative hypotheses. The procedure has the advantage that when a break is 
present, the limiting distribution of the test is the same as when the break date is known, 
which increases the power whilst maintaining the correct size.

Basically, Kim and Perron (2009) consider the class of models initially suggested 
by Perron (1989) with the modification that a possible break date T1 is assumed to be 
unknown. The models they address are the additive outlier models that allow for a non- 
zero trend slope AOb, AOc and AOd, and the innovation outlier models associated with 
IOb and IOd, that is, the models implying a level shift, changing growth, or a combina-
tion of the two. The IOc models are not considered since it is necessary to assume that 
no break occurs under the null hypothesis which contradicts the purpose of the analy-
sis. When T1 is an unknown parameter it is difficult in practice to estimate the models 
because the form of the regressors to be included is unknown. Notwithstanding, an 
estimate of the break date may be considered. The idea is to consider conditions under 
which the distribution of ta (l̂1)  for the additive outlier case, for instance, is the same as 
the distribution of ta (l1)  given in (4.28); in other words, the limiting distribution of the 
Perron test is unaffected by whether the break is known in advance or has been estimated 
and hence the critical values for the known break date can be used. It turns out that such 
a result will depend upon the consistency rate of the estimate of the break fraction and 
also whether or not there is a non- zero break occurring in the trend slope of the model. 
Suppose that we have a consistent estimate l̂1 5 T̂1/T  of the break fraction such that

 l̂1 2 l1 5 Op (T2a)  (4.32)

for some a $ 0. For the models AOc, AOd, and IOd with a non- zero break the distribu-
tion of the unit root hypothesis for the estimated break date case is the same as the case 
of known break date when l̂1 2 l1 5 op (T 21/2).  A consistent estimate of the break date 
is therefore not needed, but the break fraction needs to be consistently estimated at a rate 
larger than "T.

Kim and Perron (2009) consider a range of different estimators that can be used to 
estimate the break fraction with different rates of consistency. They also suggest an esti-
mator using trimmed data whereby the rate of convergence can be increased. The reader 
is referred to Kim and Perron’s (2009) paper for details.

So far we have assumed that a break in trend occurs under both the null and alterna-
tive hypotheses. When there is no such break the asymptotic results will no longer hold 
because the estimate of the break fraction will have a non- generate distribution on [0,1] 
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under the null. Hence a pre- testing procedure is needed to check for a break, see for 
example Kim and Perron (2009), Perron and Yabu (2009a), Perron and Zhu (2005), 
and Harris et al. (2009). When the outcome of such a test indicates that there is no trend 
break, the usual Dickey–Fuller class of tests can be used.

In the models with a level shift, that is models AOb and IOb, Kim and Perron (2009) 
show that known break date asymptotics will apply as long as the break fraction is con-
sistently estimated. On the other hand, if the break happens to be large in the sense that 
the magnitude of the break increases with the sample size, then a consistent estimate 
of the break fraction is not enough and a consistent estimate of the break date itself is 
needed.

Our review of unit root tests with unknown break dates is necessarily selective. 
Contributions not discussed here include Perron and Rodríguez (2003), Perron and 
Zhu (2005), and Harris et al. (2009)  among others. Harris et al. (2009) suggest a pro-
cedure that is adequate when there is uncertainty about what breaks occur in the data. 
In so doing they generalize the approaches discussed in sections 4.2 and 5 where there is 
 uncertainty about the trend or the initial condition.

There is also a large body of literature dealing with the possibility of multiple breaks 
in time series that are either known or unknown. We will not discuss these contributions 
but simply note that even though accounting for multiple breaks may give testing pro-
cedures with a controllable size, the cost will typically be a power loss that can often be 
rather significant; see Perron (2006) for a review.

7 UNIT ROOT TESTING AGAINST NON- LINEAR MODELS

This section is dedicated to recent developments in the field of unit root tests against sta-
tionary non- linear models. Amongst the non- linear models we consider (i) smooth tran-
sition autoregressive (STAR) models and (ii) threshold autoregressive (TAR) models. 
The model under validity of the null hypothesis is linear, which is in line with the major-
ity of the literature. A notable exception is Yildirim et al. (2009) who suggest to consider 
non- linear models under both H0 and H1.

When smooth transition models are considered as an alternative to linear non- 
stationary models one often finds the Exponential STAR (ESTAR) model to be the 
most popular one; see, however, Eklund (2003) who considers the logistic version of the 
STAR model under the alternative. In particular, a three- regime ESTAR specification is 
used in most cases. The middle regime is non- stationary, while the two outer regimes are 
 symmetric and mean- reverting. A prototypical model specification is given by

 Dyt 5 ryt21 (1 2 exp( 2 gy2
t21)) 1 et , g . 0,r , 0 ,

see Haggan and Ozaki (1981). Kapetanios et al. (2003) prove geometric ergodicity of 
such a model. A problem which is common to all linearity tests against smooth transi-
tion models (including TAR and Markov Switching (MS) models) is the Davies (1987) 
problem. Usually, at least one parameter is not identified under the null hypothesis; see 
Teräsvirta (1994). As unit root tests also take linearity as part of the null hypothesis, 
this problem becomes relevant here as well. The shape parameter g is unidentified under 
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H0  :  r 5 0. As shown by Luukkonen et al. (1988), this problem can be circumvented by 
using a Taylor approximation of the non- linear transition function (1 2 exp( 2gy2

t21))  
around g 5 0. The resulting auxiliary test regression is very similar to a standard 
Dickey–Fuller test regression; see Kapetanios et al. (2003):

 Dyt 5 dy3
t21 1 ut .

The limiting distribution of the t- statistic for the null hypothesis of d 5 0 is non- 
standard and depends on functionals of Brownian motions. The popularity of the test by 
Kapetanios et al. (2003) may stem from its ease of application. Regarding serially cor-
related errors, Kapetanios et al. (2003) suggest augmenting the test regression by lagged 
differences, while Rothe and Sibbertsen (2006) consider a Phillips–Perron- type adjust-
ment. Another issue is tackled in Kruse (2011) who proposes a modification of the test by 
allowing for non- zero location parameter in the transition function. Park and Shintani 
(2005) and Kilic (2011) suggest dealing with the Davies problem in a different way. 
Rather than applying a Taylor approximation to the transition function, these authors 
consider an approach which is commonly used in the framework of TAR models, that is 
a grid search over the unidentified parameters; see also below.

Adjustment of deterministic terms can be handled in a similar way to the case of linear 
alternatives. Kapetanios and Shin (2008) suggest GLS adjustment, while Demetrescu 
and Kruse (2013) compare also recursive adjustment and the MAX procedure by 
Leybourne (1995) in a local- to- unity framework. The findings suggest that GLS adjust-
ment performs best in the absence of a non- zero initial condition. Similar to the case of 
linear models, OLS adjustment proves to work best, when the initial condition is more 
pronounced. Another finding of Demetrescu and Kruse (2013) is that a combination of 
unit root tests against linear and non- linear alternatives would be a successful (union- of- 
rejections) strategy.

The ESTAR model specification discussed above can be viewed as restrictive in the 
sense that there is only a single point at which the process actually behaves like a random 
walk, namely at yt21 5 0. In situations where it is more reasonable to assume that the 
middle regime contains multiple points, one may use a double logistic STAR model 
which is given by

 Dyt 5 ryt21 (1 1 exp( 2g(yt21 2 c1) (yt21 2 c2))21 1 et ,g . 0,r , 0 ,

see Jansen and Teräsvirta (1996). Kruse (2011) finds that unit root tests against ESTAR 
have substantial power against the double logistic STAR alternative although the power 
is somewhat lower than against ESTAR models. Such a result is due to similar Taylor 
approximations and suggests that a rejection of the null hypothesis does not necessar-
ily contain information about the specific type of non- linear adjustment. This issue is 
further discussed in Kruse et al. (2012).

Another class of persistent non- linear models which permits a region of non- 
stationarity is the one of Self- Exciting Threshold Autoregressive (SETAR) models. 
Regarding unit root tests against three- regime SETAR models, important references 
are Bec et al. (2004), Park and Shintani (2005), Kapetanios and Shin (2006) and Bec 
et al. (2008). Similar to the case of smooth transition models, the middle regime often 
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exhibits a unit root. Importantly, the transition variable is the lagged dependent variable 
yt21 which is non- stationary under the null hypothesis. In Caner and Hansen (2001), 
stationary transition variables such as the first difference of the dependent variable are 
suggested. The TAR model with a unit root in the middle regime is given by (we abstract 
from intercepts here for simplicity)

 Dyt 5 r1yt211(yt21 # 2l) 1 r3yt211(yt21 $ l) 1 et .

The non- stationary middle regime is defined by Dyt 5 et for 0yt21 0 , l. Stationarity and 
mixing properties of a more general specification of the TAR model are provided in Bec 
et al. (2004). Similar to the STAR model, the parameter l is not identified under the null 
hypothesis of a linear unit root process. In order to tackle this problem, sup- type Wald 
statistics can be considered:

 supW ; sup
l[ [lT, lT] 

WT (l)

A nuisance parameter- free limiting distribution of the supLM statistic can be achieved 
by choosing the interval [lT,lT ] appropriately. The treatment of the parameter space 
for l distinguishes most of the articles. Seo (2008) for example suggests a test based on 
a compact parameter space similar to Kapetanios and Shin (2006). The test allows for 
a general dependence structure in the errors and uses the residual- block bootstrap pro-
cedure (see Paparoditis and Politis 2003) to calculate asymptotic p- values. Comparative 
studies are, amongst others, Maki (2009) and Choi and Moh (2007).

8  UNIT ROOTS AND OTHER SPECIAL FEATURES OF THE 
DATA

We have considered unit root testing for a range of different situations that may 
 characterize economic time series processes. Here we will briefly describe some other 
features of the data that are often important for unit root testing. This non- exhaustible 
review will include issues related to higher order integrated processes, the choice of an 
appropriate functional form, the presence of heteroscedasticity, and unit root testing when 
economic variables by their construction are bounded upwards, downwards, or both.

8.1 I(2) Processes

So far we have addressed the unit root hypothesis implying that the time series of inter-
est is I(1) under the null hypothesis. There has been some focus in the literature on time 
series processes with double unit roots, so- called I(2) processes. As seen from equation 
(4.2), an I(1) process is driven by a stochastic trend component of the form g t

j51ej. If, on 
the other hand, ut in (4.1) is I(2), then (1 2 L) 2ut 5 C(L)et, and the series can be shown 
to include a stochastic trend component of the form

 a
t

k51
a

k

j51
ej 5 te1 1 (t 2 1)e2 1 . . . 1 3et22 1 2et21 1 et. (4.33)
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As seen, a shock to the process will have an impact that tends to increase over time. 
This may seem to be an odd feature but it is implied by the fact that (if the series is log 
transformed) then shocks to the growth rates are I(1), and hence will persist, and this will 
further amplify the effect on the level of the series when cumulated. In practice, testing 
for I(2) is often conducted by testing for whether the first differences of the series have a 
unit root under the null hypothesis. This can be tested using the range of tests available 
for the I(1) case. See for instance Haldrup (1998) for a review on the statistical analysis 
of I(2) processes.

8.2 Functional Form

From practical experience researchers have learned that unit root testing is often sensi-
tive to non- linear transformations of the data. For instance, variables expressed in loga-
rithms are sometimes found to be stationary, whereas the same variables in levels are 
found to be non- stationary. Granger and Hallman (1991) addressed the issue of appro-
priate non- linear transformations of the data and developed a test for unit roots that 
is invariant to monotone transformations of the data such as y2

t ,y3
t , 0yt 0 ,sgn(yt) , sin (yt) , 

and exp(yt) . Franses and McAleer (1998) developed a test of non- linear transformation 
to assess the adequacy of unit root tests of the augmented Dickey–Fuller type. They 
 considered the following generalized augmented Dickey–Fuller regression (ignoring 
deterministic components) of a possibly unknown transformation of yt

 yt(d) 5 ayt21 (d) 1 a
k21

j51
gjDyt2 j(d) 1 vtk   (t 5 k 1 1, . . .,T )  (4.34)

where yt(d)  denotes the transformation of Box and Cox (1964) given by

 
yt(d) 5 (yd

t 2 1) /d d 2 0, yt $ 0
5 log yt(d)  d 5 0, yt . 0.

 (4.35)

For this model Franses and McAleer (1998) considered the null hypothesis of a unit 
root for some assumed value of the Box–Cox parameter d, but without estimating the 
parameter directly. Based on a variable addition test they showed how the adequacy 
of the transformation could be tested. Fukuda (2006) suggested a procedure based on 
information criteria to jointly decide on the unit root hypothesis and the transformation 
parameter.

8.3 Bounded Time Series

Many time series in economics and finance are bounded by construction or are subject 
to policy control. For instance the unemployment rate and budget shares are variables 
bounded between zero and 1, and some variables, exchange rates for instance, may be 
subject to market intervention within a target zone. Conventional unit root tests will be 
seriously affected in this situation. Cavaliere (2005) showed that the limiting distribu-
tions in this case will depend upon nuisance parameters that reflect the position of the 
bounds. The tighter the bounds, the more will the distribution be shifted towards the 
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left and thus bias the standard tests towards stationarity. Only when the bounds are 
sufficiently far away will conventional unit root tests behave according to standard 
asymptotic theory. Cavaliere and Xu (2013) have recently suggested a testing procedure 
for augmented Dickey–Fuller tests and the autocorrelation- robust M tests of Perron and 
Ng (1996) and Ng and Perron (2001), even though in principle the procedure can be used 
for any commonly used test.

The processes considered by Cavaliere and Xu (2013) behave like random walks but 
are bounded above, below or both; see also Granger (2010). The time series xt is assumed 
to have (fixed) bounds at b , b, (b , b) , and is a stochastic process xt [ [b , b ] almost 
surely for all t. This means that the increments Dxt necessarily have to lie in the interval 
[b 2 xt21, b 2 xt21 ]. Rewrite the process in the following form

 xt 5 m 1 yt

 yt 5 ayt21 1 ut, a 5 1 (4.36)

where ut is further decomposed as

 ut 5 et 1 xt 2 xt. (4.37)

Furthermore, et is a weakly dependent zero- mean unbounded process and xt,xt are 
non- negative processes satisfying

 
xt . 0 for yt21 1 et , b 2 q

xt . 0 for yt21 1 et . b 2 q.
 (4.38)

A bounded I(1) process xt will revert because of the bounds. When it is away from the 
bounds it behaves like a unit root process. When being close to the bounds the presence 
of the terms xt and xt will force xt to lie between b and b. In the stochastic control litera-
ture, see Harrison (1985), the stochastic terms xt and xt are referred to as ‘regulators’.

To derive the appropriate asymptotic distributions of the augmented Dickey–Fuller 
test and the M tests defined in sections 3.2 and 3.4, Cavaliere and Xu (2013) relate the 
position of the bounds b and b (relative to the location parameter q)  to the sample size T  
as (b 2 q) / (lT 1/2) 5 c 1 o(1)  and (b 2 q) / (lT 1/2) 5 c 1 o(1)  where c # 0 # c, c 2 c. 
It occurs that the parameters c and c will appear as nuisance parameters in the relevant 
asymptotic distributions expressed in terms of a regulated Brownian motion W(r; c,c) ; 
see Nicolau (2002). When the bounds are one- sided c 5 2` or c 5 ` and when there are 
no bounds W(r;c, c) S W(r)  for c S 2` and c S `. Hence the usual bounds- free unit 
root distributions will apply as a special case.

The lesson to be learned from the analysis is that standard unit root inference is 
affected in the presence of bounds. If the null hypothesis is rejected on the basis of stand-
ard critical values, it is not possible to assess whether this is caused by the absence of a 
unit root or by the presence of the bounds. On the other hand, the non- rejection of the 
unit root hypothesis is very strong evidence for the null hypothesis under these circum-
stances. To provide valid statistical inference, Cavaliere and Xu (2013) suggest a testing 
procedure based on first estimating the nuisance parameters c and c. Based on these 
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estimates, they suggest simulating the correct asymptotic null distribution from which 
the asymptotic p- value of the unit root test can be inferred. In estimating the nuisance 
parameters c and c they define the consistent estimators

 ĉ 5
b 2 x0

ŵ2
ART1/2, ĉ 5

b 2 x0

ŵ2
ART1/2 (4.39)

where b and b are assumed known in advance and ŵ2
AR is defined in (4.18). We will refer 

to Cavaliere and Xu (2013) for details about the algorithm that can be used to simulate 
the Monte Carlo p- values of the tests. In their paper they also suggest how heteroscedas-
tic shocks can be accounted for. When the bounds b and b are unknown there are various 
ways to proceed. For instance the bounds can sometimes be inferred from historical 
observations or one can conduct a more formal (conservative) testing procedure by 
taking the minimum of the simulation- based p- values over a grid of admissible bound 
locations. In a different context, Lundbergh and Teräsvirta (2006) suggest a procedure 
for estimating implicit bounds, such as in unofficial exchange rate target zones inside 
announced ones, should they exist.

8.4 Non- constant Volatility

It is generally believed that (mild) heteroscedasticity is a minor issue in unit root testing 
because the tests allow for heterogenous mixing errors, see for example Kim and Schmidt 
(1993). This applies for the range of tests based on the Phillips–Perron type of unit root 
tests including the M class of tests, mainly because they are derived in a non- parameteric 
setting. But actually the parametric counterparts like the augmented (Said) Dickey–
Fuller tests are robust to some form of heteroscedasticity. Notwithstanding, when vola-
tility is non- stationary the standard unit root results no longer apply. Non- stationary 
volatility may occur for instance when there is a single or multiple permanent breaks in 
the volatility process, a property that seems to characterize a wide range of financial time 
series in particular. Cavaliere (2004) provides a general framework for investigating the 
effects of permanent changes in volatility on unit root tests.

Some attempts have been made in the literature to alleviate the problems with non- 
stationary volatility. Boswijk (2001) for instance has proposed a unit root test for the 
case where volatility is following a nearly integrated GARCH(1,1) process. Kim et al. 
(2002) consider the specific case of a single abrupt change in variance and suggest a 
procedure where the breakpoint together with the pre-  and post- break variances are first 
estimated. These are then employed in modified versions of the Phillips–Perron unit root 
tests. The assumption of a single abrupt change in volatility is not, however, consistent 
with much empirical evidence, which seems to indicate that volatility changes smoothly 
and that multiple changes in volatility are common when the time series are sufficiently 
long; see for example van Dijk et al. (2002) and Amado and Teräsvirta (2012).

Cavaliere and Taylor (2007) propose a methodology that accommodates a fairly 
general class of volatility change processes. Rather than assuming a specific parametric 
model for the volatility dynamics they only require that the variance is bounded and 
implies a countable number of jumps and hence allow both smooth volatility changes 
and multiple volatility shifts. Based on a consistent estimate of the so- called variance 

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   85HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   85 01/07/2013   09:4301/07/2013   09:43



86  Handbook of research methods and applications in empirical macroeconomics

profile they propose a numerical solution to the inference problem by Monte Carlo 
simulation to obtain the approximate quantiles from the asymptotic distribution of the 
M class of unit root tests under the null. Their approach can be applied to any of the 
commonly used unit root tests. We refer to the paper by Cavaliere and Taylor (2007) 
for details about the numerical procedure. Finally, bootstrap tests for a unit root under 
non- stationary volatility have been suggested by Chang and Park (2003), Park (2003), 
Cavaliere and Taylor (2007, 2008, 2009), among others.

9 EMPIRICAL ILLUSTRATION

To illustrate different approaches and methodologies discussed in this survey we conduct 
a small empirical analysis using four macroeconomic time series and a selected number 
of the tests presented. The time series are the monthly secondary market rate of the 
3- month US Treasury bill (T- bill, henceforth) from 1938:1 to 2011:11 (935 observations), 
the monthly US civilian unemployment rate from 1948:1 to 2011:11 (767 observations), 
the monthly US CPI inflation from 1947:2 to 2012:1 (780 observations) and the quarterly 
log transformed US real GDP from 1947:1 to 2011:7 (259 observations). The series are 
depicted in Figure 4.1.

3-Month T-Bill 

1940 1960 1980 2000

5

10

15
Log(Real GDP) 

1960 1980 2000
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Note: The 3-month US T-bill rate (upper left), the log-transformed US real GDP (upper right), the US 
unemployment rate (lower left) and the US inflation (lower right).

Source: Federal Reserve Economic Data, Federal Reserve Bank of St Louis, http://research.stlouisfed.org/
fred2/.

Figure 4.1 Four macroeconomic time series
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The individual characteristics of the series look fundamentally different. The log real 
GDP series has a practically linear deterministic trend, the unemployment rate is a 
bounded variable, and the inflation rate series contains sharp fluctuations. Estimation 
of ARMA models (not reported) show that the model for the inflation rate series in par-
ticular has a strong negative moving average component, thus suggesting that standard 
ADF and Z tests may suffer from severe size distortions when applied to this series; see 
for example Perron and Ng (1996).

We implement six different tests using both dt 5 1 and dt 5 (1,t)r as deterministic 
components. These are the trinity of GLS demeaned/detrended tests ADFGLS

t , ZGLS
ta

, and 
MZGLS

ta
 defined in section 3 where the lag length k is selected using the MAIC with OLS 

demeaned/detrended data to avoid power reversal problems; see Perron and Qu (2007). 
The standard ADFt, Zta

 and MZta
 tests are based on the long autoregression in (4.23) 

using the same k. While Harvey et al. (2009) only consider a union of rejection (UR) 
strategies for ADFGLS

t ,our conjecture is that similar procedures may be defined for the 
five remaining tests and results from these are reported as well. The results of full sample 
unit root tests are presented in Table 4.1

Several interesting observations can be made from results in Table 4.1. First, a 5 1 
is clearly rejected for inflation, but the relative (negative) magnitude of the test statistics 
show the distortions due to a negative moving average component on standard ADF and 
Z tests. Second, it seems that the correction factor used in the construction of the MZ 
tests is often negligible, which may well be the result of large sample sizes and strongly 
consistent estimates of the unit root in the test regressions: often â < 0.99. Finally, we 

Table 4.1 Full sample unit root testing

3- Month T- bill Log Real GDP

dt 5 1 dt 5 (1, t)9 UR dt 5 1 dt 5 (1, t)9 UR

ADF −2.06 −1.77 −1.77 −1.93 −1.45 −1.45
ADF GLS −1.43 −1.86 −1.86 3.52 −1.05 −1.05
Zta

−2.02 −2.01 −2.01 −0.17 −1.71 −1.71
ZGLS

ta
−1.73* −2.10 −1.73* −0.19 −1.59 −1.59

MZta
−2.01 −2.01 −2.01 −0.17 −1.71 −1.71

MZGLS
ta

−1.73* −2.09 −1.73* −0.19 −1.59 −1.59

Unemployment Rate Inflation

dt 5 1 dt 5 (1, t)9 UR dt 5 1 dt 5 (1, t)9 UR

ADF −2.33 −2.56 −2.33 −11.4*** −11.4*** −11.4***
ADF GLS −1.06 −2.43 −2.43 −2.61*** −12.5*** −2.61***
Zta

−2.55 −2.97 −2.97 −16.31*** −16.24*** −16.31***
ZGLS

ta
−1.55 −2.86* −2.86* −9.06*** −23.75*** −9.06***

MZta
−2.55 −2.97 −2.97 −13.72*** −13.64*** −13.72***

MZGLS
ta

−1.55 −2.86* −2.86* −4.45*** −22.68*** −4.45***

Notes: Unit root testing of four macroeconomic time series. (*), (**) and (***) denotes significance at a 
10%, 5% and 1% level, respectively, based on the critical values from Fuller (1996) for the standard case and 
from Ng and Perron (2001) for the GLS detrended case.
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are likely to see an increase in the asymptotic power of the GLS demeaning/detrending 
procedure applied to the 3- month T- bill and unemployment series since only ZGLS

ta
 and 

MZGLS
ta

 reject a 5 1 at the 10 per cent level. Before dismissing a unit root for unemploy-
ment it should be noted, however, that the critical values must be altered to reflect the 
bounds of b 5 0 and b 5 100. Because critical values are becoming numerically larger in 
this case, a consequence of this is that the unit root hypothesis cannot be rejected at 1 per 
cent and 5 per cent levels of significance.

9.1 Unit Root Testing in the Recent Financial Crisis

Figure 4.1 shows that we may have to be concerned with several structural breaks in 
each series. Nevertheless, for ease of exposition, we shall only treat the sample starting 
from 1990:1, and we assume that there is a known break in the series caused by the most 
recent financial crisis. We do not analyse inflation, since a 5 1 is clearly rejected even in 
the presence of structural breaks. For both the 3- month T- bill and unemployment series, 
we let T1 correspond to 2008:9, such that l1 <  0.85. Similarly, for the real GDP T1 cor-
responds to 2009:1, implying l1 <  0.89, since the decline in output seems to occur later 
corresponding to one quarter.

To emphasize the importance of correcting for a structural break in mean, we consider 
standard ADF, Z and MZ tests based on the AOa and AOb models. The ADFt test is 
based on the auxiliary regression (4.27), whereas the Zt and MZt tests, following Perron 
(1990) and Perron and Vogelsang (1992b), are based on the estimate â from

 y|t 5 ây|t21 1 d̂(1 2 L)DUt 1 et,

Where (4.27) is used to estimate the long- run variance ŵ2
AR. We use AIC to select k, since, 

as argued in section 6.1, it is unclear what the implications of structural breaks are on the 
MAIC criterion in finite samples. Table 4.2 shows the three unit root tests both with and 
without accounting for a structural break.

It follows from Table 4.2 that without accounting for a structural break caused by the 
financial crisis, we accept a 5 1 for all series. However, by allowing for the structural 
break, we are able to reject a 5 1 for the 3- month T- bill series, while the values of the test 
statistics for both the real GDP and unemployment are fairly close to the critical values 
at a 10 per cent level. While this small analysis is conducted under the simplifying and 
strong assumption of a single known break, it illustrates the importance of accounting 
for structural breaks when statistical properties of persistent and trending time series are 
considered.

10 CONCLUSION

This chapter has provided a selective review of the literature on testing for a unit root. 
As seen, the field has grown in numerous different directions. New tests have been devel-
oped over time to improve power and size properties of previous tests, and testing meth-
odologies and procedures have been extended and modified to allow for an increasing 
complexity of models with breaks and non- linearities.
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Unfortunately, there are many topics that we had to exclude from the exposition even 
though these areas deserve equal mention. For instance, the use of bootstrap methods 
for unit root testing in situations where standard assumptions are likely to fail has 
become a rapidly developing research area during the past decade or so and there still 
seems to be a potential for new results in this area; see for example Cavaliere and Taylor 
(2007, 2008, 2009), Chang and Park (2003), Paparoditis and Politis (2003), and Park 
(2003) among others.

Another topic concerns testing when the hypothesis being tested is reversed, that is 
the null of stationarity is tested against the alternative of a unit root; see for example 
Kwiatkowski et al. (1992).

In the review of tests for a unit root in the presence of structural breaks it has either 
been assumed that the break date was known or could be estimated consistently at a suf-
ficiently fast rate. However, this is not always the case and testing for (possibly multiple) 
breaks in a time series is a separate research area which has attracted a lot of attention. 
See for instance Perron (2006) for a review, and Kejriwal and Perron (2010) and Perron 
and Yabu (2009a, 2009b) for recent contributions.

Finally, we would like to mention the fractional unit root literature where the order of 
differencing is fractional rather than being integer valued. Fractionally integrated proc-
esses have autocorrelations that die out at a slow hyperbolic rate and hence are often 
referred to as being long memory. Baillie (1996) provided an early review of this litera-
ture, but since then the field has grown tremendously. Velasco (2006) provides a recent 
review of semiparametric estimators of long memory models. More recently there has 
been an increased focus on how fractional integration and long memory interfere with 
persistent components caused by structural breaks or non- linearities; see for example 
Diebold and Inoue (2001), Perron and Qu (2010) and Varneskov and Perron (2011). 
Hence the known problems of discriminating a unit root from structural break models 
equally apply to fractional long memory models.

Table 4.2 Subsample unit root testing both with and without structural breaks

No 
Breaks

3- Month T- bill Log Real GDP Unemployment Rate

dt 5 1 dt 5 (1, t)9 UR dt 5 1 dt 5 (1, t)9 UR dt 5 1 dt 5 (1, t)9 UR

ADF −1.44 −1.79 −1.79 – −0.453 −0.453 −0.783 −0.955 −0.955
Zta

−0.969 −1.88 −1.88 – −1.43 −1.43 −1.26 −1.47 −1.47
MZta

−0.969 −1.87 −1.87 – −1.42 −1.42 −1.26 −1.46 −1.46

Breaks 3- Month T- bill Log Real GDP Unemployment Rate

dt 5 1 dt 5 (1, t)9 UR dt 5 1 dt 5 (1, t)9 UR dt 5 1 dt 5 (1, t)9 UR

ADF −2.96* −3.21 −2.96* – −3.20 −3.20 −1.40 −3.25 −3.25
Zta

−3.05* −4.13** −4.13** – −3.22 −3.22 −2.24 −3.16 −3.16
MZta

−3.04* −4.13** −4.13** – −3.15 −3.15 −2.22 −3.16 −3.16

Notes: Unit root testing of three macroeconomic time series both with and without structural breaks. (*), 
(**) and (***) denote significance at a 10%, 5% and 1% level, respectively, based on the critical values from 
Fuller (1996, Appendix 10.A) for the standard case and from Perron (1989, 1990) for the cases with breaks.

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   89HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   89 01/07/2013   09:4301/07/2013   09:43



90  Handbook of research methods and applications in empirical macroeconomics

NOTE

* The authors acknowledge support from the Center for Research in Econometric Analysis of Time Series, 
CREATES, funded by the Danish National Research Foundation.

REFERENCES

Agiakloglou, C. and P. Newbold (1992), ‘Empirical evidence on Dickey–Fuller type tests’, Journal of Time 
Series Analysis, 13, 471–83.

Amado, C. and T. Teräsvirta (2012), ‘Modelling changes in the unconditional variance of long stock return 
series’, Aarhus University, CREATES Research Paper 2012- 07.

Andrews, D.W.K. (1991), ‘Heteroscedasticity and autocorrelation consistent covariance matrix estimation’, 
Econometrica, 59, 817–58.

Baillie, R.T. (1996), ‘Long memory processes and fractional integration in econometrics’, Journal of 
Econometrics, 59, 5–59.

Banerjee, A., R.L. Lumsdaine and J.H. Stock (1992), ‘Recursive and sequential tests of the unit root and 
trend- break hypotheses: theory and international evidence’, Journal of Business and Economic Statistics, 10, 
271–87.

Bec, F., M. Ben Salem and M. Carrasco (2004), ‘Tests for unit root versus threshold specification with an 
 application to the purchasing power parity relationship’, Journal of Business and Economic Statistics, 22, 
382–95.

Bec, F., A. Guay and E. Guerre (2008), ‘Adaptive consistent unit root tests based on autoregressive threshold 
model’, Journal of Econometrics, 142, 94–133.

Berk, K.N. (1974), ‘Consistent autoregressive spectral estimates’, Annals of Statistics, 2, 489–502.
Beveridge, S. and C.R. Nelson (1981), ‘A new approach to decomposition of economic time series into perma-

nent and transitory components with particular attention to measurement of the “Business Cycle”’, Journal 
of Monetary Economics, 7, 151–74.

Boswijk, H.P. (2001), ‘Testing for a unit root with near- integrated volatility’, Tinbergen Institute Discussion 
Paper 01- 077/4.

Box, G.E.P. and D.R. Cox (1964), ‘An analysis of transformations’, Journal of the Royal Statistical Society, 
series B, 26, 211–52.

Box, G.E.P. and G.C. Tiao (1975), ‘Intervention analysis with applications to economic and environmental 
problems’, Journal of American Statistical Association, 70, 70–9.

Bunzel, H. and T.J. Vogelsang (2005), ‘Powerful trend function tests that are robust to strong serial correla-
tion with an application to the Prebisch–Singer hypothesis’, Journal of Business and Economic Statistics, 23, 
381–94.

Caner, M. and B. Hansen (2001), ‘Threshold autoregression with a unit root’, Econometrica, 69, 1555–96.
Cavaliere, G. (2004), ‘Unit root tests under time- varying variances’, Econometric Reviews, 23, 259–92.
Cavaliere, G. (2005), ‘Limited time series with a unit root’, Econometric Theory, 21, 907–45.
Cavaliere, G. and A.M.R. Taylor (2007), ‘Testing for unit roots in time series models with non- stationary 

volatility’, Journal of Econometrics, 140, 919–47.
Cavaliere, G. and A.M.R. Taylor (2008), ‘Bootstrap unit root tests for time series models with non- stationary 

volatility’, Econometric Theory, 24, 43–71.
Cavaliere, G. and A.M.R. Taylor (2009), ‘Bootstrap M unit root tests’, Econometric Reviews, 28, 393–421.
Cavaliere, G. and F. Xu (2013), ‘Testing for unit roots in bounded time series’, Journal of Econometrics, 

forthcoming.
Chang, Y. and J. Park (2002), ‘On the asymptotics of ADF tests for unit roots’, Econometric Reviews, 21, 

431–48.
Chang, Y. and J. Park (2003), ‘A sieve bootstrap for the test of a unit root’, Journal of Time Series Analysis, 

24, 379–400.
Choi, C.Y. and Y.K. Moh (2007), ‘How useful are tests for unit root in distinguishing unit root processes from 

stationary but non- linear processes?’, Econometrics Journal, 10, 82–112.
Christiano, L.J. (1992), ‘Searching for breaks in GNP’, Journal of Business and Economic Statistics, 10, 237–50.
Davies, R.B. (1987), ‘Hypothesis testing when a nuisance parameter is present under the alternative’, 

Biometrika, 74, 33–43.
Demetrescu, M. and R. Kruse (2013), ‘The power of unit root tests against nonlinear local alternatives’, 

Journal of Time Series Analysis, 34, 40–61.

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   90HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   90 01/07/2013   09:4301/07/2013   09:43



Unit roots, non- linearities and structural breaks   91

Dickey, D.A. and W.A. Fuller (1979), ‘Distribution of the estimators for autoregressive time series with a unit 
root’, Journal of American Statistical Association, 74, 427–31.

Diebold, F. and A. Inoue (2001), ‘Long memory and regime switching’, Journal of Econometrics, 105, 131–59.
Eklund, B. (2003), ‘Testing the unit root hypothesis against the logistic smooth transition autoregressive 

model’, Stockholm School of Economics, SSE/EFI Working Paper Series in Economics and Finance, No. 
546.

Elliott, G. and U. Müller (2006), ‘Minimizing the impact of the initial condition on testing for unit roots’, 
Journal of Econometrics, 135, 285–310.

Elliott, G., T.J. Rothenberg and J.H. Stock (1996), ‘Efficient tests for an autoregressive unit root’, 
Econometrica, 64, 813–36.

Engle, R.F. and C.W.J. Granger (1987), ‘Co- integration and error correction: representation, estimation, and 
testing’, Econometrica, 55, 251–76.

Engle, R.F. and A.D. Smith (1999), ‘Stochastic permanent breaks’, Review of Economics and Statistics, 81, 
553–74.

Franses, P.H. and M. McAleer (1998), ‘Testing for unit roots and non- linear transformations’, Journal of Time 
Series Analysis, 19, 147–64.

Fukuda, K. (2006), ‘Time series forecast jointly allowing the unit- root detection and the Box–Cox transforma-
tion’, Communications in Statistics, Simulation and Computation, 35, 419–27.

Fuller, W.A. (1996), Introduction to Statistical Time Series, 2nd edn, New York: Wiley.
González, A. and T. Teräsvirta (2008), ‘Modelling autoregressive processes with a shifting mean’, Studies in 

Nonlinear Dynamics and Econometrics, 12, Article 1.
Granger, C.W.J. (1981), ‘Some properties of time series data and their use in econometric model specification’, 

Journal of Econometrics, 16, 121–30.
Granger, C.W.J. (1983), ‘Co- integrated variables and error correcting models’, UCSD Discussion Paper 

1983-13.
Granger, C.W.J. (2010), ‘Some thoughts on the development of cointegration’, Journal of Econometrics, 158, 

3–6.
Granger, C.W.J. and J. Hallman (1991), ‘Nonlinear transformations of integrated time series’, Journal of Time 

Series Analysis, 12, 207–24.
Granger, C.W.J. and N. Hyung (2004), ‘Occasional structural breaks and long memory with an application to 

S&P 500 absolute stock returns ’, Journal of Empirical Finance, 11, 399–421.
Granger, C.W.J. and T. Teräsvirta (1999), ‘A simple nonlinear time series model with misleading linear proper-

ties’, Economics Letters, 62, 161–5.
Haggan, V. and T. Ozaki (1981), ‘Modelling nonlinear random vibrations using an amplitude- dependent 

autoregressive time series model’, Biometrika, 68, 189–96.
Haldrup, N. (1998), ‘An econometric analysis of I(2) variables’, Journal of Economic Surveys, 12(5), 595–650.
Haldrup, N. and M. Jansson (2006), ‘Improving power and size in unit root testing’, Chapter 7 in T.C. Mills 

and K. Patterson (eds), Palgrave Handbooks of Econometrics: Vol. 1 Econometric Theory, Basingstoke: 
Palgrave Macmillan.

Hamilton, J. (1989), ‘A new approach to the economic analysis of nonstationary time series and the business 
cycle’, Econometrica, 57, 357–84.

Harris, D., D.I. Harvey, S.J. Leybourne and A.M.R. Taylor (2009), ‘Testing for a unit root in the presence of 
a possible break in trend’, Econometric Theory, 25, 1545–88.

Harrison, J.M. (1985), Brownian Motion and Stochastic Flow Systems, New York: Wiley.
Harvey, D.I., S.J. Leybourne and A.M.R. Taylor (2007), ‘A simple, robust and powerful test of the trend 

hypothesis’, Journal of Econometrics, 141, 1302–30.
Harvey, D.I., S.J. Leybourne and A.M.R. Taylor (2009), ‘Unit root testing in practice: dealing with uncer-

tainty over trend and initial condition (with commentaries and rejoinder)’, Econometric Theory, 25, 
587–667.

Harvey, D.I., S.J. Leybourne and A.M.R. Taylor (2012), ‘Testing for unit roots in the presence of uncertainty 
over both the trend and initial condition’, Journal of Econometrics, 169, 188–95.

Jansen, E.S. and T. Teräsvirta (1996), ‘Testing parameter constancy and super exogeneity in econometric equa-
tions’, Oxford Bulletin of Economics and Statistics, 58, 735–63.

Johansen, S. (1995), Likelihood- based Inference in Cointegrated Vector Autoregressive Models, Oxford: Oxford 
University Press.

Kapetanios, G. and Y. Shin (2006), ‘Unit root tests in three- regime SETAR models’, Econometrics Journal, 9, 
252–78.

Kapetanios, G. and Y. Shin (2008), ‘GLS detrending- based unit root tests in nonlinear STAR and SETAR 
models’, Economics Letters, 100, 377–80.

Kapetanios, G., Y. Shin and A. Snell (2003), ‘Testing for a unit root in the nonlinear STAR framework’, 
Journal of Econometrics, 112, 359–79.

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   91HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   91 01/07/2013   09:4301/07/2013   09:43



92  Handbook of research methods and applications in empirical macroeconomics

Kejriwal, M. and P. Perron (2010), ‘A sequential procedure to determine the number of breaks in trend with an 
integrated or stationary noise component’, Journal of Time Series Analysis, 31, 305–28.

Kilic, R. (2011), ‘Testing for a unit root in a stationary ESTAR process’, Econometric Reviews, 30, 274–302.
Kim, D. and P. Perron (2009), ‘Unit root tests allowing for a break in the trend function at an unknown time 

under both the null and alternative hypothesis’, Journal of Econometrics, 148, 1–13.
Kim, K. and P. Schmidt (1990), ‘Some evidence on the accuracy of Phillips–Perron tests using alternative esti-

mates of nuisance parameters’, Economics Letters, 34, 345–50.
Kim, K. and P. Schmidt (1993), ‘Unit root tests with conditional heteroskedasticity’, Journal of Econometrics, 

59, 287–300.
Kim, T.H., S.J. Leybourne and P. Newbold (2002), ‘Unit root tests with a break in innovation variance’, 

Journal of Econometrics, 109, 365–87.
Kruse, R. (2011), ‘A new unit root test against ESTAR based on a class of modified statistics’, Statistical 

Papers, 52, 71–85.
Kruse, R., M. Frömmel, L. Menkhoff and P. Sibbertsen (2012), ‘What do we know about real exchange rate 

nonlinearity?’, Empirical Economics, 43, 457–74.
Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin (1992), ‘Testing the null hypothesis of stationarity 

against the alternative of a unit root’, Journal of Econometrics, 54, 159–78.
Lanne, M. and H. Lütkepohl (2002), ‘Unit root tests for time series with level shifts: a comparison of different 

proposals’, Economics Letters, 75, 109–14.
Lanne, M. and P. Saikkonen (2005), ‘Nonlinear GARCH models with highly persistent volatility’, Econometrics 

Journal, 8, 251–76.
Leybourne, S.J. (1995), ‘Testing for unit roots using forward and reverse Dickey–Fuller regressions’, Oxford 

Bulletin of Economics and Statistics, 57, 559–71.
Lundbergh, S. and T. Teräsvirta (2006), ‘A time series model for an exchange rate in a target zone with applica-

tions’, Journal of Econometrics, 131, 579–609.
Lütkepohl, H., C. Müller and P. Saikkonen (2001), ‘Unit root tests for time series with a structural 

break  when the break point is known’, in C. Hsiao, K. Morimune and J. Powell (eds), Nonlinear 
Statistical Modelling: Essays in Honor of Takeshi Amemiya, Cambridge: Cambridge University Press, 
pp. 327–48.

Luukkonen, R., P. Saikkonen and T. Teräsvirta (1988), ‘Testing linearity against smooth transition autore-
gressive models’, Biometrika, 75, 491–99.

Maddala, G. and I.M. Kim (1998), Unit Roots, Cointegration and Structural Change, Cambridge: Cambridge 
University Press.

Maki, D. (2009), ‘Tests for a unit root using three- regime TAR models: power comparison and some applica-
tions’, Econometric Reviews, 28, 335–63.

Montañés, A. and M. Reyes (1998), ‘Effect of a shift in the trend function on Dickey–Fuller unit root tests’, 
Econometric Theory, 14, 355–63.

Montañés, A. and M. Reyes (1999), ‘The asymptotic behavior of the Dickey–Fuller tests under the crash 
hypothesis’, Statistics and Probability Letters, 42, 81–9.

Müller, U. and G. Elliott (2003), ‘Tests for unit roots and the initial condition’, Econometrica, 71, 1269–86.
Nelson, C.R. and C.I. Plosser (1982), ‘Trends and random walks in macroeconomic time series: some evidence 

and implications’, Journal of Monetary Economics, 10, 139–62.
Newey, W.K. and K.D. West (1987), ‘A simple, positive semi- definite, heteroscedasticity and autocorrelation 

consistent covariance matrix’, Econometrica, 55, 703–8.
Ng, S. and P. Perron (1995), ‘Unit root tests in ARMA models with data- dependent methods for the selection 

of the truncation lag’, Journal of the American Statistical Association, 90, 268–81.
Ng, S. and P. Perron (2001), ‘Lag length selection and the construction of unit root tests with good size and 

power’, Econometrica, 69, 1519–54.
Nicolau, J. (2002), ‘Stationary processes that look like random walks – the bounded random walk process in 

discrete and continuous time’, Econometric Theory, 18, 99–118.
Paparoditis, E. and D.N. Politis (2003), ‘Residual- based block bootstrap for unit root testing’, Econometrica, 

71, 813–55.
Park, J.Y. (2003), ‘Bootstrap unit root tests’, Econometrica, 71, 1845–95.
Park, J.Y. and M. Shintani (2005), ‘Testing for a unit root against transitional autoregressive models’, 

Working Paper.
Perron, P. (1989), ‘The great crash, the oil price shock and the unit root hypothesis’, Econometrica, 57, 

1361–401.
Perron, P. (1990), ‘Testing for a unit root in a time series with a changing mean’, Journal of Business and 

Economic Statistics, 8, 153–62.
Perron, P. (1997), ‘Further evidence on breaking trend functions in macroeconomic variables’, Journal of 

Econometrics, 80, 355–85.

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   92HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   92 01/07/2013   09:4301/07/2013   09:43



Unit roots, non- linearities and structural breaks   93

Perron, P. (2006), ‘Dealing with structural breaks’, Chapter 8 in T.C. Mills and K. Patterson (eds), Palgrave 
Handbooks of Econometrics: Vol. 1 Econometric Theory, Basingstoke: Palgrave Macmillan.

Perron, P. and S. Ng (1996), ‘Useful modifications to unit root tests with dependent errors and their local 
asymptotic properties’, Review of Economics Studies, 63, 435–65.

Perron, P. and Z. Qu (2007), ‘A simple modification to improve the finite sample properties of Ng and Perron’s 
unit root tests’, Economics Letters, 94, 12–19.

Perron, P. and Z. Qu (2010), ‘Long memory and level shifts in the volatility of stock market indices’, Journal of 
Business and Economic Statistics, 28, 275–90.

Perron, P. and G.H. Rodríguez (2003), ‘GLS detrending, efficient unit root tests and structural change’, 
Journal of Econometrics, 115, 1–27.

Perron, P. and T.J. Vogelsang (1992a), ‘Nonstationarity and level shifts with an application to purchasing 
power parity’, Journal of Business and Economic Statistics, 10, 301–20.

Perron, P. and T. J. Vogelsang (1992b), ‘Testing for a unit root in a time series with a changing mean: correc-
tions and extensions’, Journal of Business and Economic Statistics, 10, 467–70.

Perron, P. and T.J. Vogelsang (1993), ‘The great crash, the oil price shock and the unit root hypothesis, 
erratum’, Econometrica, 61, 248–9.

Perron, P. and T. Yabu (2009a), ‘Testing for shifts in trend with an integrated or stationary noise component’, 
Journal of Business and Economic Statistics, 27, 369–96.

Perron, P. and T. Yabu (2009b), ‘Estimating deterministic trends with an integrated or stationary noise com-
ponents’, Journal of Econometrics, 151, 56–69.

Perron, P. and X. Zhu (2005), ‘Testing for shifts in trend with integrated and stochastic trends’, Journal of 
Econometrics, 129, 65–119.

Phillips, P.C.B. (1987), ‘Time series regression with unit root’, Econometrica, 55, 277–302.
Phillips, P.C.B. (2005), ‘Challenges of trending time series econometrics’, Mathematics and Computers in 

Simulation, 68, 401–16.
Phillips, P.C.B. and S. Durlauf (1988), ‘Trends versus random walks in time series analysis’, Econometrica, 56, 

1333–54.
Phillips, P.C.B. and P. Perron (1988), ‘Testing for a unit root in time series regression’, Biometrika, 75, 335–46.
Phillips, P.C.B. and Z. Xiao (1998), ‘A primer on unit root testing’, Journal of Economic Surveys, 12, 423–69.
Rappoport, P. and L. Reichlin (1989), ‘Segmented trends and non- stationary time series’, Economic Journal, 

99, 168–77.
Rothe, C. and P. Sibbertsen (2006), ‘Phillips–Perron- type unit root tests in the nonlinear ESTAR framework’, 

Allgemeines Statistisches Archiv, 90, 439–56.
Said, S.E. and D.A. Dickey (1984), ‘Testing for unit roots in autoregressive moving average models of 

unknown order’, Biometrika, 71, 599–607.
Saikkonen, P. and H. Lütkepohl (2002), ‘Testing for a unit root in a time series with a level shift at unknown 

time’, Econometric Theory, 18, 313–48.
Sargan, J. and A. Bhargava (1983), ‘Testing for residuals from least squares regression being generated by 

Gaussian random walk’, Econometrica, 51, 153–74.
Schwert, G.W. (1989), ‘Test for unit roots: a Monte Carlo investigation’, Journal of Business and Economic 

Statistics, 7, 147–60.
Seo, M.H. (2008), ‘Unit root test in a threshold autoregression: asymptotic theory and residual- based block 

bootstrap’, Econometric Theory, 24, 1699–716.
Stock, J.H. (1994), ‘Unit roots, structural breaks, and trends’, in R.F. Engle and D.L. McFadden (eds), 

Handbook of Econometrics, Volume IV, New York: North Holland, pp. 2739–841.
Stock, J.H. (1999), ‘A class of tests for integration and cointegration’, in Cointegration, Causality, and Fore-

casting: A Festschrift in Honour of Clive W.J. Granger, Oxford: Oxford University Press, pp. 136– 67.
Teräsvirta, T. (1994), ‘Specification, estimation, and evaluation of smooth transition autoregressive models’, 

Journal of the American Statistical Association, 89, 208–18.
Timmermann, A. (2000), ‘Moments of Markov switching models’, Journal of Econometrics, 96, 75–111.
van Dijk, D., D.R. Osborn and M. Sensier (2002), ‘Changes in variability of the business cycle in the G7 coun-

tries’, Econometric Institute Report EI 2002- 28, Erasmus University Rotterdam.
Varneskov, R.T. and P. Perron (2011), ‘Combining long memory and level shifts in modelling and forecasting 

the volatility of asset returns’, CREATES Research Paper 2011- 26, Aarhus University.
Velasco, C. (2006), ‘Semi- parametric estimation of long memory models’, Chapter 9 in T.C. Mills and 

K. Patterson (eds), Palgrave Handbooks of Econometrics: Vol. 1 Econometric Theory, Basingstoke: Palgrave 
Macmillan

Vogelsang, T.J. (1998), ‘Trend function hypothesis testing in the presence of serial correlation’, Econometrica, 
66, 123–48.

Vogelsang, T.J. and P. Perron (1998), ‘Additional tests for a unit root allowing the possibility of breaks in the 
trend function’, International Economic Review, 39, 1073–100.

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   93HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   93 01/07/2013   09:4301/07/2013   09:43



94  Handbook of research methods and applications in empirical macroeconomics

White, H. and C.W.J. Granger (2011), ‘Consideration of trends in time series’, Journal of Time Series 
Econometrics, 3, 1–38.

White, J.S. (1958), ‘The limiting distribution of the serial correlation coefficient in the explosive case’, Annals 
of Mathematical Statistics, 29, 1188–97.

Yildirim, D., R. Becker and D. Osborn (2009), ‘Bootstrap unit root tests for nonlinear threshold models’, 
University of Manchester, Economics Discussion Paper Series EDP- 0915.

Zivot, E. and D.W.K. Andrews (1992), ‘Further evidence on the great crash, the oil price shock and the unit 
root hypothesis’, Journal of Business and Economic Statistics, 10, 251–70.

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   94HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   94 01/07/2013   09:4301/07/2013   09:43



95

5 Filtering macroeconomic data
D.S.G. Pollock

INTRODUCTION

The purpose of a filter is to remove unwanted components from a stream of data so 
as to enhance the clarity of the components of interest. In many engineering applica-
tions and in some econometric applications, there is a single component of interest, 
described as the signal, to which a component has been added that can be described 
as the noise.

A complete separation of the signal and the noise is possible only if they reside in 
separate frequency bands. If they reside in overlapping frequency bands, then their sepa-
ration is bound to be tentative. The signal typically comprises elements of low frequency 
and the noise comprises elements of higher frequencies. Filters are, therefore, designed 
by engineers with reference to their frequency- selective properties.

In econometric applications, some additional components must be taken into account. 
The foremost of these is the trend, which may be defined as an underlying trajectory of 
the data that cannot be synthesized from trigonometrical functions alone. It is difficult 
to give a more specific definition, which may account for the wide variety of procedures 
that have been proposed for extracting trends from the economic data. A business cycle 
component might also be extracted from the data; but this is often found in combination 
with the trend.

Another component that is commonly present, if it has not been removed already by 
the providers of the economic data, is a pattern of seasonal fluctuations. In this case, 
given that the fluctuations reside in limited frequency bands, it is easier to provide a spe-
cific definition of the seasonal component, albeit that there is still scope for alternative 
definitions.

Notwithstanding the ill- defined nature of these components, econometricians have 
tended to adopt particular models for the trend and for the seasonal fluctuations. The 
trend is commonly modelled by a first- order random walk with drift, which is an accu-
mulation of a white- noise sequence of independently and identically distributed random 
variables. The drift occurs when the variables have a nonzero mean – a positive mean 
giving rise to an upward drift. Second- order processes involving a double accumulation 
of white noise are also used to model the trend.

Econometricians commonly model the seasonal fluctuations by autoregressive 
moving- average processes in which the autoregressive operator contains complex roots 
with moduli of unity and with arguments that correspond to the fundamental seasonal 
frequency and to the harmonically related frequencies. The moving- average operator is 
usually instrumental in confining the effects of these roots to the vicinities of the seasonal 
frequencies.

Given a complete statistical specification of the processes generating the data, it is pos-
sible to derive the filters that provide the minimum mean- squared error estimates of the 
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various components. This approach has been followed in the TRAMO–SEATS program 
of Caporello and Maravall (2004) for decomposing an econometric data sequence into 
its components. (See also Gómez and Maravall, 2001.) An account of their methods will 
be given in the penultimate section of this chapter.

The structural time series methodology that has been incorporated in the STAMP 
computer package of Koopmans et al. (2000) follows a similar approach. The STAMP 
program employs the Kalman filter, which is discussed elsewhere in this Handbook in the 
chapter by Tommaso Proietti. This powerful and all- encompassing method is capable of 
dealing with non-stationary data processes, provided that there are models to describe 
them.

Whereas the model- based approach to filtering has led to some refined computer pro-
grams that can often be used automatically to process the data, there are circumstances 
in which a significant mismatch occurs between the data and the models. Then, some 
alternative methods must be pursued which can be adapted more readily to the reflect 
the properties of the data. An aim of this chapter is to describe some methods that meet 
this requirement.

In this chapter, we shall also employ some statistical models of the processes underly-
ing the data. However, these will be heuristic models rather than models that propose to 
be realistic. Their purpose is to enable us to derive filters that are endowed with what-
ever are the appropriate frequency- selective capabilities. Thus, the specifications of the 
 resulting filters are to be determined flexibly in the light of the properties of the data.

In deriving these filters, we use an extension of the time- honoured Wiener–Kolmogorov 
principle, which is intended to provide minimum mean- squared error estimates of 
the components whenever these are truly described by the models. The original of 
Wiener–Kolmogorov theory was based on the assumption that the data are generated 
by stationary stochastic processes. Therefore, we have to adapt the theory to cater to 
non- stationary processes.

An alternative methodology will also be described that approaches the matter of 
frequency selection in a direct manner that does not depend on any models of the data. 
The resulting procedures, which employ what may be described as frequency- domain 
filters, perform the essential operations upon the trigonometrical functions that are the 
elements of the Fourier decomposition of the detrended data.

An advantage of these filters is that they enable one to separate elements that are at 
adjacent frequencies. Such sharp divisions of the frequency contents of the data cannot 
be achieved by the time- domain filters, which operate directly on the data, without 
 incurring severe problems of numerical instability.

Some mathematical results must be provided in order to support the analysis of filter-
ing. Some of these results will be presented at the outset in the sections that follow this 
introduction. Other results will be dispersed throughout the text. We shall begin with 
some basic definitions.

LINEAR TIME INVARIANT FILTERS

Whenever we form a linear combination of successive elements of a discrete- time signal 
x(t)5{xt ; t 5 0,61,62, . . .}, we are performing an operation that is described as linear 
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filtering. In the case of a linear time- invariant filter, such an operation can be represented 
by the equation

 y(t) 5 a
j

yj x(t 2 j) . (5.1)

To assist in the algebraic manipulation of such equations, we may convert the data 
sequences x(t)  and y(t)  and the sequence of filter coefficients {yj} into power series 
or polynomials. By associating zt to each element yt and by summing the sequence, 
we get

 a
t

ytzt 5 a
t
ea

j
yjxt2 j f zt or y(z) 5 y(z)x(z) , (5.2)

where

 x(z) 5 a
t

xtzt, y(z) 5 a
t

ytzt and y(z) 5 a
j

yj zj. (5.3)

The convolution operation of equation (5.1) becomes an operation of polynomial mul-
tiplication in equation (5.2). We are liable to describe the z- transform y(z)  of the filter 
coefficients as the transfer function of the filter.

For a treatise on the z- transform, see Jury (1964).

THE IMPULSE RESPONSE

The sequence {yj} of the filter’s coefficients constitutes its response, on the output side, 
to an input in the form of a unit impulse. If the sequence is finite, then y(z)  is described 
as a moving- average filter or as a finite impulse- response (FIR) filter. When the filter 
produces an impulse response of an indefinite duration, it is called an infinite impulse- 
response (IIR) filter. The filter is said to be causal or backward- looking if none of its 
coefficients is associated with a negative power of z. In that case, the filter is available for 
real- time signal processing.

CAUSAL FILTERS

A practical filter, which is constructed from a limited number of components of hard-
ware or software, must be capable of being expressed in terms of a finite number of 
parameters. Therefore, linear IIR filters which are causal will invariably entail recursive 
equations of the form

 a
p

j50
�jyt2 j 5 a

q

j50
qj xt2 j, with �0 5 1, (5.4)

of which the z- transform is

 �(z)y(z) 5 q (z)x(z) , (5.5)

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   97HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   97 01/07/2013   09:4301/07/2013   09:43



98  Handbook of research methods and applications in empirical macroeconomics

wherein �(z) 5 �0 1 �1z 1 c1 �pzp and q (z) 5 q0 1 qz 1 c1 qqzq are finite- 
degree polynomials. The leading coefficient of �(z)  may be set to unity without loss of 
generality; and thus the output sequence y(t)  in equation (5.4) becomes a function not 
only of past and present inputs but also of past outputs, which are described as feedback.

The recursive equation may be assimilated to the equation under (5.2) by writing it in 
rational form:

 y(z) 5
q (z)
�(z) x(z) 5 y(z)x(z) . (5.6)

On the condition that the filter is stable, the expression y(z)  stands for the series 
 expansion of the ratio of the polynomials.

The stability of a rational transfer function q (z) /�(z)  can be investigated via its 
partial- fraction decomposition, which gives rise to a sum of simpler transfer functions 
that can be analysed readily. If the degree of the numerator of q (z)  exceeds that of 
the denominator �(z) , then long division can be used to obtain a quotient polyno-
mial and a remainder that is a proper rational function. The quotient polynomial will 
correspond to a stable transfer function, and the remainder will be the subject of the 
decomposition.

Assume that q (z) /�(z)  is a proper rational function in which the denominator is 
 factorized as

 �(z) 5 q
r

j51

(1 2 z/lj) nj , (5.7)

where nj is the multiplicity of the root lj, and where g j nj5p is the degree of the 
 polynomial. Then, the so- called Heaviside partial- fraction decomposition is

 
q (z)
�(z) 5 a

r

j51
a

nj

k51

cjk

(1 2 z/lj) k ; (5.8)

and the task is to find the series expansions of the partial fractions. The stability of the 
transfer function depends upon the convergence of these expansions. For this, the neces-
sary and sufficient condition is that 0lj 0 . 1 for all j, which is to to say that all of the roots 
of the denominator polynomial must lie outside the unit circle in the complex plane.

The expansions of a pair of partial fractions with conjugate complex roots will combine 
to produce a sinusoidal sequence. The expansion of a partial fraction  containing a root 
of multiplicity n will be equivalent to the n- fold auto- convolution of the expansion of a 
simple fraction containing the root.

It is helpful to represent the roots of the denominator polynomial, which are described 
as the poles of the transfer function, together with the roots of the numerator polyno-
mial, which are described as the zeros, by showing their locations graphically within the 
complex plane.

It is more convenient to represent the poles and zeros of q (z21) /�(z21) , which are the 
reciprocals of those of q (z) /�(z) . For a stable and invertible transfer function, these 
must lie within the unit circle. This recourse has been adopted for Figure 5.2, which 
shows the pole–zero diagram for the transfer function that gives rise to Figure 5.1.
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THE SERIES EXPANSION OF A RATIONAL TRANSFER 
FUNCTION

The method of finding the coefficients of the series expansion can be illustrated by the 
second- order case:

 
q0 1 q1z

�0 1 �1z 1 �2z2 5 {y0 1 y1z 1 y2z2 1 c}. (5.9)

We rewrite this equation as

 q0 1 q1z 5 {�0 1 �1z 1 �2z2}{y0 1 y1z 1 y2z2 1 c}. (5.10)

0.5
1

1.5
2

0
–0.5

–1
–1.5

0 5 10 15

Figure 5.1  The impulse response of the transfer function q(z)/�(z) with �(z) 5 1.0 − 
1.2728z 1 0.81z2 and �(z) 5 1.0 1 0.75z

–i

i

–1 1
Re

Im

Figure 5.2  The pole–zero diagram corresponding to the transfer function of Figure 5.1. 
The poles are conjugate complex numbers with arguments of 6p/4 and with a 
modulus of 0.9. The single real- valued zero has the value of −0.75
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The following table assists us in multiplying together the two polynomials:

 
�0

�1z
�2z2

y0 y1z y2z2 c

�0y0 �0y1z �0y2z2 c

�1y0z �1y1z2 �1y2z3 c

�2y0z2 �1y2z3 �2y2z4 c

 (5.11)

By performing the multiplication on the RHS of equation (5.10), and by equating the 
coefficients of the same powers of z on the two sides, we find that

q0 5 �0y0, y0 5 q0/�0,

q1 5 �0y1 1 �1y0, y1 5 (q1 2 �1y0)/�0,

0 5 �0y2 1 �1y1 1 �2y0, y2 5 2(�1y1 1 �2y0) /�0, (5.12)

( (

0 5 �0yn 1 �1yn21 1 �2yn22, yn 5 2(�1yn21 1 �2yn22) /�0.

BI- DIRECTIONAL (NON-CAUSAL) FILTERS

A two- sided symmetric filter in the form of

 y(z) 5 q (z21)q (z) 5 y0 1 y1 (z21 1 z) 1 c1 ym(z2m 1 zm)  (5.13)

is often employed in smoothing the data or in eliminating its seasonal components. The 
advantage of such a filter is the absence of a phase effect. That is to say, no delay is 
imposed on any of the components of the signal.

The so- called Cramér–Wold factorization, which sets y(z) 5 q (z21)q (z) , and which 
is available for any properly designed symmetric FIR filter, provides a straightforward 
way of explaining the absence of a phase effect. The factorization gives rise to two equa-
tions: (i) q(z) 5 q (z)y(z)  and (ii) x(z) 5 q (z21)q(z) . Thus, the transformation of (5.1) is 
broken down into two operations:

 (i)  qt 5 a
j

qjyt2 j  and  (ii)  xt 5 a
j

qjqt1 j. (5.14)

The first operation, which runs in real time, imposes a time delay on every component of 
x(t) . The second operation, which works in reversed time, imposes an equivalent reverse- 
time delay on each component. The reverse- time delays, which are advances in other 
words, serve to eliminate the corresponding real- time delays.

If y(z)  corresponds to an FIR filter, then the processed sequence x(t)  may be gener-
ated via a single application of the two- sided filter y(z)  to the signal y(t) , or it may be 
generated in two operations via the successive applications of q (z)  to y(z)  and q (z21)  to 
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q(z) 5 q (z)y(z) . The question of which of these techniques has been used to generate 
y(t)  in a particular instance should be a matter of indifference.

The final species of linear filter that may be used in the processing of economic time 
series is a symmetric two- sided rational filter of the form

 y(z) 5
q (z21)q (z)
�(z21)�(z) . (5.15)

Such a filter must, of necessity, be applied in two separate passes running forwards and 
backwards in time and described, respectively, by the equations

 (i)  �(z)q(z) 5 q (z)y(z)  and  (ii)  �(z21)x(z) 5 q (z21)q(z) . (5.16)

Such filters represent a most effective way of processing economic data in pursuance of 
a wide range of objectives.

THE RESPONSE TO A SINUSOIDAL INPUT

One must also consider the response of the transfer function to a simple sinusoidal 
signal. Any finite data sequence can be expressed as a sum of discretely sampled sine and 
cosine functions with frequencies that are integer multiples of a fundamental frequency 
that produces one cycle in the period spanned by the sequence. The finite sequence may 
be regarded as a single cycle within a infinite sequence, which is the periodic extension 
of the data.

Consider, therefore, the consequences of mapping the perpetual signal sequence 
{xt 5  cos (wt)} through the transfer function with the coefficients {y0,y1, . . .}. The 
output is

 y(t) 5 a
j

yj cos (w [t 2 j ]) . (5.17)

By virtue of the trigonometrical identity  cos (A 2 B) 5  cos A cos B 1  sin A sin B, this 
becomes

 y(t) 5 ea
j

yj cos (wj)f  cos (wt) 1 ea
j

yj sin (wj)f  sin (wt)

 5 a cos (wt) 1 b sin (wt) 5 r cos (wt 2 q) , (5.18)

Observe that using the trigonometrical identity to expand the final expression of (5.18) 
gives a 5 r cos (q)  and b 5 r sin (q) . Therefore,

 r2 5 a2 1 b2  and  q 5  tan 21a b

a
b. (5.19)

Also, if l 5 a 1 ib and l* 5 a 2 ib are conjugate complex numbers, then r would be 
their modulus. This is illustrated in Figure 5.3.
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It can be seen, from (5.18), that the transfer function has a twofold effect upon the 
signal. First, there is a gain effect, whereby the amplitude of the sinusoid is increased 
or diminished by the factor r. Then, there is a phase effect, whereby the peak of the 
sinusoid is displaced by a time delay of q/w periods. The frequency of the output is 
the same as the frequency of the input, which is a fundamental feature of all linear 
dynamic systems.

Observe that the response of the transfer function to a sinusoid of a particular fre-
quency is akin to the response of a bell to a tuning fork. It gives very limited information 
regarding the characteristics of the system. To obtain full information, it is necessary to 
excite the system over a full range of frequencies.

ALIASING AND THE SHANNON–NYQUIST SAMPLING 
THEOREM

In a discrete- time system, there is a problem of aliasing whereby signal frequencies (i.e. 
angular velocities) in excess of p radians per sampling interval are confounded with 
frequencies within the interval [0,p ]. To understand this, consider a cosine wave of unit 
amplitude and zero phase with a frequency w in the interval p , w , 2p that is sampled 
at unit intervals. Let w* 5 2p 2 w. Then,

  cos (wt) 5  cos { (2p 2 w*)t}

 5  cos (2p)  cos (w*t) 1  sin (2p)  sin (w*t)

 5  cos (w*t) ; (5.20)

which indicates that w and w* are observationally indistinguishable. Here, w* [ [0,p ] 
is described as the alias of w . p.

�

Re

Im

�*

�

�

�

–�

�

Figure 5.3  The Argand Diagram showing a complex number l 5 a 1 ib and its 
conjugate l* 5 a − ib
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The maximum frequency in discrete data is p radians per sampling interval and, as the 
Shannon–Nyquist sampling theorem indicates, aliasing is avoided only if there are at 
least two observations in the time that it takes the signal element of highest frequency to 
complete a cycle. In that case, the discrete representation will contain all of the available 
information on the system.

The consequences of sampling at an insufficient rate are illustrated in Figure 5.4. 
Here, a rapidly alternating cosine function is mistaken for one of less than half the true 
frequency.

The sampling theorem is attributable to several people, but it is most commonly 
attributed to Shannon (1949a, 1949b), albeit that Nyquist (1928) discovered the essential 
results at an earlier date.

THE FREQUENCY RESPONSE OF A LINEAR FILTER

The frequency response of a linear filter y(z)  is its response to the set of sinusoidal inputs 
of all frequencies w that fall within the Nyquist interval [0,p ]. This entails the squared 
gain of the filter, defined by

 r2 (w) 5 y2
a (w) 1 y2

b(w) , (5.21)

where

 ya (w) 5 a
j

yj cos (wj) and yb(w) 5 a
j

yj sin (wj) , (5.22)

and the phase displacement, defined by

 q (w) 5 Arg{y(w)} 5  tan 21{yb(w) /ya (w)}. (5.23)

It is convenient to replace the trigonometrical functions of (5.22) by the complex 
 exponential functions

1 2 3 4

–1.0

–0.5

0.5

1.0

Figure 5.4  The values of the function cos{(11/8)pt} coincide with those of its alias 
cos{(5/8)pt} at the integer points {t 5 0, 61, 62, . . .}
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 eiwj 5
1
2

{ cos (wj) 1  sin (wj) } and e2iwj 5
1
2

{ cos (wj) 2  sin (wj) }, (5.24)

which enable the trigonometrical functions to be expressed as

  cos (wt) 5
1
2

{eiwj 1 e2iwj} and  sin (wj) 5
i
2

{e2iwj 2 eiwj}. (5.25)

Setting z 5 exp{2iwj} in y(z)  gives

 y(e2iwj) 5 ya (w) 2 iyb(w) , (5.26)

which we shall write hereafter as y(w) 5 y(e2iwj) .
The squared gain of the filter, previously denoted by r2 (w) , is the square of the 

complex modulus:

 0y(w) 0 2 5 y2
a (w) 1 y2

b(w) , (5.27)

which is obtained by setting z 5 exp{2iwj} in y(z21)y(z) .

THE SPECTRUM OF A STATIONARY STOCHASTIC PROCESS

Consider a stationary stochastic process y(t) 5 {yt ; t 5 0,61,62, . . .} defined on 
a doubly- infinite index set. The generic element of the process can be expressed as 
yt 5 Sjyjet2 j, where et is an element of a sequence e(t)  of independently and identically 
distributed random variables with E(et) 5 0 and V(et) 5 s2 for all t.

The autocovariance generating function of the process is

 s2y(z21)y(z) 5 g(z) 5 {g0 1 g1 (z21 1 z) 1 g2 (z22 1 z2) 1 c}. (5.28)

The following table assists us in forming the product g(z) 5 s2y(z21)y(z) :

 y0

y1z21

y2z22

(

y0 y1z y2z2 c

y2
0 y0y1z y0y2z2 c

y1y0z21 y2
1 y1y2z c

y2y0z22 y2y1z21 y2
2

c

( ( (

 (5.29)

The autocovariances are obtained by summing along the NW–SE diagonals:

 g0 5 s2{y2
0 1 y2

1 1 y2
2 1 y2

3 1 c},

 g1 5 s2{y0y1 1 y1y2 1 y2y3 1 c}, (5.30)

 g2 5 s2{y0y2 1 y1y3 1 y2y4 1 c},

 (
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By setting z 5 exp{2iwj} in g(z)  and dividing by 2p, we get the spectral density 
 function, or spectrum, of the process:

 f(w) 5
1

2p
eg0 1 2a

`

t51
gt cos (wt) f . (5.31)

This entails the cosine Fourier transform of the sequence of autocovariances.
The spectral density functions of an ARMA (2, 1) process, which incorporates the 

transfer function of Figures 5.1–5.3, is shown in Figure 5.5.

WIENER–KOLMOGOROV FILTERING OF STATIONARY 
SEQUENCES

The classical theory of linear filtering was formulated independently by Norbert Wiener 
(1941) and Andrei Nikolaevich Kolmogorov (1941) during the Second World War. They 
were both considering the problem of how to target radar- assisted anti- aircraft guns on 
incoming enemy aircraft.

The purpose of a Wiener–Kolmogorov (W–K) filter is to extract an estimate of a 
signal sequence x(t)  from an observable data sequence

 y(t) 5 x(t) 1 h(t) , (5.32)

which is afflicted by the noise h(t) . According to the classical assumptions, which we 
shall later amend in order to accommodate short non- stationary sequences, the signal 
and the noise are generated by zero- mean stationary stochastic processes that are mutu-
ally independent. Also, the assumption is made that the data constitute a doubly- infinite 
sequence. It follows that the autocovariance generating function of the data is the sum of 
the autocovariance generating functions of its two components. Thus,

 gyy (z) 5 gxx (z) 1 ghh (z) and gxx (z) 5 gyx (z) . (5.33)

0

5

10

15

20

25

0 �/4 �/2 3�/4 �

Figure 5.5  The spectral density function of the ARMA (2, 1) process y(t) 5 
1.2728y (t – 1) − 0.81y (t – 2) 1 e(t) 1 0.75e (t – 1) with V{e(t)}51

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   105HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   105 01/07/2013   09:4301/07/2013   09:43



106  Handbook of research methods and applications in empirical macroeconomics

These functions are amenable to the so- called Cramér–Wold factorization, and they may 
be written as

 gyy (z) 5 �(z21)�(z) , gxx (z) 5 q (z21)q (z) , ghh (z) 5 qh (z21)qh (z) . (5.34)

The estimate xt of the signal element xt, generated by a linear time- invariant filter, is a 
linear combination of the elements of the data sequence:

 xt 5 a
j

yjyt2 j. (5.35)

The principle of minimum mean- squared error estimation indicates that the estimation 
errors must be statistically uncorrelated with the elements of the information set. Thus, 
the following condition applies for all k:

 0 5 E{yt2k (xt 2 xt) }

 5 E(yt2kxt) 2 a
j

yjE(yt2k yt2 j)

 5 gyx
k 2 a

j
yjg

yy
k2 j. (5.36)

The equation may be expressed, in terms of the z- transforms, as

 gyx (z) 5 y(z)gyy (z) . (5.37)

It follows that

 y(z) 5
gyx (z)
gyy (z)

 5
gxx (z)

gxx (z) 1 ghh (z) 5
q (z21)q (z)
�(z21)�(z) . (5.38)

Now, by setting z 5 exp{2iw}, one can derive the frequency- response function of the 
filter that is used in estimating the signal x(t) . The effect of the filter is to multiply each 
of the frequency elements of y(t)  by the fraction of its variance that is attributable to the 
signal. The same principle applies to the estimation of the residual or noise component. 
This is obtained using the complementary filter

 yc(z) 5 1 2 y(z) 5
ghh (z)

gxx (z) 1 ghh (z) . (5.39)

The estimated signal component may be obtained by filtering the data in two passes 
according to the following equations:

 �(z)q(z) 5 q (z)y(z) ,  �(z21)x(z) 5 q (z21)q(z) . (5.40)
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The first equation relates to a process that runs forwards in time to generate the ele-
ments of an intermediate sequence, represented by the coefficients of q(z) . The second 
equation represents a process that runs backwards to deliver the estimates of the signal, 
represented by the coefficients of x(z) .

THE HODRICK–PRESCOTT (LESER) FILTER AND THE 
BUTTERWORTH FILTER

The Wiener–Kolmogorov methodology can be applied to non- stationary data with 
minor adaptations. A model of the processes underlying the data can be adopted that 
has the form of

 �d (z)y(z) 5 �d (z) {x(z) 1 h(z) } 5 d (z) 1 k (z)

 5 (1 1 z) nz(z) 1 (1 2 z)me(z) , (5.41)

where z(z)  and e(z)  are the z- transforms of two independent white- noise sequences z(t)  
and e(t)  and where �(z) 5 12 z is the z- transform of the difference operator.

The model of y(t) 5 x(t) 1 h(t)  entails a pair of statistically independent stochastic 
processes, which are defined over the doubly- infinite sequence of integers and of which 
the z- transforms are

 x(z) 5
(1 1 z) n

�d (z) z(z) and h(z) 5
(1 2 z)m

�d (z) e(z) . (5.42)

The condition m $ d is necessary to ensure the stationarity of h(t) , which is obtained 
from e(t)  by differencing m 2 d times.

It must be conceded that a non- stationary process such as x(t)  is a mathematical 
construct of doubtful reality, since its values will be unbounded, almost certainly. 
Nevertheless, to deal in these terms is to avoid the complexities of the finite- sample 
approach, which will be the subject of the next section.

The filter that is applied to y(t)  to estimate x(t) , which is the d- fold integral of d (t) , 
takes the form of

 y(z) 5
s2

z (1 1 z21) n (1 1 z) n

s2
z (1 1 z21) n (1 1 z) n 1 s2

e (1 2 z21)m(1 2 z)m, (5.43)

regardless of the degree d of differencing that would be necessary to reduce y(t)  to 
stationarity.

Two special cases are of interest. By setting d 5 m 5 2 and n 5 0 in (5.41), a model 
is obtained of a second- order random walk x(t)  affected by white- noise errors of 
 observation h(t) 5 e(t) . The resulting lowpass W–K filter, in the form of

 y(z) 5
1

1 1 l (1 2 z21) 2 (1 2 z) 2 with l 5
s2

e

s2
ß

, (5.44)
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is the Hodrick–Prescott (H–P) filter. The complementary highpass filter, which generates 
the residue, is

 yc(z) 5
(1 2 z21) 2 (1 2 z) 2

l21 1 (1 2 z21) 2 (1 2 z) 2. (5.45)

Here, l, which is described as the smoothing parameter, is the single adjustable 
 parameter of the filter.

By setting m 5 n, a filter for estimating x(t)  is obtained that takes the form of

 y(z) 5
s2

ß (1 1 z21) n (1 1 z) n

s2
ß (1 1 z21) n (1 1 z) n 1 s2

e (1 2 z21) n (1 2 z) n

 5
1

1 1 lai
1 2 z
1 1 z

b2n   with  l 5
s2

e

s2
ß

. (5.46)

This is the formula for the Butterworth lowpass digital filter. The filter has two adjust-
able parameters, and, therefore, it is a more flexible device than the H–P filter. First, 
there is the parameter l. This can be expressed as

 l 5 {1/ tan (wd) }2n, (5.47)

where wd is the nominal cut- off point of the filter, which is the mid- point in the 
 transition of the filter’s frequency response from its pass band to its stop band. The 
second of the adjustable parameters is n, which denotes the order of the filter. As 
n increases, the transition between the pass band and the stop band becomes more 
abrupt.

These filters can be applied to the non- stationary data sequence y(t)  in the bidirec-
tional manner indicated by equation (5.40), provided that the appropriate initial condi-
tions are supplied with which to start the recursions. However, by concentrating on the 
estimation of the residual sequence h(t) , which corresponds to a stationary process, it is 
possible to avoid the need for non-zero initial conditions. Then, the estimate of h(t)  can 
be subtracted from y(t)  to obtain the estimate of x(t) .

The H–P filter has been used as a lowpass smoothing filter in numerous macro-
economic investigations, where it has been customary to set the smoothing parameter 
to certain conventional values. Thus, for example, the econometric computer package 
Eviews 4.0 (2000) imposes the following default values:

 l 5 • 100 for annual data,
1  ,600 for quarterly data
14, 400 for monthly data.

,

Figure 5.6 shows the square gain of the filter corresponding to these values. The inner-
most curve corresponds to l 5 14, 400 and the outermost curve to l 5 100.

Whereas they have become conventional, these values are arbitrary. The filter should 
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be adapted to the purpose of isolating the component of interest; and the appropriate 
filter parameters need to be determined in the light of the spectral structure of the com-
ponent, such as has been revealed in Figure 5.10, in the case of the UK consumption 
data.

It will be observed that an H–P filter with l 5 1,600, which defines the middle curve 
in Figure 5.6, will not be effective in isolating the low- frequency component of the quar-
terly consumption data of Figure 5.9, which lies in the interval [0,p/8]. The curve will 
cut through the low- frequency spectral structure that is represented in Figure 5.10; and 
the effect will be greatly to attenuate some of the elements of the component that should 
be preserved intact.

Lowering the value of l in order to admit a wider range of frequencies will have 
the effect of creating a frequency response with a gradual transition from the pass 
band to the stop band. This will be equally inappropriate to the purpose of isolating a 
component within a well- defined frequency band. For that purpose, a different filter is 
required.

A filter that may be appropriate to the purpose of isolating the low- frequency fluc-
tuations in consumption is the Butterworth filter. The gain of the latter is illustrated 
in Figure 5.7. In this case, there is a well- defined nominal cut- off frequency, which is 

0

0.25

0.5

0.75

1

0 �/4 �/2 3�/4 �

Figure 5.6  The gain of the Hodrick–Prescott lowpass filter with a smoothing parameter 
set to 100, 1,600 and 14,400
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0.25

0.5

0.75

1

0 �/4 �/2 3�/4 �

Figure 5.7  The gain of the lowpass Butterworth filters of orders n 5 6 and n 5 12 with a 
nominal cut- off point of 2p/3 radians
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at the mid point of the transition from the pass band to the stop band. The transi-
tion becomes more rapid as the filter order n increases. If a perfectly sharp transition 
is required, then the frequency- domain filter that will be presented later should be 
employed.

The Hodrick–Prescott filter has many antecedents. Its invention cannot reasonably be 
attributed to Hodrick and Prescott (1980, 1997), who cited Whittaker (1923) as one of 
their sources. Leser (1961) also provided a complete derivation of the filter at an earlier 
date. The analogue Butterworth filter is a commonplace of electrical engineering. The 
digital version has been described by Pollock (2000).

WIENER–KOLMOGOROV FILTERS FOR FINITE SEQUENCES

The classical Wiener–Kolmogorov theory can be adapted to finite data sequences 
 generated by stationary stochastic processes.

Consider a data vector y 5 [y0, y1, . . . , yT21, ]r that has a signal component x and a 
noise component h:

 y 5 x 1 h. (5.48)

The two components are assumed to be independently normally distributed with zero 
means and with positive- definite dispersion matrices. Then,

 E(x) 5 0, D(x) 5 Wx,

 E(h) 5 0, D(h) 5 Wh,

 and C(x,h) 5 0. (5.49)

The dispersion matrices Wx and Wh may be obtained from the autocovariance gen-
erating functions gx (z)  and gh (z) , respectively, by replacing z by the matrix argument 
LT 5 [e1,e2, . . . ,eT21,0], which is the finite sample- version of the lag operator. This is 
obtained from the identity matrix IT 5 [e0,e1,e2, . . . ,eT21 ] by deleting the leading column 
and by appending a zero vector to the end of the array. Negative powers of z are replaced 
by powers of the forwards shift operator FT 5 L rT. A consequence of the independence of 
x and h is that D(y) 5 Wx 1 Wh.

We may begin by considering the determination of the vector of the T  filter coeffi-
cients yt. 5 [yt,0,yt,1, . . . ,yt,T21 ] that determine xt, which is the tth element of the filtered 
vector x 5 [x0,x1, . . . , xT21 ]r and which is the estimate of xt. This is derived from the data 
in y 5 [y0,y1, . . . ,yT21 ]r via the equation

 xt 5 a
T212t

j52t
yt,t1 jyt2 j. (5.50)

The principle of minimum mean- squared error estimation continues to indicate 
that the estimation errors must be statistically uncorrelated with the elements of the 
 information set. Thus
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 0 5 E{yt2k (xt 2 xt) }

 5 E(yt2kxt) 2 a
T212t

j52t
yt,t1 jE(yt2kyt2 j)  (5.51)

 5 gxx
2k 2 a

T211t

j52t
yt,t1 jg

yy
j2k.

Here, E(yt2kxt) 5 gyx
2k 5 gxx

2k in accordance with (5.33). Equation (5.51) can be rendered 
also in a matrix format. By running from k 5 2t to k 5 T 2 1 2 t, and observing that 
gxx

2k 5 gxx
k , we get the following system:

 ≥ gxx
t

gxx
t21

(
gxx

T212t

¥ 5 ≥ gyy
0 gyy

1
c gyy

T21

gyy
1 gyy

0
c gyy

T22

( ( f (
gyy

T21 gyy
T22

c gyy
0

¥ ≥ yt,0

yt,1

(
yt,T21

¥ . (5.52)

This equation above can be written in summary notation as Wxet 5 Wyy rt # ,  where et is a 
vector of order T  containing a single unit preceded by t zeros and followed by T 2 1 2 t 
zeros. The coefficient vector yt # is given by

 yt # 5 e rtWxW
21
y 5 e rtWx (Wx 1 Wh)21, (5.53)

and the estimate of xt is xt 5 yt # y. The estimate of the complete vector x5[x0,x1, . . . ,xT21]r 
of the signal elements is

 x 5 WxW
21
y y 5 Wx (Wx 1 Wh)21y. (5.54)

THE ESTIMATES AS CONDITIONAL EXPECTATIONS

The linear estimates of (5.54) have the status of conditional expectations, when the 
vectors x and y are normally distributed. As such, they are, unequivocally, the optimal 
minimum mean- squared error predictors of the signal and the noise components:

 E(x 0y) 5 E(x) 1 C(x, y)D21 (y) {y 2 E(y) }

 5 Wx (Wx 1 Wh)21y 5 x, (5.55)

 E(h 0y) 5 E(h) 1 C(h, y)D21 (y) {y 2 E(y) }

 5 Wh (Wx 1 Wh)21y 5 h. (5.56)

The corresponding error dispersion matrices, from which confidence intervals for the 
estimated components may be derived, are

 D(x 0y) 5 D(x) 1 C(x, y)D21 (y)C(y,x)

 5 Wx 2 Wx (Wx 1 Wh)21Wx, (5.57)
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 D(h 0y) 5 D(h) 2 C(h, y)D21 (y)C(y, h) ,

 5 Wh 2 Wh (Wx 1 Wh)21Wh. (5.58)

The equality D(x 0y) 5 D(h 0y) 5 (W21
x 1 W21

h )21, which is in consequence of the 
 constraint that x 1 h 5 y, can be demonstrated via the matrix inversion lemma.

THE LEAST- SQUARES DERIVATION OF THE ESTIMATES

The estimates of x and h, which have been denoted by x and h respectively, can also be 
derived according to the following criterion:

 Minimize  S(x,h) 5 xrW21
x x 1 hrW21

h h  subject to  x1 h 5 y. (5.59)

Since S(x,h)  is the exponent of the normal joint density function N(x,h) , the resulting 
estimates may be described, alternatively, as the minimum chi- square estimates or as the 
maximum- likelihood estimates.

Substituting for h5 y 2 x gives the concentrated criterion function  S(x)5xrW21
x x1 

(y 2 x)rW21
h (y 2 x) . Differentiating this function in respect of x and setting the result to 

zero gives the following condition of minimization: 0 5 W21
x x 2 W21

h (y 2 x) . From this, 
it follows that y 2 x 5 WhW

21
x x and that y 5 x 1 WhWx

21x 5(Wx1 Wh)W21
x x. Therefore, 

the solution for x is

 x 5 Wx (Wx 1 Wh)21y. (5.60)

Moreover, since the roles of x and h are interchangeable in this exercise, and since 
h 1 x 5 y, there are also

 h 5 Wh (Wx1 Wh)21y  and  x 5 y 2 Wh (Wx1 Wh)21y. (5.61)

The filter matrices Yx 5 Wx (Wx1Wh)21 and Yh5Wh (Wx1Wh)21 of (5.60) and 
(5.61) are the matrix analogues of the z- transforms displayed in equations (5.38) and 
(5.39).

A simple procedure for calculating the estimates x and h begins by solving the equation

 (Wx 1Wh)b 5 y (5.62)

for the value of b. Thereafter, one can generate

 x 5 Wxb  and  h 5 Whb. (5.63)

If Wx and Wh correspond to the narrow- band dispersion matrices of moving- average 
processes, then the solution to equation (5.62) may be found via a Cholesky factorization 
that sets Wx 1Wh5GG r, where G is a lower- triangular matrix with a limited number of 
non-zero bands. The system GG rb5 y may be cast in the form of Gp 5 y and solved for 
p. Then, G rb 5 p can be solved for b.
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THE DIFFERENCE AND SUMMATION OPERATORS

A simple expedient for eliminating the trend from the data sequence y(t) 5{yt; t 5 
0, 61, 62, . . .} is to replace the sequence by its differenced version y(t) 2y(t 2 1) or 
by its twice differenced version y(t) 2 2y(t 2 1) 1 y(t 2 2). Differences of higher 
orders are rare. The z- transform of the difference is (1 2 z)y(z) 5 y(z) 2 zy(z) .  On 
defining the operator �(z) 512 z, the second  differences can be expressed as 
�2 (z)y(t) 5(122z1 z2)y(z) .

The inverse of the difference operator is the summation operator

 S(z)5 (12z)215{1 1 z 1 z2 1 c}. (5.64)

The z- transform of the d- fold summation operator is as follows:

 Sd (z) 5
1

(1 2 z) d 5 1 1 dz 1
d(d 1 1)

2!
z2 1

d(d 1 1) (d 1 2)
3!

z3 1 c. (5.65)

The difference operator has a powerful effect upon the data. It nullifies the trend and it 
severely attenuates the elements of the data that are adjacent in frequency to the zero fre-
quency of the trend. It also amplifies the high frequency elements of the data. The effect 
is apparent in Figure 5.8, which shows the squared gain of the difference operator. The 
figure also shows the squared gain of the summation operator, which gives unbounded 
power to the elements that have frequencies in the vicinity of zero.

In dealing with a finite sequence, it is appropriate to consider a matrix version 
of the difference operator. In the case of a sample of T  elements comprised by 
the vector y5 [y0,y1, . . .,yT21]r, it is appropriate to use the matrix difference opera-
tor �(LT) 5 IT 2 LT, which is obtained by replacing z within �(z) 5 1 2 z by the 
matrix argument LT 5 [e1,e2, . . .,eT21,0], which is obtained from the identity matrix 
IT 5 [e0,e1,e2, . . .,eT21 ] by deleting the leading column and by appending a zero vector to 
the end of the array.

0
0

2

4

6

�/2 3�/4 ��/4

Figure 5.8  The squared gain of the difference operator, which has a zero at zero 
frequency, and the squared gain of the summation operator, which is 
unbounded at zero frequency
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Examples of the first- order and second- order matrix difference operators are as 
follows:

 �4 5 ≥ 1 0 0 0
21 1 0 0

0 21 1 0
0 0 21 1

¥ , �2
4 5 ≥ 1 0 0 0

22 1 0 0
1 22 1 0
0 1 22 1

¥ . (5.66)

The corresponding inverse matrices are

 g4 5 ≥ 1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

¥ , g2
4 5 ≥ 1 0 0 0

2 1 0 0
3 2 1 0
4 3 2 1

¥ . (5.67)

It will be seen that the elements of the leading vectors of these matrices are the coeffi-
cients associated with the expansion of Sd (z)  of (5.65) for the cases of d 5 1 and d 5 2. 
The same will be true for higher orders of d.

POLYNOMIAL INTERPOLATION

The first p columns of the matrix Sp
T provide a basis of the set of polynomials of degree 

p 2 1 defined on the set of integers t 5 0,1, 2, . . .,T 2 1. An example is provided by the 
first three columns of the matrix S3

4, which may be transformed as follows:

 ≥ 1 0 0
3 1 0
6 3 1
10 6 3

¥ £ 1 1 1
22 21 1

1 0 0
§ 5 ≥ 1 1 1

1 2 4
1 3 9
1 4 16

¥ . (5.68)

The first column of the matrix on the LHS contains the ordinates of the quadratic func-
tion (t2 1 t) /2. The columns of the transformed matrix are recognizably the ordinates of 
the powers, t0, t1 and t2 corresponding to the integers t 5 1, 2,3,4. The natural extension 
of the matrix to T  rows provides a basis for the quadratic functions q(t) 5 at2 1 bt 1 c 
defined on T  consecutive integers.

The matrix of the powers of the integers is notoriously ill- conditioned. In calculating 
polynomial regressions of any degree in excess of the cubic, it is advisable to employ a 
basis of orthogonal polynomials, for which purpose some specialized numerical proce-
dures are available (see Pollock 1999). In the present context, which concerns econo-
metric data sequences, the degrees of differencing and summation rarely exceed two. 
Nevertheless, it is appropriate to consider the algebra of the general case.

Consider, therefore, the matrix that takes the pth difference of a vector of order T, 
which is

 � p
T 5 (I 2 LT) p. (5.69)
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This matrix can be partitioned so that � p
T 5 [Q*,Q ]r, where Q r* has p rows. If y is a 

vector of T  elements, then

 � p
T y 5 cQ r*

Q r
d  y 5 cg*

g
d ; (5.70)

and g* is liable to be discarded, whereas g will be regarded as the vector of the pth 
 differences of the data.

The inverse matrix may be partitioned conformably to give �2p
T 5 [S*,S ]. It follows that

 [S* S ]  cQ r*
Q r
d 5 S*Q r* 1 SQ r5 IT, (5.71)

and that

 cQ r*Q r
d [S*  S ] 5 cQ r*S* Q r*S

Q rS* QrS
d 5 cIp 0

0 IT2p
d . (5.72)

If g* is available, then y can be recovered from g via

 y 5 S*g* 1 Sg. (5.73)

Since the submatrix S* provides a basis for all polynomials of degree p 2 1 that are 
defined on the integer points t 5 0,1, . . . ,T 2 1, it follows that S*g* 5 S*Q r*y con-
tains the ordinates of a polynomial of degree p 2 1, which is interpolated through the 
first p elements of y, indexed by t 5 0,1, . . . , p 2 1, and which is extrapolated over the 
 remaining integers t 5 p, p 1 1, . . . , T 2 1.

A polynomial that is designed to fit the data should take account of all of the obser-
vations in y. Imagine, therefore, that y 5 � 1 h, where � contains the ordinates of a 
polynomial of degree p 2 1 and h is a disturbance term with E(h)5 0 and D(h) 5 s2

hIT. 
Then, in forming an estimate x 5 S*r* of �, we should minimize the sum of squares hrh. 
Since the polynomial is fully determined by the elements of a starting- value vector r*, this 
is a matter of minimizing

 (y 2 x)r (y 2 x) 5 (y 2 S*r*)r (y 2 S*r*)  (5.74)

with respect to r*. The resulting values are

 r* 5 (S r*S*)21S r*y and x 5 S*(S r*S*)21S r*y. (5.75)

An alternative representation of the estimated polynomial is available. This is 
 provided by the identity

 S*(S r*S*
)21S r* 5 I 2 Q(Q rQ)21Q r. (5.76)

To prove this identity, consider the fact that Z 5 [Q,S*] is square matrix of full rank 
and that Q and S* are mutually orthogonal such that Q rS* 5 0. Then
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 Z(Z rZ)21Z r 5 [Q S*
] c (Q rQ)21 0

0 (S r*S*)21 d  cQ r
S r*
d

 5 Q(Q rQ)21Q r1S*
(S r*S*

)21S r*. (5.77)

The result of (5.76) follows from the fact that Z(Z rZ)21Z r 5 Z(Z21Z r21)Z r 5 I. It 
follows from (5.76) that the vector of the ordinates of the polynomial regression is also 
given by

 x 5 y 2 Q(QrQ)21Qry. (5.78)

POLYNOMIAL REGRESSION AND TREND EXTRACTION

The use of polynomial regression in a preliminary detrending of the data is an essential 
part of a strategy for determining an appropriate representation of the underlying trajec-
tory of an econometric data sequence. Once the trend has been eliminated from the data, 
one can proceed to assess their spectral structure by examining the periodogram of the 
residual sequence.

Often the periodogram will reveal the existence of a cut- off frequency that bounds a 
low- frequency trend/cycle component and separates it from the remaining elements of 
the spectrum.

An example is given in Figures 5.9 and 5.10. Figure 5.9 represents the logarithms 
of the quarterly data on aggregate consumption in the United Kingdom for the years 
1955 to 1994. Through these data, a linear trend has been interpolated by least- squares 
regression. This line establishes a benchmark of constant exponential growth, against 
which the fluctuations of consumption can be measured. The periodogram of the 
residual sequence is plotted in Figure 5.10. This shows that the low- frequency structure 
is bounded by a frequency value of p/8. This value can used in specifying the appropriate 
filter for extracting the low- frequency trajectory of the data.

10

10.5

11

11.5

0 50 100 150

Figure 5.9  The quarterly series of the logarithms of consumption in the UK for the 
years 1955 to 1994, together with a linear trend interpolated by least- squares 
regression
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FILTERS FOR SHORT TRENDED SEQUENCES

One way of eliminating the trend is to take differences of the data. Usually, twofold dif-
ferencing is appropriate. The matrix analogue of the second- order backwards difference 
operator in the case of T 5 5 is given by

 �2
5 5 cQ r*

Q r
d 5 E 1 0 0 0 0

22 1 0 0 0

1 22 1 0 0
0 1 22 1 0
0 0 1 22 1

U . (5.79)

The first two rows, which do not produce true differences, are liable to be discarded. 
In general, the p- fold differences of a data vector of T  elements will be obtained by 
pre- multiplying it by a matrix Q r of order (T 2 p) 3 T. Applying Q r to the equation 
y 5 x 1 h, representing the trended data, gives

 Q ry 5 Q rx 1 Q rh

 5 d 1 k 5 g. (5.80)

The vectors of the expectations and the dispersion matrices of the differenced vectors 
are

 E(d) 5 0, D(d) 5 Wd 5 Q rD(x)Q,

 E(k) 5 0, D(k) 5 Wk 5 Q rD(h)Q. (5.81)

The difficulty of estimating the trended vector x 5 y 2 h directly is that some start-
ing values or initial conditions are required in order to define the value at time t 5 0. 
However, since h is from a stationary mean- zero process, it requires only  zero- valued 

0
0

0.0025

0.005

0.0075

0.01

�/2 3�/4 ��/4

Figure 5.10  The periodogram of the residual sequence obtained from the linear 
detrending of the logarithmic consumption data
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initial conditions. Therefore, the starting- value problem can be circumvented by 
 concentrating on the estimation of h. The conditional expectation of h, given the 
 differenced data g 5 Q ry, is provided by the formula

 h 5 E(h 0g) 5E(h)1C(h,g)D21 (g){g2E(g) }

 5 C(h,g)D21 (g)g, (5.82)

where the second equality follows in view of the zero- valued expectations. Within this 
expression, there are

 D(g) 5 Wd 1 Q rWhQ and C(h,g) 5 WhQ. (5.83)

Putting these details into (5.82) gives the following estimate of h:

 h 5 WhQ(Wd 1 Q rWhQ)21Q ry. (5.84)

Putting this into the equation

 x 5E(x 0g) 5 y 2 E(h 0g) 5 y 2 h (5.85)

gives

 x 5 y 2 WhQ(Wd 1 Q rWhQ)21Q ry. (5.86)

THE LEAST- SQUARES DERIVATION OF THE FILTER

As in the case of the extraction of a signal from a stationary process, the estimate of the 
trended vector x can also be derived according to a least- squares criterion. The criterion 
is

 Minimize (y 2 x)rW21
h (y 2 x) 1 x rQW21

d Q rx. (5.87)

The first term in this expression penalizes the departures of the resulting curve from the 
data, whereas the second term imposes a penalty for a lack of smoothness. Differentiating 
the function with respect to x and setting the result to zero gives

 W21
h (y 2 x) 5 2QW21

d Q rx 5 QW21
d d, (5.88)

where x stands for the estimated value of x and where d 5 Q rx. Pre-multiplying by Q rWh 
gives

 Q r (y 2 x) 5 Q ry 2 d 5 Q rWhQW21
d d, (5.89)
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whence

 Q ry 5 d 1 Q rWhQW21
d d

 5 (Wd 1 Q rWhQ)W21
d d, (5.90)

which gives

 W21
d d 5 (Wd 1 Q rWhQ)21Q ry. (5.91)

Putting this into

 x 5 y 2 WhQW21
d d, (5.92)

which comes from pre-multiplying (5.88) by Wh, gives

 x 5 y 2 WhQ(Wd 1 Q rWhQ)21Q ry, (5.93)

which is equation (5.86) again.
One should observe that

 h 5 WhQ(Wd 1 Q rWhQ)21Q ry

 5 WhQ(Wd 1 Q rWhQ)21Q re, (5.94)

where e 5Q(Q rQ)21Qry is the vector of residuals obtained by interpolating a straight line 
through the data by a least- squares regression. That is to say, it makes no difference to 
the estimate h of the component that is complementary to the trend whether the filter 
is applied to the data vector y or the residual vector e. If the trend- estimation filter is 
applied to e instead of to y, then the resulting vector can be added to the ordinates of the 
interpolated line to create the estimate of the trend.

THE LESER (H–P) FILTER AND THE BUTTERWORTH FILTER

The specific cases that have been considered in the context of the classical form of the 
Wiener–Kolmogorov filter can now be adapted to the circumstances of short trended 
sequences. First, there is the Leser or H–P filter. This is derived by setting

 D(h) 5 Wh 5 s2
hI, D(d) 5 Wd 5 s2

dI and l 5
s2

h

s2
d

 (5.95)

within (5.93) to give

 x 5 y 2 Q(l21I 1 Q rQ)21Q ry. (5.96)

Here, l is the so- called smoothing parameter. It will be observed that, as l S `, 
the vector x tends to that of a linear function interpolated into the data by least- 
squares regression, which is represented by equation (5.78). The matrix expression 
Y 5 I 2 Q(l21I 1QrQ)21Q r for the filter can be compared to the polynomial  expression 
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yc(z) 5 1 2 y(z)  of the classical formulation, which entails the z- transform from 
(5.45).

The Butterworth filter that is appropriate to short trended sequences can be 
 represented by the equation

 x 5 y 2 lSQ(M 1 lQ rSQ)21Q ry. (5.97)

Here, the matrices

 S5{2IT 2(LT 1 L rT)}n22 and M 5{2IT 1 (LT 1 L rT)}n (5.98)

are obtained from the RHS of the equations {(12z)(12z21)}n22 5{2 2(z1z21)}n22 and 
{(1 1 z) (1 1 z21)}n 5{21 (z 1 z21)}n, respectively, by replacing z by LT and z21 by L rT. 
Observe that the equalities no longer hold after the replacements. However, it can be 
verified that

 Q rSQ 5{2IT 2 (LT 1L rT)}n. (5.99)

FILTERING IN THE FREQUENCY DOMAIN

The method of Wiener–Kolmogorov filtering can also be implemented using the 
 circulant dispersion matrices that are given by

 W°
x 5 Ugx(D)U,  W°

h 5 Ugh(D)U  and

 W° 5 W°
x 1 W°

h 5 U{gx (D) 1 gh (D) }U, (5.100)

wherein the diagonal matrices gx (D)  and gh (D)  contain the ordinates of the spectral 
density functions of the component processes. Accounts of the algebra of circulant 
matrices have been provided by Pollock (1999 and 2002). See, also, Gray (2002).

Here, U 5 T21/2 [Wjt ], wherein t, j 5 0, . . . ,T 2 1, is the matrix of the Fourier trans-
form, of which the generic element in the jth row and tth column is Wjt 5 exp(2 i2ptj/T) , 
and U 5 T1/2 [W2jt ]  is its conjugate transpose. Also, D5 diag{1,W,W 2, . . . ,WT21}, 
which replaces z within each of the autocovariance generating functions, is a diagonal 
matrix whose elements are the T  roots of unity, which are found on the circumference of 
the unit circle in the complex plane.

By replacing the dispersion matrices within (5.55) and (5.56) by their circulant 
 counterparts, we derive the following formulae:

 x 5 Ugx (D){gx (D)1 gh (D)}21Uy 5 Pxy, (5.101)

 h 5 Ugh (D) {gx (D) 1 gh (D) }21Uy 5 Phy. (5.102)

Similar replacements within the formulae (5.57) and (5.58) provide the expressions for 
the error dispersion matrices that are appropriate to the circular filters.

The filtering formulae may be implemented in the following way. First, a Fourier 
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transform is applied to the data vector y to give Uy, which resides in the frequency 
domain. Then, the elements of the transformed vector are multiplied by those of the diag-
onal weighting matrices Jx 5 gx (D){gx (D)1 gh (D)}21 and Jh 5 gh (D){gx (D)1gh (D)}21. 
Finally, the products are carried back into the time domain by the inverse Fourier 
 transform, which is represented by the matrix U .

An example of the method of frequency filtering is provided by Figure 5.11, which 
shows the effect applying a filter with a sharp cut- off at the frequency value of p/8 
radians per period to the residual sequence obtained from a linear detrending of the 
quarterly logarithmic consumption data of the UK.

This cut- off frequency has been chosen in reference to the periodogram of the residual 
sequence, which is in Figure 5.10. This shows that the low- frequency structure of the 
data falls in the interval [0,p/8]. Apart from the prominent spike at the season fre-
quency of p/2 and the smaller seasonal spike at the frequency of p, the remainder of the 
 periodogram is characterized by wide spectral deadspaces.

The filters described above are appropriate only to stationary processes. However, 
they can be adapted in several alternative ways to cater to non-stationary processes. One 
way is to reduce the data to stationarity by twofold differencing before filtering it. After 
filtering, the data may be reinflated by a process of summation.

As before, let the original data be denoted by y 5 x1 h and let the differenced data 
be g 5 Q ry 5 d 1 k. If the estimates of d 5Q rx and k 5 Q rh are denoted by d and k 
 respectively, then the estimates of x and h will be

 x 5 S*d* 1Sd where d* 5 (S r*S*
)21S r*(y 2Sd)  (5.103)

and

 h 5 S*k* 1Sk where k* 5 2(S r*S*)21S r*Sk. (5.104)

Here, d* an k* are the initial conditions that are obtained via the minimization of the 
function
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Figure 5.11  The residual sequence from fitting a linear trend to the logarithmic 
consumption data with an interpolated line representing the business cycle, 
obtained by the frequency- domain method
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 (y2x)r (y2 x) 5(y 2S*d*2Sd)r (y 2S*d* 2Sd)

 5 (S*k*1Sk)r (S*k*1Sk) 5hrh. (5.105)

The minimization ensures that the estimated trend x adheres as closely as possible to the 
data y.

In the case where the data are differenced twice, there is

 S r* 5 c1 2 c T 2 1 T
0 1 c T 2 2 T 2 1

d . (5.106)

The elements of the matrix S r*S* can be found via the formulae

 a
T

t51
t2 5

1
6

T(T 1 1) (2T 1 1) and

 a
T

t51
t(t 2 1) 5

1
6

T(T1 1) (2T 1 1) 2
1
2

T(T 1 1). (5.107)

A compendium of such results has been provided by Jolly (1961), and proofs of the 
present results were given by Hall and Knight (1899).

A fuller account of the implementation of the frequency filter has been provided by 
Pollock (2009).

Example Before applying a frequency- domain filter, it is necessary to ensure that the 
data are free of trend. If a trend is detected, then it may be removed from the data by 
subtracting an interpolated polynomial trend function. A test for the presence of a trend 
is required that differs from the tests that are used to detect the presence of unit roots 
in the processes generating the data. This is provided by the significance test associated 
with the ordinary- least squares estimate of a linear trend.

There is a simple means of calculating the adjusted sum of squares of the temporal 
index t 5 0, 1, . . .,T 2 1, which is entailed in the calculation of the slope coefficient

b 5 ay2
t 2 aa ytb2

/
/ T

. (5.108)

at2 2 aa tb2
/
/T

The formulae

 a
T21

t50
t2 5

1
6

(T 2 1)T(2T 2 1) and a
T21

t50
t 5

T(T 2 1)
2

 (5.109)

are combined to provide a convenient means of calculating the denominator of the 
formula of (5.108):

 a
T21

t50
t2 2

aaT21

t50
tb2

T
5

(T 2 1)T(T 1 1)
12

. (5.110)

HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   122HASHIMZADE 9780857931016 CHS. 3-5 (M3110).indd   122 01/07/2013   09:4301/07/2013   09:43



Filtering macroeconomic data   123

Another means of calculating the low- frequency trajectory of the data via the fre-
quency domain mimics the method of equation (5.93) by concentrating of the estima-
tion the high- frequency component. This can be subtracted from the data to create an 
estimate of the complementary low- frequency trend component. However, whereas in 
the case of equation (5.93) the differencing of the data and the re- inflation of the esti-
mated high- frequency component are deemed to take place in the time domain, now 
the re- inflation occurs in the frequency domain before the resulting vector of Fourier 
 coefficients is transformed to the time domain.

The reduction of a trended data sequence to stationarity continues to be effected 
by the matrix Q but, in this case, the matrix can be seen in the context of a centralized 
 difference operator. This is

 N(z) 5 z21 2 2 1 z 5 z21 (1 2 z) 2

 5 z21�2 (z) . (5.111)

The matrix version of the operator is obtained by setting z 5 LT and z21 5 L rT, which 
gives

 N(LT) 5NT 5 LT 2 2IT 1 L rT. (5.112)

The first and the final rows of this matrix do not deliver true differences. Therefore, they 
are liable to be deleted, with the effect that the two end points are lost from the twice- 
differenced data. Deleting the rows e r0NT and e rT21NT from NT gives the matrix Qr, which 
can also be obtained from �2

T 5 (IT 2LT) 2 by deleting the matrix Q r*, which comprises the 
first two rows e r0 �2

T and e r1 �2
T. In the case of T 5 5 there is

 N5 5 £Q r21

Q r
Q11

§ 5 F22 1 0 0 0

1 22 1 0 0
0 1 22 1 0
0 0 1 22 1

0 0 0 1 22

V .
 (5.113)

On deleting the first and last elements of the vector NTy, which are Q r21 y 5 e r1�2
Ty and 

Q11y, respectively, we get Q ry 5 [q1, . . . ,qT22 ]r.
The loss of the two elements from either end of the (centrally) twice- differenced data 

can be overcome by supplementing the original data vector y with two extrapolated 
end points y21 and yT. Alternatively, the differenced data may be supplemented by 
attributing appropriate values to q0 and qT21. These could be zeros or some combina-
tion of the adjacent values. In either case, we will obtain a vector of order T  denoted by 
q 5 [q0, q1, . . . , qT21 ]r.

In describing the method for implementing a highpass filter, let L be the matrix 
that selects the appropriate ordinates of the Fourier transform g 5 Uq of the twice 
 differenced data. These ordinates must be reinflated to compensate for the differencing 
operation, which has the frequency response
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 f(w) 52 2 2 cos (w) . (5.114)

The response of the anti- differencing operation is 1/f(w) ; and g is reinflated by pre- 
multiplying by the diagonal matrix

 V 5 diag{v0,v1,. . . ,vT21}, (5.115)

comprising the values vj 5 1/f(wj) ; j 5 0,. . .,T 2 1, where wj 5 2pj/T.
Let H 5 VL be the matrix that is applied to g 5 Uq to generate the Fourier ordinates 

of the filtered vector. The resulting vector is transformed to the time domain to give

 h 5 UHg 5 UHUq. (5.116)

It will be seen that f(w)  is zero- valued when w 5 0 and that 1/f(w)  is unbounded in 
the neighbourhood of w 5 0. Therefore, a frequency- domain reinflation is available 
only when there are no non-zero Fourier ordinates in this neighbourhood. That is to 
say, it can work only in conjunction with highpass or bandpass filtering. However, it is 
straightforward to construct a lowpass filter that complements the highpass filter. The 
low- frequency trend component that is complementary to h is

 x 5 y 2 h 5 y 2 UHUq. (5.117)

BUSINESS CYCLES AND SPURIOUS CYCLES

Econometricians continue to debate the question of how macroeconomic data sequences 
should be decomposed into their constituent components. These components are 
usually described as the trend, the cyclical component or the business cycle, the seasonal 
 component and the irregular component.

For the original data, the decomposition is usually a multiplicative one and, for 
the logarithmic data, the corresponding decomposition is an additive one. The filters 
are usually applied to the logarithmic data, in which case, the sum of the estimated 
 components should equal the logarithmic data.

In the case of the Wiener–Kolmogorov filters, and of the frequency- domain filters as 
well, the filter gain never exceeds unity. Therefore, every lowpass filter y(z)  is accompa-
nied by a complementary highpass filter yc(z) 5 1 2 y(z) . The two sequences resulting 
from these filters can be recombined to create the data sequence from which they have 
originated.

Such filters can be applied sequentially to create an additive decomposition of 
the  data. First, the tend is extracted. Then, the cyclical component is extracted from 
the detrended data, Finally, the residue can be decomposed into the seasonal and the 
 irregular components.

Within this context, the manner in which any component is defined and how it is 
extracted are liable to affect the definitions of all of the other components. In par-
ticular, variations in the definition of the trend will have substantial effects upon the 
 representation of the business cycle.
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It has been the contention of several authors, including Harvey and Jaeger (1993) 
and Cogley and Nason (1995), that the effect of using the Hodrick–Prescott filter to 
extract a trend from the data is to create or induce spurious cycles in the complementary 
 component, which includes the cyclical component.

Others have declared that such an outcome is impossible. They point to the fact that, 
since their gains never exceeds unity, the filters cannot introduce anything into the data, 
nor can they amplify anything that is already present. On this basis, it can be fairly 
asserted that, at least, the verbs to create and to induce have been mis- applied, and that 
the use of the adjective spurious is doubtful.

The analyses of Harvey and Jaeger and of Cogley and Nason have both depicted the 
effects of applying the Hodrick–Prescott filter to a theoretical random walk that is sup-
ported on a doubly- infinite set of integers. They show that the spectral density function 
of the filtered process possesses a peak in the low- frequency region that is based on a 
broad range of frequencies. This seems to suggest that there is cyclicality in the processed 
data, whereas the original random walk has no central tendency.

This analysis is illustrated in Figure 5.12. The curve labelled A is the pseudo spectrum 
of a first- order random walk. The curve labelled B is the squared modulus of the fre-
quency response of the highpass, detrending, filter with a smoothing parameter of 100. 
The curve labelled C is the spectral density function of a detrended sequence which, in 
theory, would be derived by applying the filter to the random walk.

The fault of the Hodrick–Prescott filter may be that it allows elements of the data at 
certain frequencies to be transmitted when, ideally, they should be blocked. However, 
it seems that an analysis based on a doubly- infinite random walk is of doubtful 
validity.

The effects that are depicted in Figure 5.12 are due largely to the unbounded nature of 
the pseudo spectrum labelled A, and, as we have already declared, there is a zero prob-
ability that, at any given time, the value generated by the random walk will fall within a 
finite distance of the horizontal axis.

An alternative analysis of the filter can be achieved by examining the effects of its 
finite- sample version upon a finite and bounded sequence that has been detrended by 
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Figure 5.12  The pseudo- spectrum of a random walk, labelled A, together with the 
squared gain of the highpass Hodrick–Prescott filter with a smoothing 
parameter of l 5 100, labelled B. The curve labelled C represents the 
spectrum of the filtered process
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the interpolation of a linear regression function, according to the ordinary least- squares 
criterion.

If y is the vector of the data and if PQ 5 Q(Q rQ)21Q r, where Q is the second- order 
difference operator, then the vector of the ordinates of the linear regression is (I 2 PQ)y, 
and the detrended vector is the residual vector e 5 PQy. The highpass Hodrick–Prescott 
filter YH 5 Q(l21I 1 Q rQ)21Qr will generate the same output from the linearly detrended 
data as from the original data. Thus, it follows from (5.94) that YHy 5 YHe.

In characterizing the effects of the filter, it is reasonable to compare the linearly 
detrended data e 5 PQy with the output YHy of the filter. In the case of the logarith-
mic consumption data, these sequences are represented by the jagged lines that are, 
 respectively, the backdrops to Figures 5.13 and 5.15.

Superimposed upon the residual sequence e 5 PQy of Figure 5.13 is the low- frequency 
trajectory (I 2 YH)PQy 5 (I 2 YH)e that has been obtained by subjecting e to the 
lowpass Hodrick–Prescott Filter with a smoothing parameter of 1,600.

Figure 5.14 shows the quarterly logarithmic consumption data together with a trend 

0

–0.1

–0.05

0

0.05

0.1

0.15

50 100 150

Figure 5.13  The residual sequence obtained by extracting a linear trend from the 
logarithmic consumption data, together with a low- frequency trajectory that 
has been obtained via the lowpass Hodrick–Prescott filter
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Figure 5.14  The quarterly logarithmic consumption data together with a trend 
interpolated by the lowpass Hodrick–Prescott filter with the smoothing 
parameter set to l 5 1,600
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x 5 (I 2 YH)y interpolated by the lowpass Hodrick–Prescott filter. This trend can be 
obtained by adding the smooth trajectory of (I 2 YH)e of Figure 5.13 to the linear trend 
(I 2 PQ)y. That is to say,

 (I 2 YH)y 5 (I 2 YH) {PQy 1 (I 2 PQ)y}

 5 (I 2 YH)e 1 (I 2 PQ)y, (5.118)

which follows since (I 2 YH) (I 2 PQ) 5 (I 2 PQ) . (An implication of this identity is 
that a linear trend will be preserved by the lowpass H–P filter.)

Superimposed upon the jagged sequence YHe of Figure 5.15 is the smoothed sequence 
Y+xYH e, where Y+x  is the lowpass frequency- domain filter with a cut- off at p/8 radians, 
which is the value that has been determined from the inspection of the periodogram of 
Figure 5.10.

Now, a comparison can be made of the smooth trajectory Y+xe 5 Y+xPQy of Figure 5.11, 
which has been determined via linear detrending, and which has been regarded as an 
appropriate representation of the business cycle, with the trajectory x+5 Y+xYHy of 
Figure 5.15, which has been determined using the Hodrick–Prescott filter to detrend the 
data.

Whereas the same essential fluctuations are present in both trajectories, it is apparent 
that the more flexible detrending of the Hodrick–Prescott filter has served to reduce and 
to regularize their amplitudes. Thus, some proportion of the fluctuations, which ought 
to be present in the trajectory of the business cycle, has been transferred into the trend.

Thus, although it cannot be be said that the Hodrick–Prescott filter induces spurious 
fluctuations in the filtered sequence, it is true that it enhances the regularity of fluctua-
tions that are present in the data. However, the same can be said, without exception, of 
any frequency- selective filter.

To prevent it from absorbing the fluctuations, the trend should be maximally stiff, 
unless it is required to accommodate a structural break. The trend is to be regarded as a 
benchmark with which to measure the cyclical fluctuations. In times of normal economic 
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Figure 5.15  The residual sequence obtained by using the Hodrick–Prescott filter to 
extract the trend, together with a fluctuating component obtained by 
subjecting the sequence to a lowpass frequency- domain filter with a cut- off 
point at p/8 radians
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activity, a log linear trend, which represents a trajectory of constant exponential growth, 
may be appropriate. At other times the trend should be allowed to adapt to reflect 
 untoward events.

A device that achieves this is available in the form of a version of the H–P filter that 
has a smoothing parameter that is variable over the sample. When the trajectory of 
the trend is required to accommodate a structural break, the smoothing parameter l 
can be set to a value close to zero within the appropriate locality. Elsewhere, it can be 
given a high value to ensure that a stiff curve is created. Such a filter is available in the 
IDEOLOG computer program, of which the web address will be given at the end of the 
chapter.

Figure 5.16 shown an example of the use of this filter. There were brief disruptions to 
the steady upwards progress of GDP in the UK after the two world wars. These breaks 
have been absorbed into the trend by reducing the value of the smoothing parameter in 
their localities, which are highlighted in the figure. By contrast, the break that is evident 
in the data following the year 1929 has not been accommodated in the trend.

SEASONAL ADJUSTMENT IN THE TIME DOMAIN

The seasonal adjustment of economic data is performed preponderantly by central sta-
tistical agencies. The prevalent methods continue to be those that were developed by the 
US Bureau of Census and which are encapsulated in the X- 11 computer program and 
its derivatives X- 11- ARIMA and X- 12. The X- 11 program was the culmination of the 
pioneering work of Julius Shiskin in the 1960s (see Shiskin et al., 1967).

The X- 11 program, which is difficult to describe concisely, depends on the successive 
application of the time- honoured Henderson moving- average filters that have proved 
to be very effective in practice but which lack a firm foundation in the modern theory 
of filtering. An extensive description of the program has been provided by Ladiry and 
Quenneville (2001).

Recently, some alternative methods of seasonal adjustment have been making 
headway amongst central statistical agencies. Foremost amongst these is the ARIMA- 

10

11

12

13

1880 1900 1920 1940 1960 1980 2000

Figure 5.16  The logarithms of annual UK real GDP from 1873 to 2001 with an 
interpolated trend: the trend is estimated via a filter with a variable 
smoothing parameter
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model- based method of the TRAMO–SEATS package. Within this program, the 
TRAMO (Time Series Regression with ARIMA Noise, Missing Observations and 
Outliers) module estimates a model of the composite process. Thereafter, the estimated 
parameters are taken to be the true parameters of the process, and they are passed to 
the SEATS (Signal Extraction in ARIMA Time Series) module, which extracts the 
 components of the data.

The program employs the airline passenger model of Box and Jenkins (1976) as its 
default model. This is represented by the equation

 y(z) 5
N(z)
P(z) e(z) 5 e (1 2 rz) (1 2 qzs)

(1 2 z) (1 2  zs) f e(z) , (5.119)

where N(z)  and P(z)  are polynomial operators and y(z)  and e(z)  are, respectively, 
the z- transforms of the output sequence y(t) 5{yt; t 5 0, 61, 62, . . .} and of the input 
sequence e(t)5{et; t 5 0, 61, 62, . . .} of unobservable white- noise disturbances. The 
integer s stands for the number of periods in the year, which are s 5 4 for quarterly data 
and s 5 12 for monthly data. Without loss of generality as far as the derivation of the 
filters is concerned, the variance of the input sequence can be set to unity.

Given the identity 1 2 zs 5 (1 2 z)S(z) , where S(z) 5 1 1 z 1c1 zs21 is the seasonal 
summation operator, it follows that

 P(z) 5 (1 2 z) (1 2 zs) 5 �2 (z)S(z) , (5.120)

where �(z) 5 1 2 z is the backward difference operator. The polynomial S(z)  has zeros 
at the points exp{i(2p/s) j}; j 5 1, 2, . . ., s 2 1, which are located on the circumference of 
the unit circle in the complex plane at angles from the horizontal that correspond to the 
fundamental seasonal frequency ws 5 2p/s and its harmonics.

The TRAMO–SEATS program effects a decomposition of the data into a seasonal 
component and a non- seasonal component that are described by statistically independ-
ent processes driven by separate white- noise forcing functions. It espouses the principle 
of canonical decompositions that has been expounded by Hillmer and Tiao (1982).

The first step in this decomposition entails the following partial- fraction  decomposition 
of the generating function of the autocovariances of y(t) :

 
N(z21)N(z)
P(z21)P(z) 5

U*(z21)U*(z)
�2 (z21)�2 (z) 1

V*(z21)V*(z)
S(z21)S(z) 1 rq. (5.121)

Here, rq is the quotient of the division of N(z21)N(z)  by P(z21)P(z) , which must occur 
before the remainder, which will be a proper fraction, can be decomposed.

In the preliminary decomposition of (5.121), the first term on the RHS corresponds 
to the trend component, the second term corresponds to the seasonal component and 
the third term corresponds to the irregular component. Hillmer and Tiao have provided 
expressions for the numerators of the RHS, which are somewhat complicated, albeit that 
the numerators can also be found by numerical means.

When z 5 eiw, equation (5.121) provides the spectral ordinates of the process and of 
its components at the frequency value of w. The corresponding spectral density functions 
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are obtained by letting w run from 0 to p. The quotient rq corresponds to the spectrum 
of a white- noise process, which is constant over the frequency range.

The principle of canonical decomposition proposes that the estimates of the trend 
and  of the seasonal component should be devoid of any elements of white noise. 
Therefore, their spectra must be zero- valued at some point in the interval [0,p ]. Let 
qT and qS be the minima of the spectral density functions associated with the trend and 
the seasonal components respectively. By subtracting these values from their respective 
components, a revised decomposition is obtained that fulfils the canonical principle. 
This is

 
N(z21)N(z)
P(z21)P(z) 5

U(z21)U(z)
�2 (z21)�2 (z) 1

V(z21)V(z)
S(z21)S(z) 1 q, (5.122)

where q 5 rq 1 qT 1 qS.
The Wiener–Kolmogorov principle of signal extraction indicates that the filter that 

serves to extract the trend from the data sequence y(t)  should take the form of

 bT (z) 5
U(z21)U(z)
�2 (z21)�2 (z) 3

P(z21)P(z)
N(z21)N(z)

 5
U(z21)U(z)
N(z21)N(z) 3 S(z21)S(z) . (5.123)

This is the ratio of the autocovariance generating function of the trend component to 
that of the process as a whole. This filter nullifies the seasonal component in the process 
of extracting a trend that is relatively free of high- frequency elements. The nullification 
of the seasonal component is due to the factor S(z) .

The gain of the filter that serves to extract the trend from the quarterly logarithmic 
consumption data of Figure 5.9 is shown in Figure 5.17. This filter is derived from a 
model of the data based on equation (5.120), where s 5 4 and where r 5 0.1698 and 
q 5 0.6248 are estimated parameters that determine the polynomial N(z) . The estimated 
trend is shown in Figure 5.18.
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Figure 5.17  The gain of the filter for extracting the trend from the logarithmic 
consumption data
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The filter that serves to extract the seasonal component from the data is constructed on 
the same principle as the trend extraction filter. It takes the form of

 bS (z) 5
V(z21)V(z)
N(z21)N(z) 3 �2 (z21)�2 (z) . (5.124)

The filter that serves the purposes of seasonal adjustment, and which nullifies the sea-
sonal component without further attenuating the high- frequency elements of the data, is

 bA (z) 5 1 2 bS (z) . (5.125)

The gain of the seasonal adjustment filter that is derived from the model of the logarith-
mic consumption data is in shown in Figure 5.19 and the seasonal component that is 
extracted from the data is shown in Figure 5.20.

Various procedures are available for effecting the canonical decomposition of the 
data. The method that is followed by the SEATS program is one that was expounded in a 
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Figure 5.18  The logarithmic consumption data overlaid by the estimated trend- cycle 
component. The plot of the seasonally- adjusted data, which should adhere 
closely to the trend- cycle trajectory, has been displaced downwards
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Figure 5.19  The gain of the seasonal adjustment filter derived from a model of the 
logarithmic consumption data
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paper of Burman (1980), which depends on a partial-fraction decomposition of the filter 
itself. The decomposition of the generic filter takes the form of

 b(z) 5
C(z)

N(z)N(z21) 5
D(z)
N(z) 1

D(z21)
N(z21) . (5.126)

Compared with the previous approaches associated with the time- domain filters, this is 
a matter of implementing the filter via components that are joined in parallel rather than 
in series.

The estimate of the seasonal component obtained by Burman’s method is therefore

 x(z) 5 f(z) 1 b(z) 5
D(z)
N(z) y(z) 1

D(z21)
N(z21) y(z) . (5.127)

Thus, a component f(t)  is obtained by running forwards through the data, and a 
 component b(t)  is obtained by running backwards through the data.

In order to compute either of these components, one needs some initial conditions. 
Consider the recursion running backwards through the data, which is associated with 
the equation

 N(z21)b(z) 5 D(z21)y(z) . (5.128)

This requires some starting values for both b(t)  and y(t) . The SEATS program obtains 
these values by stepping outside the sample.

The post- sample values of y(t)  are generated in the usual way using a recursion based 
upon the equation of the ARIMA model, which is

 y(L)y(t) 5 N(L)e(t) . (5.129)

Here, the requisite post- sample elements of e(t)  are represented by their zero- valued 
expectations. The post- sample values of b(t)  are calculated by a clever algorithm which 
was proposed to Burman by Granville Tunnicliffe- Wilson. (Tunnicliffe- Wilson was 
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Figure 5.20 The component that is removed by the seasonal adjustment filter
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responsible for writing the programs that accompanied the original edition of the book 
of Box and Jenkins (1976) and he has played a major role in the development of the com-
putational algorithms of modern time- series analysis.) The Burman–Wilson algorithm is 
expounded in the appendix to Burman’s paper.

To initiate the recursion which generates the sequence f(t), some pre-sample values are 
found by a method analogous to the one that finds the post-sample values.

SEASONAL ADJUSTMENT IN THE FREQUENCY DOMAIN

The TRAMO–SEATS program generates an abundance of diagrams relating to the 
spectra or pseudo- spectra of the component models and to the frequency responses 
of the associated filters. These diagrams are amongst the end products of the analysis. 
However, there is no frequency analysis of the data to guide the specification of the 
filters. Instead, they are determined by the component models that are derived from the 
aggregate ARIMA model that describes the data.

In this section, we shall pursue a method of seasonal adjustment that begins by looking 
at the periodogram of the detrended data. The detrending is by means of a polynomial 
regression. The residual sequence from the linear detrending of the logarithmic con-
sumption data is shown in Figure 5.11 and the corresponding periodogram is shown in 
Figures 5.10 and 5.22.

Figure 5.22 shows that the significant elements of the data fall within three highlighted 
bands. The first band, which covers the frequency interval [0,p/8], comprises the ele-
ments that constitute the low- frequency business cycle that is represented by the heavy 
line in Figure 5.11. When the cycle is added to the linear trend that is represented in 
Figure 5.9, the result is the trend- cycle component that is shown in Figure 5.21.

The second highlighted band, which covers the interval [p/22 4p/T,p/2 14p/T ], 
comprises five elements, which include two on either side of the seasonal frequency of 
p/2. The third band, which covers the interval [p26p/T,p ], contains the harmonic of 
the seasonal frequency and three elements at adjacent frequencies. The seasonal compo-
nent, which is synthesized from the elements in the second and third bands, is represented 
in Figure 5.23.
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Figure 5.21  The trend- cycle component derived by adding the interpolated polynomial to 
the low- frequency components of the residual sequence
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In addition to showing the logarithmic data sequence and the interpolated trend- 
cycle component, Figure 5.21 also shows a version of the seasonally- adjusted data. This 
is represented by the line that has been displaced downwards. It has been derived by 
 subtracting the seasonal component from the data.

A comparison of Figure 5.17–5.20, which relate to the ARIMA- model- based filters, 
with Figures 5.21–5.23, which relate to the frequency- domain filters, shows that, 
notwithstanding the marked differences in the alternative methodologies of filtering, 
the results are virtually indistinguishable. This is a fortuitous circumstance that is 
largely  attributable to the frequency composition of the data, which is revealed by the 
periodogram.

On the strength of what is revealed by Figure 5.22, it can be asserted that an ARIMA 
model misrepresents the data. The components of the detrended data are confined to 
bands that are separated by wide dead spaces in which there are no elements of any 
significant amplitudes. In contrast, the data generated by an ARIMA process is bound 
to extend, without breaks, over the entire frequency interval [0,p ], and there will be no 
dead spaces.
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Figure 5.22  The periodogram of the residual sequence obtained from the linear 
detrending of the logarithmic consumption data. The shaded bands in the 
vicinities of p/2 and p contain the elements of the seasonal component
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Figure 5.23  The seasonal component, synthesized from Fourier ordinates in the vicinities 
of the seasonal frequency and its harmonic
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The nature of an ARIMA process is reflected in the gain of the trend- extraction filter 
of the TRAMO–SEATS program, which is represented by Figure 5.17. The filter allows 
the estimated trend to contain elements at all frequencies, albeit that those at the highest 
frequencies are strongly attenuated. This accords with the model of the trend, which is 
random walk.

Disregarding the seasonal component, there are no high- frequency elements in the 
data, nor any beyond the frequency limit of p/8. Therefore, there is no consequence in 
allowing such elements to pass through the filter, and its effects are virtually the same as 
those of the corresponding frequency- domain filter. If there were anything in the data 
beyond the limit that had not been removed by the seasonal adjustment, then the effect 
of the filter would be to produce a trend- cycle component with a profile roughened by 
the inclusion of high- frequency noise. It would resemble a slightly smoother version of 
the seasonally- adjusted data sequence.

THE PROGRAMS

The programs that have been described in this chapter are freely available from various 
sources. The H–P (Leser) filter and the Butterworth filter have been implemented in the 
program IDEOLOG, as have the frequency- domain filters. The program is available at 
the address: http://www.le.ac.uk/users/dsgp1/.

The H–P and Butterworth filters are also available in the gretl (Gnu Regression, 
Econometrics and Time- series Library) program, which can be downloaded from the 
address: http://gret1.sourceforge.net/.

The TRAMO–SEATS program which implements the ARIMA- model- based filters is 
available from the Bank of Spain at the address: http://www.bde.es/webbde/en/ secciones/
servicio/software/programas.html. The program, which is free- standing, can also be 
hosted by gretl.
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6 Vector autoregressive models*
Helmut Lütkepohl

1 INTRODUCTION

Multivariate simultaneous equations models were used extensively for macroeconomet-
ric analysis when Sims (1980) advocated vector autoregressive (VAR) models as alter-
natives. At that time longer and more frequently observed macroeconomic time series 
called for models which described the dynamic structure of the variables. VAR models 
lend themselves to this purpose. They typically treat all variables as a priori endogenous. 
Thereby they account for Sims’ critique that the exogeneity assumptions for some of the 
variables in simultaneous equations models are ad hoc and often not backed by fully 
developed theories. Restrictions, including exogeneity of some of the variables, may be 
imposed on VAR models based on statistical procedures.

VAR models are natural tools for forecasting. Their set- up is such that current values 
of a set of variables are partly explained by past values of the variables involved. They 
can also be used for economic analysis, however, because they describe the joint genera-
tion mechanism of the variables involved. Structural VAR analysis attempts to inves-
tigate structural economic hypotheses with the help of VAR models. Impulse response 
analysis, forecast error variance decompositions, historical decompositions and the 
analysis of forecast scenarios are the tools which have been proposed for disentangling 
the relations between the variables in a VAR model.

Traditionally VAR models are designed for stationary variables without time trends. 
Trending behaviour can be captured by including deterministic polynomial terms. In 
the 1980s the discovery of the importance of stochastic trends in economic variables and 
the development of the concept of cointegration by Granger (1981), Engle and Granger 
(1987), Johansen (1995) and others have shown that stochastic trends can also be cap-
tured by VAR models. If there are trends in some of the variables it may be desirable to 
separate the long- run relations from the short- run dynamics of the generation process 
of a set of variables. Vector error correction models offer a convenient framework for 
separating long- run and short- run components of the data generation process (DGP). In 
the present chapter levels VAR models are considered where cointegration relations are 
not modelled explicitly although they may be present. Specific issues related to trending 
variables will be mentioned occasionally throughout the chapter. The advantage of levels 
VAR models over vector error correction models is that they can also be used when the 
cointegration structure is unknown. Cointegration analysis and error correction models 
are discussed specifically in Chapter 7 in this Handbook.

1.1 Structure of the Chapter

Typically a VAR analysis proceeds by first specifying and estimating a reduced form 
model for the DGP and then checking its adequacy. Model deficiencies detected at the 
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latter stage are resolved by modifying the model. If the reduced form model passes the 
checking stage, it may be used for forecasting, Granger- causality or structural analysis. 
The main steps of this modelling approach are depicted in Figure 6.1. The basic VAR 
model will be introduced in section 2. Estimation and model specification issues are dis-
cussed in sections 3 and 4, respectively, and model checking is considered in section 5. 
Sections 6, 7 and 8 address forecasting, Granger- causality analysis and structural model-
ling including impulse response analysis, forecast error variance decomposition, histori-
cal decomposition of time series and analysis of forecast scenarios. Section 9 concludes 
and discusses extensions.

A number of textbooks and review articles deal with VAR models. Examples of 
books are Hamilton (1994), Johansen (1995), Hatanaka (1996), Lütkepohl and Krätzig 
(2004) and in particular Lütkepohl (2005). More formal and more detailed treatments of 
some of the issues discussed in the present chapter can be found in these references. The 
present chapter draws heavily on Lütkepohl and Krätzig (2004), Lütkepohl (2005) and 
earlier survey articles by Lütkepohl (2006b, 2009).

1.2 Terminology, Notation and General Assumptions

Given the importance of stochastic trends it is useful to have a special terminology in 
dealing with them. A time series variable yt is called integrated of order d(I(d) ) if sto-
chastic trends can be removed by differencing the variable d times and a  stochastic trend 

Specification and estimation
of reduced form VAR model

Model checking

Forecasting Granger-causality
analysis

Structural
analysis

Forecast error
variance

decomposition

Impulse
response
analysis

Historical
decomposition

Analysis of
forecast

scenarios

Model
rejected

Model not rejected

Figure 6.1  VAR analysis
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still remains after differencing only d 2 1 times. Defining the differencing operator D 
such that Dyt 5 yt 2 yt21, the variable yt is I(d)  if Ddyt is stationary while Dd21yt still 
has a stochastic trend. A more formal definition of an integrated variable or process 
can be found in Johansen (1995). In this chapter all variables are assumed to be either 
I(0)  (that is, they do not have a stochastic trend) or I(1)  (if there are stochastic trends) 
if not explicitly stated otherwise. A K- dimensional vector of time series variables 
yt 5 (y1t, . . ., yKt)r is called I(d), in short, yt , I(d), if at least one of its components 
is I(d) . Using this terminology, it is possible that some components of yt may be I(0)  
individually if yt , I(1) . A set of I(d)  variables is called cointegrated if a linear combina-
tion exists which is of lower integration order. In that case the variables have a common 
trend component.

The I(d)  terminology refers only to the stochastic properties of the variables. There 
can also be deterministic terms. For simplicity I assume that deterministic components 
will usually be at most linear trends of the form E(yt) 5 mt 5 m0 1 m1t. If m1 5 0 there 
is just a constant or intercept term in the process. To further simplify matters it is occa-
sionally assumed that there is no deterministic term so that mt 5 0. Other deterministic 
terms which are important in practice are seasonal dummies and other dummy variables. 
Including them in VAR models is a straightforward extension which is not considered 
explicitly in this chapter.

The following matrix notation is used. The transpose, inverse, trace, determinant and 
rank of the matrix A are denoted by Ar, A21, tr(A), det(A)  and rk(A), respectively. For 
matrices A (n 3 m)  and B (n 3 k) , [A  :  B ] or (A, B)  denotes the (n 3 (m 1 k))  matrix 
which has A as its first m columns and B as the last k columns. For an (n 3 m)  matrix 
A of full column rank (n . m) , an orthogonal complement is denoted by A', that is, 
Ar'A 5 0 and [A  :  A'

] is a non- singular square matrix. The zero matrix is the orthogonal 
complement of a non- singular square matrix and an identity matrix of suitable dimen-
sion is the orthogonal complement of a zero matrix. The symbol vec denotes the column 
vectorization operator, # signifies the Kronecker product and In is an (n 3 n)  identity 
matrix.

The sets of all integers, positive integers and complex numbers are denoted by Z, N 
and C, respectively. The lag operator L shifts the time index backward by one period, 
that is, for a time series variable or vector yt, Lyt 5 yt21. Using this notation, the previ-
ously defined differencing operator may be written as D 5 1 2 L. For a number x, 0x 0  
denotes the absolute value or modulus. A sum is defined to be zero if the lower bound of 
the summation index exceeds the upper bound.

The following conventions are used with respect to distributions and stochastic pro-
cesses. The symbol ‘ , (m,S)’ abbreviates ‘has a distribution with mean (vector) m and 
(co)variance (matrix) S’ and N (m,S)  denotes a (multivariate) normal distribution with 
mean (vector) m and (co)variance (matrix) S. Convergence in distribution is denoted 
as Sd  and plim stands for the probability limit. Independently, identically distributed 
is abbreviated as iid. A stochastic process ut with t [ Z or t [ N  is called white noise 
if the uts are iid with mean zero, E(ut) 5 0, and positive definite covariance matrix 
Su 5 E(uturt) .

The following abbreviations are used: DGP, VAR, SVAR and MA for data gen-
eration process, vector autoregression, structural vector autoregression and moving 
average, respectively; ML, OLS, GLS, LM, LR and MSE for maximum likelihood, 
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 ordinary least squares, generalized least squares, Lagrange multiplier, likelihood ratio 
and mean squared error, respectively. The natural logarithm is abbreviated as log.

2 VAR PROCESSES

2.1 The Reduced Form

Suppose the investigator is interested in a set of K  related time series variables collected 
in yt 5 (y1t, . . ., yKt)r. Given the importance of distinguishing between stochastic and 
deterministic components of the DGPs of economic variables, it is convenient to sepa-
rate the two components by assuming that

 yt 5 mt 1 xt, (6.1)

where mt is the deterministic part and xt is a purely stochastic process with zero mean. 
The deterministic term mt is at most a linear trend (mt 5 m0 1 m1t) and may also be zero 
(mt 5 0) or just a constant (mt 5 m0) for simplicity. Deterministic trend terms have 
implausible implications in the context of forecasting. Hence, they are not recommend-
able in applied VAR analysis. The issue will be further discussed in section 6.1. The 
purely stochastic part, xt, may be I(1)  and, hence, may include stochastic trends and 
cointegration relations. It has mean zero and a VAR representation. The properties of 
the observable process yt are determined by those of mt and xt. In particular, the order of 
integration and the cointegration relations are determined by xt.

Suppose the stochastic part xt is a VAR process of order p (VAR(p)) of the form

 xt 5 A1xt21 1 c1 Ap xt2p 1 ut, (6.2)

where the Ai (i 5 1, . . ., p) are (K 3 K)  parameter matrices and the error process 
ut 5 (u1t, . . ., uKt)r is a K- dimensional zero mean white noise process with covariance 
matrix E(uturt) 5 Su, that is, ut , (0,Su). Using the lag operator and defining the matrix 
polynomial in the lag operator A(L)  as A(L) 5 IK 2 A1L 2 c2 Ap L 

p, the process 
(6.2) can be equivalently written as

 A(L)xt 5 ut. (6.3)

The VAR process (6.2)/(6.3) is stable if

 detA(z) 5 det(IK 2 A1z 2 c2 Ap zp) 2 0 for z [ C, 0z 0 # 1. (6.4)

In other words, xt is stable if all roots of the determinantal polynomial are outside the 
complex unit circle. In that case xt is I(0). Under usual assumptions a stable process 
xt has time invariant means, variances and covariance structure and is, hence, station-
ary. If, however, detA(z) 5 0 for z 5 1 (that is, the process has a unit root) and all 
other roots of the determinantal polynomial are outside the complex unit circle, then 
some or all of the variables are integrated, the process is, hence, non- stationary and 
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the  variables may be cointegrated. Recall that all variables are either I(0)  or I(1)  by 
default.

Also, recall that xt is the (typically unobserved) stochastic part whereas yt is the 
vector of observed variables. Pre- multiplying (6.1) by A(L) , that is, considering 
A(L)yt 5 A(L)mt 1 ut, shows that yt inherits the VAR(p) representation from xt. In 
other words, if mt 5 m0 1 m1t, A(L)yt 5 n0 1 n1t 1 ut or

 yt 5 n0 1 n1t 1 A1yt21 1 c1 Ap yt2p 1 ut, (6.5)

where n0 5 (IK 2 g p
j51Aj)m0 1 (g p

j51 jAj)m1 and n1 5 (IK 2 g p
j51Aj)m1. Since all vari-

ables appear in levels, this form is known as the levels form of the VAR process. 
Alternatively, some or all variables may appear in first differences if the variables are 
I(1)  and not cointegrated.

If the parameters ni, i 5 0,1, are unrestricted in (6.5), the variables may have quad-
ratic trends if yt , I(1) . Thus, the additive model set- up (6.1) imposes restrictions on 
the deterministic parameters in (6.5). Generally the additive set- up makes it necessary 
to think about the deterministic terms at the beginning of the analysis and allow for the 
appropriate polynomial order. Sometimes trend- adjustments are performed prior to a 
VAR analysis. The reason is that the stochastic part of the variables is often of main 
interest in econometric analysis because it is viewed as describing the behavioural rela-
tions. In that case there may be no deterministic term in the levels VAR form (6.5).

Using terminology from the simultaneous equations literature, the model (6.5) is in 
reduced form because all right- hand side variables are lagged or predetermined. The 
instantaneous relations between the variables are summarized in the residual covariance 
matrix. In economic analysis it is often desirable to model the contemporaneous rela-
tions between the variables directly. This may be done by setting up a structural form 
which is discussed next.

2.2 Structural Forms

In structural form models contemporaneous variables may appear as explanatory vari-
ables in some equations. For example,

 Ayt 5 n*0 1 n*1 t 1 A*1 yt21 1 c1 A*p yt2p 1 vt, (6.6)

is a structural form. Here the (K 3 K)  matrix A reflects the instantaneous relations, 
n*i 5 Ani (i 5 0,1) and A*j 5 AAj ( j 5 1, . . ., p). The structural form error term vt 5 Aut 
is iid white noise with covariance matrix Sv 5 ASuAr. The matrix A usually has ones on 
its main diagonal so that the set of equations in (6.6) can be written such that each of 
the variables appears on the left- hand side of one of the equations and may depend on 
contemporaneous values of some or all of the other variables. Moreover, A is typically 
chosen such that Sv is a diagonal matrix. Structural VAR models are discussed in more 
detail by Lutz Kilian in Chapter 22 of this volume. Therefore they are only sketched 
briefly here. Other expository treatments are Amisano and Giannini (1997), Watson 
(1994), Breitung et al. (2004) and Lütkepohl (2005).

Multiplying (6.6) by any non- singular matrix results in a representation of the 
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form (6.6). This shows that the parameters of the structural form (6.6) are not iden-
tified without further restrictions. Imposing restrictions on A and Sv to identify the 
structural form is a main focus of structural VAR (SVAR) analysis (see Chapter 22, 
this volume). Often zero restrictions are placed on A directly. In other words, some 
variables are not allowed to have an instantaneous impact on some other variables. 
For example, A may be lower- triangular if there is a recursive relation between the 
variables.

Alternatively, in SVAR analyses researchers sometimes think of specific shocks 
hitting the system. A suitable structural model set- up for that case is obtained by pre- 
multiplying (6.6) by B 5 A21 and considering

 yt 5 n0 1 n1t 1 A1yt21 1 c1 Apyt2p 1 Bvt. (6.7)

This set- up makes it easy to specify that a certain structural shock vit does not have an 
instantaneous effect on one of the observed variables by restricting the corresponding 
element of B 5 A21 to be zero. In other words, zero restrictions are placed on B 5 A21.

Other popular identifying restrictions are placed on the accumulated long- run effects 
of shocks. For example, if some variables represent rates of change of some underlying 
quantity, one may postulate that a shock has no long- run effect on the level of a variable 
by enforcing that the accumulated changes in the variable induced by the shock add to 
zero. For instance, in a seminal article Blanchard and Quah (1989) consider a bivari-
ate model consisting of output growth rates (y1t) and an unemployment rate (y2t). They 
assume that demand shocks have no long- run effects on output. In other words, the 
accumulated effects of a demand shock on the output growth rates are assumed to be 
zero. Such restrictions are effectively restrictions for A or/and B.

The SVAR models (6.6) and (6.7) are sometimes referred to as A-  and B- models, 
respectively (see Lütkepohl, 2005). They can also be combined to an AB- model of the 
form

 Ayt 5 n*0 1 n*1 t 1 A*1 yt21 1 c1 A*p yt2p 1 Bvt, (6.8)

which makes it easy to impose restrictions on the instantaneous effects of changes in 
observed variables and unobserved shocks. On the other hand, it involves many more 
parameters in A and B and, hence, requires more identifying restrictions. In the B-  and 
AB- models, the residuals are usually assumed to be standardized to have identity covari-
ance matrix, that is, Sv 5 IK. In that case the reduced form covariance matrix is Su 5 BBr 
for the B- model and Su 5 A21BBrA21r for the AB- model.

As mentioned earlier, identifying the structural relations between the variables or iden-
tifying the structural shocks is a main concern of SVAR analysis. Other types of informa-
tion and restrictions for identification than those mentioned previously have also been 
proposed. For instance, sign restrictions, using information from higher- frequency data 
or heteroscedasticity may be considered (see Chapter 22, this volume, for details).

Prior to a structural analysis, a reduced form model as a valid description of the 
DGP is usually constructed. The stages of reduced form VAR model construction are 
discussed in the following. Before model specification is considered, estimation of VAR 
models will be discussed because estimation is typically needed at the specification stage.
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3 ESTIMATION OF VAR MODELS

Reduced form VAR models can be estimated with standard methods. Classical least 
squares and maximum likelihood (ML) methods are discussed in section 3.1 and 
Bayesian estimation is considered in section 3.2. Estimation of structural models is 
treated in section 3.3.

3.1 Classical Estimation of Reduced Form VARs

Consider the levels VAR(p) model (6.5) written in the more compact form

 yt 5 [n0,n1, A1, . . ., Ap ]Zt21 1 ut, (6.9)

where Zt21 5 (1, t, yrt21, . . ., y rt2p)r. The deterministic terms may be adjusted accordingly 
if there is just a constant in the model or no deterministic component at all. Given a 
sample of size T, y1, . . ., yT, and p pre- sample vectors, y2p11, . . ., y0, the parameters can be 
estimated efficiently by ordinary least squares (OLS) for each equation separately. The 
estimator is easily seen to be

 [n̂0, n̂1, Â1, . . ., Âp ] 5 aaT
t51

ytZrt21b aaT
t51

Zt21Zrt21b21

. (6.10)

This estimator is identical to the generalized least squares (GLS) estimator, if no restric-
tions are imposed on the parameters. For a normally distributed (Gaussian) process yt, 
where ut , N(0,Su), this estimator is also identical to the ML estimator, conditional 
on the initial pre- sample values. Thus, the estimator has the usual desirable asymptotic 
properties of standard estimators. It is asymptotically normally distributed with smallest 
possible asymptotic covariance matrix and the usual inference procedures are available 
if the process is stable. In other words, in this case t- statistics can be used for testing 
individual coefficients and for setting up confidence intervals. Moreover, F- tests can be 
used for testing statistical hypotheses for sets of parameters. Of course, in the present 
framework these procedures are only valid asymptotically and not in small samples.

If there are integrated variables so that yt , I(1) , the process is not stable and the vari-
ables may be cointegrated. In that case the OLS/ML estimator can still be used and it is 
still asymptotically normal under general conditions (see Park and Phillips, 1988, 1989; 
Sims et al., 1990; Lütkepohl, 2005, Chapter 7). However, in that case the covariance 
matrix of the asymptotic distribution is singular because some estimated parameters or 
linear combinations of them converge with a faster rate than the usual "T  rate when 
the sample size goes to infinity. This result implies that t- , c2-  and F- tests for inference 
regarding the VAR parameters may be invalid asymptotically (Toda and Phillips, 1993). 
Although these properties require caution in doing inference for integrated processes, 
there are many situations where standard inference still holds (see Toda and Yamamoto, 
1995; Dolado and Lütkepohl, 1996; Inoue and Kilian, 2002a). In particular, asymptotic 
inference on impulse responses as discussed in section 8.1 remains valid if the order of the 
VAR process is greater than 1.

If restrictions are imposed on the parameters, OLS estimation may be inefficient. In 
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that case GLS estimation may be beneficial. Let a 5 vec[n1,n2, A1, . . ., Ap ] and suppose 
that there are linear restrictions for the parameters such as zero restrictions which 
exclude some of the lagged variables from some of the equations. Linear restrictions can 
often be written in the form

 a 5 Rg, (6.11)

where R is a suitable, known ((K 2p 1 2K) 3 M)  restriction matrix with rank M which 
typically consists of zeros and ones and g is the (M 3 1) vector of unrestricted param-
eters. The GLS estimator for g is then

 ĝ 5 cR raaT
t51

Zt21 Zrt21 # S21
u bR d 21

R rvecaS21
u a

T

t51
ytZrt21b. (6.12)

The estimator ĝ has standard asymptotic properties if yt , I(0) , that is, the GLS estima-
tor is consistent and asymptotically normally distributed and usual methods for infer-
ence are valid asymptotically.

In practice, the white noise covariance matrix is usually unknown and has to be 
replaced by an estimator based on an unrestricted estimation of the model. The resulting 
feasible GLS estimator, say ĝ̂,  has the same asymptotic properties as the GLS estimator 
under general conditions. The corresponding feasible GLS estimator of a, â̂ 5 Rĝ̂, is 
also consistent and asymptotically normal and allows for standard asymptotic inference. 
For Gaussian white noise ut, ML estimation may be used alternatively. Its asymptotic 
properties are the same as those of the GLS estimator under standard assumptions.

For I(1)  processes a specific analysis of the integration and cointegration properties 
of the left- hand and right- hand side variables of the individual equations is necessary 
to determine the asymptotic properties of the estimators and the associated inference 
procedures.

3.2 Bayesian Estimation of Reduced Form VARs

Standard Bayesian methods for estimating linear regression models can be applied for 
estimating the parameters of reduced form VAR models. They are not discussed here 
in detail because they are considered elsewhere in this volume. In the VAR literature 
specific priors have been used, however, which may be worth noting at this point. 
Assuming a normal distribution for the residuals and, hence, for the observed yt together 
with a normal- Wishart prior distribution for the VAR coefficients results in a normal- 
Wishart posterior distribution. Such a set- up is rather common in the SVAR literature 
(see Uhlig, 2005, Appendix B). The so- called Minnesota prior is a specific example of 
a prior which has been used quite often in practice (see Doan et al., 1984; Litterman, 
1986). It shrinks the VAR towards a random walk for each of the variables. Extensions 
and alternatives were proposed by Kadiyala and Karlsson (1997), Villani (2005), Sims et 
al. (2008), Giannone et al. (2010) and others. Other, recent proposals include shrinking 
towards some dynamic stochastic general equilibrium model (for example, Ingram and 
Whiteman, 1994 and Del Negro and Schorfheide, 2004). A more detailed exposition of 
Bayesian methods in VAR analysis may be found in Canova (2007, Chapters 9–11).
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3.3 Estimation of Structural VARs

Properly identified structural form VAR models are also usually estimated by least 
squares, ML or Bayesian methods. The specific estimation algorithm depends to some 
extent on the type of restrictions used for identification. For example, if a just- identified 
A- model is used with ones on the main diagonal and diagonal residual covariance matrix 
Sv, equationwise OLS can be used for estimation. For the B- model (6.7) without restric-
tions on n0,n1, A1, . . ., Ap, the latter parameters can be concentrated out of the likelihood 
function by replacing them with their OLS estimators, using Su 5 BBr and estimating B 
by maximizing the concentrated Gaussian log- likelihood

 l(B) 5 constant 2
T
2

logdet(B) 2 2
T
2

tr(Br21B21Ŝu) , (6.13)

where Ŝu 5 T21gT
t51 ûtûrt  is the estimator of Su based on the OLS residuals (cf. Breitung 

et al., 2004). If the actual distribution of yt (and, hence, of ut) is not normal, the resulting 
estimators are quasi-  or pseudo- ML estimators. They still allow for standard asymptotic 
inference under general conditions.

In the AB- model the concentrated log- likelihood function in terms of A and B is

  l(A, B) 5 constant 1
T
2

log det(A)2 2
T
2

logdet(B) 2 2
T
2

tr(ArBr21B21AŜu) . (6.14)

Numerical methods can be used for optimizing the functions in (6.13) and (6.14) with 
respect to the free parameters in B or A and B. The resulting estimators have the usual 
asymptotic properties of ML estimators (see, for example, Lütkepohl, 2005, Chapter 9 
for details). Hence, asymptotic inference proceeds in the usual way. Alternatively, one 
may use Bayesian estimation methods (see, for example, Sims et al., 2008). The estimates 
will be of importance in the structural VAR analysis discussed in section 8 and Chapter 
22 (this volume).

4 MODEL SPECIFICATION

Model specification in the present context involves selecting the VAR order and pos-
sibly imposing restrictions on the VAR parameters. Notably zero restrictions on the 
parameter matrices may be desirable because the number of parameters in a VAR model 
increases with the square of the VAR order. Lag order specification is considered next 
and some comments on setting zero restrictions on the parameters are provided at the 
end of this section.

The VAR order is typically chosen by sequential testing procedures or model 
selection criteria. Sequential testing proceeds by specifying a maximum reason-
able lag order, say pmax, and then testing the following sequence of null hypotheses: 
H0  :  Apmax

5 0, H0  :  Apmax21 5 0, and so on. The procedure stops when the null hypoth-
esis is rejected for the first time. The order is then chosen accordingly. For stationary 
processes the usual Wald or LR c2 tests for parameter restrictions can be used in this 
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procedure. If there are I(1)  variables these tests are also asymptotically valid as long 
as the null hypothesis H0  :  A1 5 0 is not tested. Unfortunately, the small sample dis-
tributions of the tests may be quite different from their asymptotic counterparts, in 
particular for systems with more than a couple of variables (for example, Lütkepohl, 
2005, Section 4.3.4). Therefore it may be useful to consider small sample adjustments, 
possibly based on bootstrap methods (for example, Li and Maddala, 1996; Berkowitz 
and Kilian, 2000).

Alternatively, model selection criteria can be used. Some of them have the general 
form

 C(m) 5 logdet(Ŝm) 1 cT f(m), (6.15)

where Ŝm 5 T21gT
t51ûtûrt  is the OLS residual covariance matrix estimator for a reduced 

form VAR model of order m, f(m)  is a function of the order m which penalizes large 
VAR orders and cT is a sequence which may depend on the sample size and identifies the 
specific criterion. Popular examples are Akaike’s information criterion (Akaike, 1973, 
1974),

 AIC(m) 5 logdet(Ŝm) 1
2
T

mK 2,

where cT 5 2/T, the Hannan–Quinn criterion (Hannan and Quinn, 1979; Quinn, 1980),

 HQ(m) 5 logdet(Ŝm) 1
2log logT

T
mK 2,

with cT 5 2 log logT/T, and the Schwarz (or Rissanen) criterion (Schwarz, 1978; 
Rissanen 1978),

 SC(m) 5 logdet(Ŝm) 1
logT

T
mK 2,

with cT 5 logT/T. In all these criteria f(m) 5 mK 2 is the number of VAR parameters 
in a model with order m. The VAR order is chosen such that the respective criterion is 
minimized over the possible orders m 5 0, . . .,pmax. Among these three criteria, AIC 
always suggests the largest order, SC chooses the smallest order and HQ is in between 
(Lütkepohl, 2005, Chapters 4 and 8). Of course, the criteria may all suggest the same lag 
order. The HQ and SC criteria are both consistent, that is, under general conditions the 
order estimated with these criteria converges in probability or almost surely to the true 
VAR order p if pmax is at least as large as the true lag order. AIC tends to overestimate 
the order asymptotically with a small probability. These results hold for both I(0)  and 
I(1)  processes (Paulsen, 1984).

The lag order obtained with sequential testing or model selection criteria depends to 
some extent on the choice of pmax. Choosing a small pmax, an appropriate model may not 
be in the set of possibilities and choosing a large pmax may result in a large value which is 
spurious. At an early stage of the analysis, using a moderate value for pmax appears to be 
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a sensible strategy. An inadequate choice should be detected at the model checking stage 
(see section 5).

Once the model order is determined, zero restrictions may be imposed on the VAR 
coefficient matrices to reduce the number of parameters. Standard testing procedures 
can be used for that purpose. The number of possible restrictions may be very large, 
however, and searching over all possibilities may result in excessive computations. 
Therefore a number of shortcuts have been proposed in the related literature under the 
name of subset model selection procedures (see Lütkepohl, 2005, Section 5.2.8).

If a model is selected by some testing or model selection procedure, that model is 
typically treated as representing the true DGP in the subsequent statistical analysis. 
Recent research is devoted to the problems and possible errors associated with such an 
approach (for example, Leeb and Pötscher, 2005). This literature points out that the 
actual distribution which does not condition on the model selected by some statistical 
procedure may be quite different from the conditional one. Suppose, for example, that 
the VAR order is selected by the AIC, say, the order chosen by this criterion is p̂. Then a 
typical approach in practice is to treat a VAR( p̂) model as the true DGP and perform all 
subsequent analysis under this assumption. Such a conditional analysis can be mislead-
ing even if the true order coincides with p̂ because the properties of the estimators for 
the VAR coefficients are affected by the post- model selection step. Conditioning on p̂ 
ignores that this quantity is also a random variable based on the same data as the estima-
tors of the VAR parameters. Since no general procedures exist for correcting the error 
resulting from this simplification, there is little to recommend for improving applied 
work in this respect.

5 MODEL CHECKING

Procedures for checking whether the VAR model represents the DGP of the variables 
adequately range from formal tests of the underlying assumptions to informal proce-
dures such as inspecting plots of residuals and autocorrelations. Since a reduced form 
is underlying every structural form, model checking usually focuses on reduced form 
models. If a specific reduced form model is not an adequate representation of the DGP, 
any structural form based on it cannot represent the DGP well. Formal tests for residual 
autocorrelation, non- normality and conditional heteroscedasticity for reduced form 
VARs are briefly summarized in the following. For other procedures see, for example, 
Lütkepohl (2004).

5.1 Tests for Residual Autocorrelation

Portmanteau and Breusch–Godfrey–LM tests are standard tools for checking residual 
autocorrelation in VAR models. The null hypothesis of the portmanteau test is that all 
residual autocovariances are zero, that is, H0  :  E(uturt2 i) 5 0 (i 5 1, 2, . . .). The alter-
native is that at least one autocovariance and, hence, one autocorrelation is  non- zero. 
The test statistic is based on the residual autocovariances, Ĉj 5 T21gT

t5 j11 ût ûrt2 j , 
where the ûts are the mean- adjusted estimated residuals. The portmanteau statistic is 
given by
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 Qh 5 Ta
h

j51
tr(Ĉ rjĈ21

0 ĈjĈ21
0 ), (6.16)

or the modified version

 Q*h 5 T 2a
h

j51

1
T 2 j

tr(Ĉ rjĈ21
0 ĈjĈ21

0 )

may be used. The two statistics have the same asymptotic properties. For an unre-
stricted stationary VAR( p) process their null distributions can be approximated by a 
c2 (K 2 (h 2 p))  distribution if T  and h approach infinity such that h/T S 0. For VAR 
models with parameter restrictions, the degrees of freedom of the approximate c2 dis-
tribution are obtained as the difference between the number of (non- instantaneous) 
autocovariances included in the statistic (K 2h) and the number of estimated VAR param-
eters (for example, Ahn, 1988; Hosking, 1980, 1981a, 1981b; Li and McLeod, 1981; or 
Lütkepohl, 2005, Section 4.4). Brüggemann et al. (2006) show that this approximation is 
unsatisfactory for integrated and cointegrated processes. For such processes the degrees 
of freedom also depend on the cointegrating rank. Thus, portmanteau tests are not rec-
ommended for levels VAR processes with unknown cointegrating rank.

The choice of h is crucial for the small sample properties of the test. If h is chosen too 
small the c2 approximation to the null distribution may be very poor while a large h 
reduces the power of the test. Using a number of different h values is not uncommon in 
practice.

The portmanteau test should be applied primarily to test for autocorrelation of high 
order. For low order autocorrelation the Breusch–Godfrey LM test is more suitable. It 
may be viewed as a test for zero coefficient matrices in a VAR model for the residuals,

 ut 5 B1ut21 1 c1 Bhut2h 1 et.

The quantity et denotes a white noise error term. Thus, a test of

 H0  :  B1 5 c5 Bh 5 0 versus H1  :  Bi 2 0 for at least one i [ {1, . . . , h}

may be used for checking that ut is white noise. The precise form of the statistic can be 
found, for example, in Lütkepohl (2005, Section 4.4.4). It has an asymptotic c2 (hK 2) -
distribution under the null hypothesis for both I(0)  and I(1)  systems (Brüggemann et 
al., 2006). As a consequence, the LM test is applicable for levels VAR processes with 
unknown cointegrating rank.

5.2 Other Popular Tests for Model Adequacy

Non- normality tests are often used for model checking, although normality is not a 
necessary condition for the validity of many of the statistical procedures related to VAR 
models. However, non- normality of the residuals may indicate other model deficien-
cies such as non- linearities or structural change. Multivariate normality tests are often 
applied to the residual vector of the VAR model and univariate versions are used to 
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check normality of the errors of the individual equations. The standard tests check 
whether the third and fourth moments of the residuals are in line with a normal distribu-
tion, as proposed by Lomnicki (1961) and Jarque and Bera (1987) for univariate models. 
For details see Lütkepohl (2005, Section 4.5) and for small sample corrections see Kilian 
and Demiroglu (2000).

Conditional heteroscedasticity is often a concern for models based on data with 
monthly or higher frequency. Therefore suitable univariate and multivariate tests are 
available to check for such features in the residuals of VAR models. Again much of the 
analysis can be done even if there is conditional heteroscedasticity. Notice that the VAR 
model represents the conditional mean of the variables which is often of primary inter-
est. Still, it may be useful to check for conditional heteroscedasticity to better understand 
the properties of the underlying data and to improve inference. Also, heteroscedastic 
residuals can indicate structural changes. If conditional heteroscedasticity is found in the 
residuals, modelling them by multivariate GARCH models or using heteroscedasticity 
robust inference procedures may be useful to avoid distortions in the estimators of the 
conditional mean parameters. For a proposal to robustify inference against conditional 
heteroscedasticity see Goncalves and Kilian (2004).

There are a number of tests for structural stability which check whether there are 
changes in the VAR parameters or the residual covariances throughout the sample 
period. Prominent examples are so- called Chow tests. They consider the null hypoth-
esis of time invariant parameters throughout the sample period against the possibility 
of a change in the parameter values in some period TB, say. One possible test version 
compares the likelihood maximum of the constant parameter model to the one with dif-
ferent parameter values before and after period TB. If the model is time invariant, the 
resulting LR statistic has an asymptotic c2- distribution under standard assumptions. 
See Lütkepohl (2005, Section 4.6) for details and other tests for structural stability of 
VARs.

Stability tests are sometimes performed for a range of potential break points TB. Using 
the maximum of the test statistics, that is, rejecting stability if one of the test statistics 
exceeds some critical value, the test is no longer asymptotically c2 but has a different 
asymptotic distribution (see Andrews, 1993; Andrews and Ploberger, 1994; and Hansen, 
1997).

If a reduced form VAR model has passed the adequacy tests, it can be used for fore-
casting and structural analysis, which are treated next.

6 FORECASTING

Since reduced form VAR models represent the conditional mean of a stochastic process, 
they lend themselves for forecasting. For simplicity forecasting with known VAR pro-
cesses will be discussed first and then extensions for estimated processes will be considered.

6.1 Forecasting Known VAR Processes

If yt is generated by a VAR( p) process (6.5), the conditional expectation of yT1h given 
yt, t # T, is
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yT1h 0T 5 E(yT1h 0yT, yT21, . . .) 5 n0 1 n1 (T 1 h) 1 A1yT1h21 0T 1 c1 Ap yT1h2p 0T, (6.17)

where yT1 j 0T 5 yT1 j for j # 0. If the white noise process ut is iid, yT1h 0T is the optimal, 
minimum mean squared error (MSE) h- step ahead forecast in period T. The forecasts 
can easily be computed recursively for h 5 1, 2, . . . . The forecast error associated with 
an h- step forecast is

 yT1h 2 yT1h 0T 5 uT1h 1 F1uT1h21 1 c1 Fh21uT11, (6.18)

where the Fi matrices may be obtained recursively as

 Fi 5 a
i

j51
Fi2 jAj, i 5 1, 2, . . ., (6.19)

with F0 5 IK and Aj 5 0 for j . p (for example, Lütkepohl, 2005, Chapter 2). In other 
words, the Fi are the coefficient matrices of the infinite order polynomial in the lag oper-
ator A(L)21 5 g`

j50FjL 
j. Obviously, the reduced form VAR residual ut is the forecast 

error for a 1- step forecast in period t 2 1. The forecasts are unbiased; that is, the errors 
have mean zero and the forecast error covariance or MSE matrix is

 Sy (h) 5 E [(yT1h 2 yT1h 0T) (yT1h 2 yT1h 0T)r] 5 a
h21

j50
FjSuFrj, (6.20)

that is, yT1h 2 yT1h 0T , (0,Sy (h)) .
In fact, the conditional expectation in (6.17) is obtained whenever the conditional 

expectation of uT1h is zero or in other words, if ut is a martingale difference sequence. 
Even if the uts are just uncorrelated and do not have conditional mean zero, the forecasts 
obtained recursively from (6.17) are still best linear forecasts but may not be minimum 
MSE forecasts in a larger class which includes non- linear forecasts.

These results are valid even if the VAR process has I(1)  components. However, if yt is 
I(0)  (stationary) the forecast MSEs are bounded as the horizon h goes to infinity. In con-
trast, for I(1)  processes the forecast MSE matrices are unbounded and, hence, forecast 
uncertainty increases without bounds for increasing forecast horizon.

Notice the major difference between considering deterministic and stochastic trends 
in a VAR model. The deterministic time trend in (6.17) does not add to the inaccuracy 
of the forecasts in this framework, where no estimation uncertainty is present, while sto-
chastic trends have a substantial impact on the forecast uncertainty. Many researchers 
find it implausible that trending behaviour is not reflected in the uncertainty of long- term 
forecasts. Therefore deterministic trend components should be used with caution. In 
particular, higher order polynomial trends or even linear trends should be avoided unless 
there are very good reasons for them. Using them just to improve the fit of a VAR model 
can be counterproductive from a forecasting point of view.

For Gaussian VAR processes yt with ut , iid N (0,Su), the forecast errors are also 
multivariate normal, yT1h 2 yT1h 0T , N (0,Sy (h)), and forecast intervals can be set up in 
the usual way. For non- Gaussian processes yt with unknown distribution, other methods 
for setting up forecast intervals are called for, for instance, bootstrap methods may be 
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considered (see, for example, Findley, 1986; Masarotto, 1990; Grigoletto, 1998; Kabaila, 
1993; Kim, 1999; and Pascual et al., 2004).

6.2 Forecasting Estimated VAR Processes

If the DGP is unknown and, hence, the VAR model only approximates the true DGP, 
the previously discussed forecasts will not be available. Let ŷT1h 0T denote a forecast based 
on a VAR model which is specified and estimated based on the available data. Then the 
forecast error is

 yT1h 2 ŷT1h 0T 5 (yT1h 2 yT1h 0T) 1 (yT1h 0T 2 ŷT1h 0T) . (6.21)

If the true DGP is a VAR process, the first term on the right- hand side is gh21
j50FjuT1h2 j. It 

includes residuals ut with t . T  only, whereas the second term involves just yT, yT21, . . . , 
if only variables up to time T  have been used for model specification and estimation. 
Consequently, the two terms are independent or at least uncorrelated, so that the MSE 
matrix has the form

 Ŝy(h) 5 E [ (yT1h 2 ŷT1h 0T)(yT1h 2 ŷT1h 0T)r ]

 5 Sy (h) 1 MSE(yT1h 0T 2 ŷT1h 0T) . (6.22)

If the VAR model specified for yt properly represents the DGP, the last term on the 
right- hand side approaches zero as the sample size gets large because the difference 
yT1h 0T 2 ŷT1h 0T vanishes asymptotically in probability under standard assumptions. 
Thus, if the theoretical model fully captures the DGP, specification and estimation 
uncertainty is not important asymptotically. On the other hand, in finite samples the 
precision of the forecasts depends on the precision of the estimators. Suitable correc-
tion factors for MSEs and forecast intervals for stationary processes are given by Baillie 
(1979), Reinsel (1980), Samaranayake and Hasza (1988) and Lütkepohl (2005, Chapter 
3). A discussion of extensions with a number of further references may be found in 
Lütkepohl (2009).

7 GRANGER- CAUSALITY ANALYSIS

Because VAR models describe the joint generation process of a number of variables, they 
can be used for investigating relations between the variables. A specific type of relation 
was pointed out by Granger (1969) and is known as Granger- causality. Granger called 
a variable y2t causal for a variable y1t if the information in past and present values of y2t 
is helpful for improving the forecasts of y1t. This concept is especially easy to implement 
in a VAR framework. Suppose that y1t and y2t are generated by a bivariate VAR(p)  
process,

 ay1t

y2t
b 5 a

p

i51
ca11,i a12,i

a21,i a22,i
d ay1,t2 i

y2,t2 i
b 1 ut.
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Then y2t is not Granger- causal for y1t if and only if a12,i 5 0, i 5 1,2, . . ., p. In other 
words, y2t is not Granger- causal for y1t if the former variable does not appear in the y1t 
equation of the model. This result holds for both stationary and integrated processes.

Because Granger- non- causality is characterized by zero restrictions on the levels 
VAR  representation of the DGP, testing for it becomes straightforward. Standard 
Wald c2-  or F- tests can be applied. If yt contains integrated and possibly cointegrated 
variables, these tests may not have standard asymptotic properties, however (Toda 
and Phillips, 1993). For the presently considered case, there is a simple way to fix the 
problem. In this case the problem of getting a non- standard asymptotic distribution for 
Wald tests for zero restrictions can be resolved by adding an extra redundant lag to the 
VAR in estimating the parameters of the process and testing the relevant null hypoth-
esis on the matrices A1, . . ., Ap only (see Toda and Yamamoto, 1995 and Dolado and 
Lütkepohl, 1996). Since a VAR( p 1 1) is an appropriate model with Ap11 5 0 if the true 
VAR order is p, the procedure is sound. It will not be fully efficient, however, due to the 
redundant VAR lag.

If there are more than two variables the conditions for non- causality or causal-
ity become more complicated even if the DGP is a VAR process (see, for example, 
Lütkepohl, 1993 and Dufour and Renault, 1998). In practice, Granger- causality is 
therefore often investigated for bivariate processes. It should be clear, however, that 
Granger- causality depends on the information set considered. In other words, even if 
a variable is Granger- causal in a bivariate model, it may not be Granger- causal in a 
larger model involving more variables. For instance, there may be a variable driving 
both variables of a bivariate process. When that variable is added to the model, a 
bivariate causal structure may disappear. In turn it is also possible that a variable is 
non- causal for another one in a bivariate model and becomes causal if the informa-
tion set is extended to include other variables as well. There are also a number of other 
limitations of the concept of Granger- causality which have stimulated an extensive 
discussion of the concept and have prompted alternative definitions. For further discus-
sion and references see Lütkepohl (2005, Section 2.3.1) and for extensions to testing for 
Granger- causality in infinite order VAR processes see Lütkepohl and Poskitt (1996) and 
Saikkonen and Lütkepohl (1996).

8 STRUCTURAL ANALYSIS

Traditionally the interaction between economic variables is studied by considering the 
effects of changes in one variable on the other variables of interest. In VAR models 
changes in the variables are induced by non- zero residuals, that is, by shocks which may 
have a structural interpretation if identifying structural restrictions have been placed 
accordingly. Hence, to study the relations between the variables, the effects of non- zero 
residuals or shocks are traced through the system. This kind of analysis is known as 
impulse response analysis. It will be discussed in section 8.1. Related tools are forecast 
error variance decompositions and historical decompositions of time series of interest in 
terms of the contributions attributable to the different structural shocks. Moreover, fore-
casts conditional on a specific path of a variable or set of variables may be considered. 
These tools are discussed in sections 8.2, 8.3 and 8.4, respectively.
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8.1 Impulse Response Analysis

In the reduced form VAR model (6.5) impulses, innovations or shocks enter through 
the residual vector ut 5 (u1t, . . ., uKt)r. A non- zero component of ut corresponds to an 
equivalent change in the associated left- hand side variable which in turn will induce 
further changes in the other variables of the system in the next periods. The marginal 
effect of a single non- zero element in ut can be studied conveniently by inverting the VAR 
representation and considering the corresponding moving average (MA) representation. 
Ignoring deterministic terms because they are not important for impulse response analy-
sis gives

 yt 5 A(L)21ut 5 F(L)ut 5 a
`

j50
Fjut2 j, (6.23)

where F(L) 5 g`

j50FjL 
j 5 A(L)21. The (K 3 K)  coefficient matrices Fj are precisely 

those given in (6.19). The marginal response of yn, t1 j to a unit impulse umt is given by 
the (n, m)th elements of the matrices Fj, viewed as a function of j. Hence, the elements 
of Fj represent responses to ut innovations. Because the ut are just the 1- step forecast 
errors, these impulse responses are sometimes called forecast error impulse responses 
(Lütkepohl, 2005, Section 2.3.2) and the corresponding MA representation is called 
Wold MA representation.

The existence of the representation (6.23) is ensured if the VAR process is stable and, 
hence, yt consists of stationary (I(0)) variables. In that case Fj S 0 as j S ` and the 
effect of an impulse is transitory. If yt has I(1)  components, the Wold MA representation 
(6.23) does not exist. However, for any finite j, Fj can be computed as in the stationary 
case, using the formula (6.19). Thus, impulse responses can also be computed for I(1)  
processes. For such processes the marginal effects of a single shock may lead to perma-
nent changes in some or all of the variables.

Because the residual covariance matrix Su is generally not diagonal, the components 
of ut may be contemporaneously correlated. Consequently, the ujt shocks are not likely to 
occur in isolation in practice. Therefore tracing such shocks may not reflect what actu-
ally happens in the system if a shock hits. In other words, forecast error shocks may not 
be the right ones to consider if one is interested in understanding the interactions within 
the system under consideration. Therefore researchers typically try to determine struc-
tural shocks and trace their effects. A main task in structural VAR analysis is in fact the 
specification of the shocks of interest.

If an identified structural form such as (6.8) is available, the corresponding residuals 
are the structural shocks. For a stationary process their corresponding impulse responses 
can again be obtained by inverting the VAR representation,

 yt 5 (A 2 A*1 L 2 c2 A*p L 
p)21Bvt 5 a

`

j50
FjA

21Bvt2 j 5 a
`

j50
Yjvt2 j, (6.24)

where the Yj 5 FjA
21B contain the structural impulse responses. The latter formulae can 

also be used for computing structural impulse responses for I(1)  processes even if the 
representation (6.24) does not exist.
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Estimation of impulse responses is straightforward by substituting estimated reduced 
form or structural form parameters in the formulae for computing them. Suppose the 
structural form VAR parameters are collected in the vector a and denote its estimator by 
â. Moreover, let y be the vector of impulse response coefficients of interest. This vector 
is a (non- linear) function of a, y 5 y(a) , which can be estimated as ŷ 5 y(â) . Using 
the delta method, it is easy to see that ŷ 5 y(â)  is asymptotically normal if â has this 
property. More precisely,

 "T(â 2 a) Sd N (0,Sâ)

implies

 "T(ŷ 2 y) Sd N (0,Sŷ
) , (6.25)

where

 Sŷ 5
0y
0ar

Sâ

0yr
0a

,

provided the matrix of partial derivatives 0y/0ar is such that none of the variances is 
zero and, in particular, 0y/0ar 2 0. If 0y/0ar does not have full row rank, the asymp-
totic covariance matrix Sŷ is singular. This problem will arise at specific points in the 
parameter space in the present situation because the function y(a)  consists of sums 
of products of elements of a. Also, Sâ is generally singular if yt is I(1) , which in turn 
may imply singularity of Sŷ even if 0y/0ar has full row rank. In the present case, both 
problems may occur jointly. A singular asymptotic covariance matrix may give rise to 
misleading inference for impulse responses. For further discussion see Benkwitz et al. 
(2000).

Even in those parts of the parameter space where standard asymptotic theory works, 
it is known that the actual small sample distributions of impulse responses may be quite 
different from their asymptotic counterparts. In particular, the accuracy of the confi-
dence intervals tends to be low for large- dimensional VARs at longer horizons if the data 
are highly persistent, that is, if the process has roots close to the unit circle (see Kilian and 
Chang, 2000). Therefore attempts have been made to use local- to- unity asymptotics for 
improving inference in this situation. Earlier attempts in this context are Stock (1991), 
Wright (2000) and Gospodinov (2004), and more recent articles using that approach are 
Pesavento and Rossi (2006) and Mikusheva (2012).

In practice, bootstrap methods are often used in applied work to construct impulse 
response confidence intervals (for example, Kilian, 1998; Benkwitz et al., 2001). 
Although they have the advantage that complicated analytical expressions of the asymp-
totic variances are not needed, it is not clear that they lead to substantially improved 
inference. In particular, they are also justified by asymptotic theory. In general the boot-
strap does not overcome the problems due to a singularity in the asymptotic distribution. 
Consequently bootstrap confidence intervals may have a coverage which does not cor-
respond to the nominal level and may, hence, be unreliable (see Benkwitz et al., 2000). 
Using subset VAR techniques to impose as many zero restrictions on the parameters as 
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possible and estimating only the remaining non- zero parameters offers a possible solu-
tion to this problem.

Bayesian methods provide another possible solution (for example Sims and Zha, 
1999). If an a posteriori distribution is available for â, it can be used to simulate the 
distribution of ŷ 5 y(â)  using standard Bayesian simulation techniques. That distri-
bution can then be used for setting up confidence intervals or for inference on y. As 
Bayesian inference does not rely on asymptotic arguments, the singularity problem is 
not relevant. This does not mean that Bayesian estimation is necessarily more reliable. It 
requires extensive computations and is based on distributional assumptions which may 
be questionable.

8.2 Forecast Error Variance Decompositions

As mentioned earlier, forecast error variance decompositions are another tool for 
 investigating the impacts of shocks in VAR models. In terms of the structural residuals 
the h- step forecast error (6.18) can be represented as

 yT1h 2 yT1h 0T 5 Y0vT1h 1 Y1vT1h21 1 c1 Yh21vT11.

Using Sv 5 IK, the forecast error variance of the kth component of yT1h can be shown 
to be

 s2
k (h) 5 a

h21

j50

(y2
k1, j 1 c1 y2

kK, j) 5 a
K

j51

(y2
kj, 0 1 c1 y2

kj, h21) ,

where ynm, j denotes the (n,m)th element of Yj. The quantity (y2
kj, 0 1 c1 y2

kj, h21)  
 represents the contribution of the jth shock to the h- step forecast error variance of 
variable k. In practice, the relative contributions (y2

kj, 0 1 c1 y2
kj, h21) /s2

k (h) are often 
reported and interpreted for various variables and forecast horizons. A meaningful inter-
pretation of these quantities requires that the shocks considered in the decomposition are 
economically meaningful.

The quantities of interest here can again be estimated easily by replacing unknown 
parameters by their estimators. Inference is complicated by the fact, however, that 
the relative variance shares may be zero or 1 and, hence, may assume boundary 
values.  In  such cases both classical asymptotic as well as bootstrap methods have 
problems.

8.3 Historical Decomposition of Time Series

Another way of looking at the contributions of the structural shocks to the observed 
series is opened up by decomposing the series as proposed by Burbidge and Harrison 
(1985). Neglecting deterministic terms and considering the structural MA representation 
(6.24), the jth variable can be represented as

 yjt 5 a
`

i50

(yj1,iv1,t2 i 1 c1 yjK,ivK,t2 i) ,
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where yjk, i is the (j, k)th element of the structural MA matrix Yi, as before. Thus,

 y(k)
jt 5 a

`

i50
yjk, i vk, t2 i

is the contribution of the kth structural shock to the jth variable yjt. Ideally one 
would like to plot the y(k)

jt  for k 5 1,. . ., K, throughout the sample period, that is, for 
t 5 1, . . ., T, and interpret the relative contributions of the different structural shocks to 
the jth variable.

In practice, such a historical decomposition is, of course, not feasible because the 
 structural shocks are not available. However, we can estimate the shocks associated 
with the sample period and use an estimated historical decomposition by noting that by 
 successive substitution, the VAR process (6.5) can be written as

 yt 5 a
t21

i50
Fiut2 i 1 A(t)

1 y0 1 c1 A(t)
p y2p11

 5 a
t21

i50
Yivt2 i 1 A(t)

1 y0 1 c1 A(t)
p y2p11, (6.26)

where the Fi and Yi are the MA coefficient matrices defined earlier and the A(t)
i  are such 

that [A(t)
1 , . . ., A(t)

p ] consists of the first K  rows of the (pK 3 pK)  matrix At, where

 A 5 ≥A1 . . . Ap21 Ap

IK 0 0
f (

0 IK 0

¥
(see Lütkepohl, 2005, Section 2.1). Hence, the A(t)

i  go to zero for stationary VARs when t 
becomes large so that the contribution of the initial state becomes negligible for station-
ary processes as t S `. On the other hand, for I(1)  processes the contribution of the 
initial values y0, . . .,y2p11 will remain important. In any case, yjt may be decomposed as

 y(k)
jt 5 a

t21

i50
yjk, ivk, t2 i 1 a(t)

j1 y0 1 c1 a(t)
jp y2p11,

where yjk, i is the ( j, k)th element of Yi and a(t)
ji  is the jth row of A(t)

i . The series y(k)
jt  repre-

sents the contribution of the kth structural shock to the jth component series of yt, given 
y0, . . ., y2p11. In practice all unknown parameters have to be replaced by estimators. The 
corresponding series ŷ(k)

jt , k 5 1,. . ., K, represent a historical decomposition of yjt. They 
are typically plotted to assess the contributions of the structural shocks to the jth series. 
Obviously, one may start the decomposition at any point in the sample and not necessar-
ily at t 5 0. In fact, for t close to the starting point of the decomposition the initial values 
may have a substantial impact even for stationary processes. So one may only want to 
consider the decomposition for periods some distance away from the starting point.
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8.4 Analysis of Forecast Scenarios

SVAR models have also been used for analysing different forecast scenarios or con-
ditional forecasts given restrictions for the future values of some of the variables. For 
example, in monetary policy analysis one may be interested in knowing the future devel-
opment of the system under consideration for a given path of the interest rate or if the 
interest rate remains within a given range. Clearly, in a model where all variables are 
endogenous, fixing the future values of one or more variables may be problematic and 
one has to evaluate carefully how far the model can be stretched without being invali-
dated. In other words, SVAR models cannot be expected to reflect the changes induced 
in the future paths of the variables for arbitrary forecast scenarios (for applications see, 
for example, Waggoner and Zha, 1999; Baumeister and Kilian, 2012).

For describing the approach, a SVAR representation similar to (6.26) is particularly 
suitable,

 yT1h 5 a
h21

i50
YivT1h2 i 1 A(h)

1 yT 1 c1 A(h)
p yT2p11, h 5 1,2, . . ., (6.27)

where deterministic terms are again ignored for simplicity and all symbols are defined as 
in (6.26). The standard reduced form forecast yT1h 0T discussed in section 6.1 is obtained 
from this expression by replacing all structural residuals in the first term on the right- 
hand side by zero. A forecast scenario different from this baseline forecast may be 
obtained by assigning other values to the structural shocks. For instance, a scenario 
where the jth variable has future values y*j, T1h for h 5 1,. . ., H, amounts to choosing 
structural shocks v*T1h, h 5 1, . . ., H, such that

 a
h21

i50
a

K

k51
yjk, iv*k, T1h2 i 5 y*j, T1h 2 a(h)

j1 yT 2 c2 a(h)
jp yT2p11 h 5 1, . . .,H, (6.28)

for periods T 1 1, . . ., T 1 H or, more generally in matrix notation,

 RHv*T, T1H 5 rH, (6.29)

where vT, T1H 5 (vrT11, . . .,vrT1H)r is a (KH 3 1)  vector of stacked future structural 
shocks, RH is a suitable (Q 3 KH)  dimensional restriction matrix representing the left- 
hand side relations in (6.28) with Q # KH and rH is a (Q 3 1)  vector containing the 
right- hand side of (6.28). The forecasts conditional on the v*T1h shocks are then computed 
as

 ycond
T1h 0T 5 a

h21

i50
Yiv*T1h2 i 1 A(h)

1 yT 1 c1 A(h)
p yT2p11, h 5 1,. . .,H. (6.30)

For concreteness consider, for instance, the case of a B- model with lower- 
triangular initial effects matrix B 5 Y0. In that case, if the path of the first variable 
is pre- specified as y*1, T1h, h 5 1,. . . ,H, this amounts to choosing the first residual as 
v*1, T1h 5 y*1, T1h 2 a(1)

11 ycond
T1h21 0T 2 c2 a(1)

1p ycond
T1h2p 0T, h 5 1,. . ., H. In general, the values 
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for the v*T1hs will not be uniquely determined by the restrictions. In that case Doan et al. 
(1984) suggest using

 v*T, T1h 5 RrH(RHRr ) 21
H rH

which is the least squares solution obtained by minimizing gH
h51vrT1hvT1h 5 vrT, T1hvT, T1h 

subject to the restrictions (6.29).
Obviously, the conditional forecast ycond

T1h 0T differs from the unconditional forecast 
yT1h 0T of section 6.1 by the first term on the right- hand side of equation (6.30). Of course, 
other forecast scenarios may be of interest. For example, one may not want to condi-
tion on a particular path of a variable but on its values being in a given range. Such a 
scenario can be investigated by using the above formulae for computing forecast ranges 
accordingly.

For practical purposes the unknown parameters have to be replaced by estimates, as 
usual. Waggoner and Zha (1999) present a Bayesian method for taking into account the 
related estimation uncertainty in that case.

A critical question in the context of evaluating forecast scenarios in the context of 
SVAR models is whether such models are suitable for that purpose or whether they 
are stretched too much by restricting the future developments of some variables. The 
problem here is that all variables are regarded as endogenous and, hence, their values 
should be generated endogenously by the model and not be forced upon them exog-
enously. Of course, there could be cases where one or more of the variables are really 
exogenous and not affected by feedback relations within the system under considera-
tion. In such cases a conditional analysis as described in the foregoing is plausible. In 
other cases the users should be cautious in interpreting the results and carefully evaluate 
whether the model can be expected to be informative about the questions of interest.

9 CONCLUSIONS AND EXTENSIONS

This chapter reviews VAR analysis. Specification, estimation, forecasting, causality and 
structural analysis are discussed. Finite order VAR models are popular for economic 
analysis because they are easy to use. There are several software products which can be 
used in performing a VAR analysis (see, for example, PcGive (Doornik and Hendry, 
1997), EViews (EViews, 2000) and JMulTi (Krätzig, 2004)).

In many situations of practical interest the VAR models discussed in this chapter are 
too limited, however. For example, the assumption that the VAR order is finite is rather 
restrictive because theoretically omitted variables or linear transformations of the vari-
ables may lead to infinite order VAR processes. Hence, it may be appealing to extend 
the model class to infinite order VAR processes. Such an extension may be achieved by 
considering VAR models with MA error terms or by studying the implications of fitting 
approximate finite order VAR models to series which are generated by infinite order 
processes. This issue is dealt with in Lewis and Reinsel (1985), Lütkepohl and Saikkonen 
(1997), Inoue and Kilian (2002b) and Lütkepohl (2005, Part IV). An authoritative dis-
cussion of the theory of VARMA models is also available in Hannan and Deistler (1988) 
and a recent survey of the related literature is given by Lütkepohl (2006a).

HASHIMZADE 9780857931016 CHS. 6-13 (M3110).indd   160HASHIMZADE 9780857931016 CHS. 6-13 (M3110).indd   160 01/07/2013   09:5901/07/2013   09:59



Vector autoregressive models   161

As already mentioned in the introduction, if some variables are integrated and perhaps 
cointegrated, vector error correction models are suitable tools for modelling the cointe-
gration relations in detail. Such models are presented in Chapter 7, ‘Cointegration and 
error correction’. A possible advantage of the levels VAR models considered in the 
present chapter is that they are robust to cointegration of unknown form. They can 
be used even if the number of cointegration relations is unknown, not to speak of the 
precise cointegration relations. Of course, statistical tools are available for analysing the 
number and type of cointegration relations. However, such pretesting procedures have 
their limitations as well, in particular if some roots are only near unity, as pointed out, 
for instance, by Elliott (1998).

Other possible extensions are the inclusion of non- linear components (for example, 
Granger, 2001; Teräsvirta et al., 2010) or allowing the VAR coefficients to be time- 
varying (for example, Primiceri, 2005). Moreover, seasonal macroeconomic data are 
now available for many countries. Hence, accounting specifically for seasonal fluctua-
tions may be necessary (for example, Ghysels and Osborn, 2001). Furthermore, hetero-
scedasticity or conditional heteroscedasticity in the residuals of VAR models may be 
of importance in practice, in particular, when higher frequency data are considered 
(see Lütkepohl, 2005, Chapter 16 for a textbook treatment and Bauwens et al., 2006 
or Silvennoinen and Teräsvirta, 2009 for recent surveys). For some economic variables 
restricting the order of integration to zero or 1 may be unrealistic. Extensions to higher 
order integration have been considered by Boswijk (2000), Johansen (1997, 2006), and 
others.

NOTE

* Helpful comments by Lutz Kilian are gratefully acknowledged.
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7 Cointegration and error correction
James Davidson

1 THE BACKGROUND

Elementary courses in statistics introduce at an early stage the key assumption of 
‘random sampling’. In more technical language, the data set is assumed to be identically 
and independently distributed (i.i.d.). In this framework a range of simple and elegant 
results can be derived, for example, that the variance of the mean of n observations is 
1/n times the variance of the observations themselves. Given a random sample of n pairs 
(x,y)  with sample correlation coefficient rxy, if at least one of the pair has a Gaussian 
(normal) distribution the existence of a relationship between them is tested by compar-
ing the ‘t- statistic’ rxy/"(1 2 r2

xy) / (n 2 2) with the Student t- distribution with n 2 2 
degrees of freedom. All the inference procedures in classical regression analysis follow 
the same basic approach. The Gaussianity assumption may be dropped by appeal to a 
large sample and the central limit theorem, but independent sampling is strictly needed 
to validate these procedures.

The received theory notwithstanding, often the first data sets that students meet 
in econometrics class are time series for GDP, aggregate consumption, money stock 
and the like – samples that are neither independently nor identically distributed. Such 
disjunctions between theory and practice often sow confusion in the understanding of 
statistical relationships in economics.

One of the first authors to study the problem of inference in time series was G. Udny 
Yule (1926), who reflected in his presidential address to the Royal Statistical Society 
on the high correlation (0.9512) between standardized mortality and the proportion of 
marriages solemnized by the Church of England, recorded in the years 1866 to 1911. It 
is interesting with the benefit of hindsight to read of the difficulties that professional 
statisticians would have – both then and much more recently – with the interpretation 
of such facts. The two series of Yule’s example share a pronounced downward drift 
over the 46 years of the observations. ‘Large goes with large and small with small’, 
which is the classic indicator of a positive correlation. In what sense is this correla-
tion to be regarded as spurious? It is true that both variables are subject to systematic 
variation with the passage of time. However, to be driven by a common factor is a 
perfectly legitimate way of understanding the phenomenon of correlation between 
variables. This fact alone does not explain why we regard this particular correlation 
as spurious.

The true explanation requires us to distinguish between correlation as a descrip-
tion of data, and correlation as a theoretical construct; an expected association 
as a feature of a fixed joint distribution of random variables. Our problem arises 
when this fixed joint distribution does not exist. The examples Yule analyses in his 
paper include integrated processes, formed by a cumulation of independent random 
shocks. As is well known, such processes – often called random walks – can ‘wander 
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 anywhere’, having no central tendency. Short realizations often give the appearance 
of deterministic- seeming time trends. Averages of repeated drawings from such proc-
esses do not converge to fixed limits as the sample size increases; in other words, they 
do not obey the law of large numbers. The sample variances of such processes, and 
likewise covariances, diverge to infinity. While correlation coefficients are normalized 
to lie between 21 and 11, the correlations of pairs of mutually independent random 
walk  processes do not converge to zero, but remain random variables even asymptoti-
cally. As famously demonstrated in a set of computer simulations by Granger and 
Newbold (1974), independent random walks exhibit ‘significant’ correlations, such 
that the t- statistic defined above diverges to infinity as n increases. Additional data do 
not serve to resolve a spurious correlation but, rather, to reinforce the false conclu-
sion. It follows that the conventional equating of sample and theoretical correlations 
in an estimation exercise has no validity.

These phenomena presented a dilemma for econometricians in the middle years of the 
twentieth century, as they attempted to model macroeconomic and financial data sets 
that are well described as the integrals (cumulations) of stationary series. One approach 
was to model the relationships between the differences (the changes from period to 
period) but clearly a great deal of information about relationships between series is lost 
in such transformations. It is easy to construct examples where the correlation between 
the differences of time series have signs opposite to that between the levels. A second 
approach is to treat trends as deterministic, and remove them by regression on dummy 
(straight- line) trend variables. Although the relations between fitted trend components 
can be discounted as spurious (one straight line always ‘explains’ another) the deviations 
of economic series from linear trend often exhibit random walk characteristics in prac-
tice, so the problem is not resolved.

It was in the context of this unsatisfactory hiatus in the progress of time series econo-
metrics, in the course of the 1970s, that Clive Granger initiated his researches into the 
modelling of economic trends. The culmination of this research was the key idea that 
relationships between integrated time series must be understood as a sharing of common 
trends; not correlation, but cointegration. The story of these discoveries, well told in 
an article by David Hendry (2004) celebrating Granger’s 2003 Nobel Prize, provides a 
fascinating mix of debates and disagreements, false trails, penetrating intuitions and the 
insightful re- interpretation of applied studies. Hendry’s (1980) inaugural lecture at LSE 
is often cited as an accessible exposition of the issues, although the term ‘cointegration’ 
had yet to be coined at that date.

The complete story of the cointegration concept has to acknowledge the indispensa-
ble contributions of two other researchers, Peter C.B. Phillips at Yale, who developed 
the essential links with mathematical stochastic process theory that were needed for a 
theory of inference in non- stationary data, and Søren Johansen in Copenhagen, who 
developed a rigorous theory of vector autoregressions in non- stationary data. The net 
result of these endeavours is that econometrics can deal effectively with time series data, 
whether or not the ‘identically and independently distributed’ sampling paradigm has 
any  practical relevance.
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2 A LINEAR MODEL OF N  ON- STATIONARY DATA

To fix ideas, consider first the simplest multiple time series model, the first- order VAR. 
Let xt (m 3 1) denote a vector of variables evolving according to the equation

 xt 5 a0 1 Axt21 1 et (7.1)

where A is an m 3 m matrix of coefficients and et (m 3 1) is i.i.d. with mean vector 0 
and variance matrix S. Suppose that this process has been running for a large number of 
periods that we can treat as effectively infinite. Then the equation has the solution

 xt 5 a`

j50
Aj(a0 1 et2 j)

where Aj 5 AA. . .A (the j- fold product) and A0 5 Im, the identity matrix of order m.
Write the Jordan canonical form of the matrix as A 5 PMP21, where if the eigen-

values are all distinct, M is a diagonal matrix with the eigenvalues of A (either real or 
complex valued) on the diagonal.1 Provided the eigenvalues all have modulus strictly less 
than unity, it is easy to see that Aj 5 PM jP21 S 0 and g`

j50Aj 5 (Im 2 A) 21 , `. In 
this case, we note that xt has a distribution independent of t, with mean (Im 2 A)21a0 and 
variance matrix Sx 5 g`

j50AjS(Aj)r.2 We say that the process is stationary.
If A has one or more eigenvalues equal to 1, on the other hand, Aj does not converge 

to zero and Im 2 A is singular, by construction. In this case, the assumption that it has 
been running for an infinite number of periods is not compatible with a well- defined 
distribution for xt; such a process has infinite magnitude with probability 1. We must 
instead postulate a finite initial condition x0 and consider the cases t 5 1, 2, 3,. . . to see 
what happens. Clearly, this process is non- stationary, and its variance is increasing with 
time. A particularly simple case is A 5 Im, where all m eigenvalues are equal to 1, and

 xt 5 x0 1 ta0 1 a t21

j50
et2 j.  (7.2)

This is a vector of so- called random walks, with drifts a0. Note how the equation inter-
cepts no longer measure a unique location, or central tendency of the distribution, but 
the rate of divergence of the central tendency with time. The variance matrix of the 
process, treating x0 as fixed, is tS. Even with a0 5 0 the average distance from the start-
ing point, as measured by the standard deviation of the coordinates, increases like "t.

More generally, we may have some of the eigenvalues of the system equal to unity, 
and others in the stable range. It is convenient in this case to recast the model in the form 
in which the singular matrix appears explicitly. Write P 5 A 2 Im and then (7.1) can be 
written

 Dxt 5 a0 1 Pxt21 1 et  (7.3)

where Dxt 5 xt 2 xt21.3 Note that the eigenvalues of P are the diagonal elements of 
M 2 Im and, hence, unit eigenvalues of A are zero eigenvalues of P. With one or more 
zero eigenvalues, P is singular, say with rank s , m, and note that the case s 5 0 implies 
P 5 0 and hence corresponds to the random walk model (7.2).4
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An m 3 m matrix with rank s always has a representation P 5 abr where a and b are 
m 3 s matrices with full rank s. This decomposition is not of course unique, since we can 
also write P 5 a*b*r where a* 5 aD21 and b* 5 bD r for any s 3 s non- singular matrix 
D. However. the columns of b must always span the same space.5 It is also possible that 
known restrictions on the model could allow a and b to be identified uniquely, an issue 
that we discuss further in section 6.

Consider the relationship between the processes xt and Dxt appearing in (7.3). 
Differencing is the inverse of the operation of integrating (that is, cumulating) a series. 
If x0 5 0 and xt 5 y1 1 y2 1 c1 yt, then Dxt 5 yt for t $ 1. We define the notion of 
the ‘order of integration’ of a series, denoted d, such that if xt has order of integration 
d, then Dxt has order of integration d 2 1. A convenient shorthand for this is to write 
xt| I(d). If we (arbitrarily) assign d 5 0 to the case where the process is stationary with 
finite variance, then a random walk of the type shown in (7.2) must be assigned d 5 1. 
Differencing an I(0) process yields the case I(21), again a stationary process but this one 
is also stationary after integrating; hence this case, sometimes called an over- differenced 
process, is distinct from I(0) .

The interesting feature of (7.3) is that processes with different orders of integration 
feature on the two sides of the equation. It is not too difficult to deduce from the defini-
tions that I(d) 1 I(d 2 p) | I(d)  for any p . 0, and also that et| I(0) . Writing (7.3) in 
the form

 Dxt 5 a0 1 abrxt21 1 et  (7.4)

we see, given that a is a full- rank matrix, that brxt must be I(d 2 1) when xt| I(d). 
Taking a certain linear combination of the variables in the model results in a process of 
lower integration order than that of the variables themselves. While we have not shown 
by this argument that d 5 1 in the ‘reduced rank VAR’ (7.4), this is intuitively clear from 
considering the limiting cases s 5 m and s 5 0, the stationary and random walk models 
respectively.

With no loss of generality the intercept may be decomposed as a0 5 d 2 am where m is 
s 3 1. Then the model can be further rearranged as

 Dxt 5 d 1 azt21 1 et (7.5)

where zt is the s- vector of cointegrating residuals, defined as

 zt 5 brxt 2 m (s 3 1). (7.6)

The elements of a are often referred to as the ‘loadings coefficients’ or ‘error correction 
coefficients’. Pre- multiplying (7.5) by br and rearranging yields the VAR(1) representa-
tion of the residuals,

 zt 5 brd 1 (Is 1 bra)zt21 1 bret.  (7.7)

This relation defines a modified form of stability condition. If the matrix Is 1 bra has all 
its eigenvalues in the stable region, then the series possess s stationary linear combina-
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tions. If d 2 0 the system contains a drift, the variables of the system having a persistent 
tendency to either rise or fall depending on the signs of the elements, although if brd 5 0 
the cointegrating relations cancel the drift and E(zt) 5 0. On the other hand, if d 5 0 
the processes are drift- neutral, their variances increasing with time but as likely to fall 
as to rise in any period. Such a process is said to exhibit a pure stochastic trend. Take 
care to note that m does not contribute to the drift so that a0 5 0 is not necessary for 
drift- neutrality.

We have now derived a simple form of the celebrated Granger representation theorem, 
which says, in essentials, the following. A vector autoregression containing unit roots 
generates non- stationary processes, but if the number of these roots is smaller than the 
dimension of the system there must at the same time exist a set of s , m stationary linear 
combinations of the variables, forming the so- called cointegrating relations: s is called the 
cointegrating rank of the system. A necessary feature of the system is that the cointegrat-
ing residuals Granger- cause6 future changes of the process, so that the model can always 
be cast in the so- called error- correction form. The variables of the model are said to 
exhibit m 2 s common trends. The variables evolve along non- stationary paths, but these 
paths are tied together by the cointegrating relations. The error correction form has a 
very natural interpretation, that to maintain the common trends through time requires 
that changes in the variables must respond to deviations from the cointegrating relations 
measured by zt. For this to happen requires the elements of a to have appropriate signs 
and magnitudes to ensure stable adjustment, according to (7.7). This feature is of course 
implicit in the requirement that the non- unit eigenvalues of A fall in the stable region.

3 THE GENERAL LINEAR CASE

We next consider   the standard generalization of the foregoing simple case. An m- 
 dimensional linear process is defined as a process whose non- deterministic component 
(after subtracting intercepts, trends, and so on) has the representation

 yt 5 C(L)et (7.8)

where7 C(z) 5g`

j50Cj zj (m 3 m) and {et,2` , t , `} is an i.i.d. sequence of random 
m-vectors with mean 0 and variance S. This is sometimes called the Wold representation 
of the process (Wold, 1938) although remember that Wold’s representation exists for any 
stationary process if the innovation process is white noise (that is, stationary and uncor-
related). The definition of a linear process specifies independence of the innovations, a 
stronger condition than white noise. We assume C0 5 Im, although this entails no loss of 
generality if S is arbitrary, and could be replaced by the requirement S 5 Im.

If (a) g`

j50 7Cj 7 , `8 and (b) g`

j50Cj 2 0, we call the process I(0). Note that (a) is a 
stronger condition than is required for stationarity. Define

 Gk 5 E(yty rt1k) 5a`

j50
CjSC rj1k

for k . 0, where G2k 5 G rk. Then, writing C  as shorthand for C(1) 5 g`

j50Cj, note that 
(a) is sufficient for W , ` where
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 W 5a`

k52`
Gk 5CSC r.  (7.9)

This matrix is called the ‘long- run variance’ of the process,9 and observe that

 W 5 lim
TS`

1
T

E aaT

t51
ytaT

t51
y rtb.

Thus, the I(0) property embodies the ‘square root rule’, which says that the average vari-
ability of the partial sums grows like the square root of the sample size. Condition (b) 
rules out the case of an over- differenced process. It is easy to verify that if yt is given by 
(7.8), then Dyt is a linear process with coefficients C0, C1 2 C0, C2 2 C1,. . ., and condi-
tion (b) is violated in this case if condition (a) holds.

The significance of these properties is that they suffice to validate the standard 
 asymptotic distribution results, such as the central limit theorem for re- scaled sums 
of the yt. Simple stationarity is not sufficient for this by itself, and over- differencing 
presents an obvious counter- example, featuring W 5 0. We shall appeal to some stronger 
 assumptions on the sequence of coefficients for our present development, in particular (c) 
g`

j50 j 7Cj 7 , `, which we call 1- summability (the ‘1’ referring to the power of j).10 Note 
that 1- summability is equivalent to the condition g`

j50 g`

k5 j11 7Ck 7 , `. Many opera-
tional models in econometrics, in particular stable finite- order vector ARMAmodels, 
satisfy the still stronger condition 7C(z) 7 , ` for 0z 0 # 1 1 d, for some d . 0, implying 
that the coefficients converge to zero at an exponential rate. However, this is not required 
for present purposes.

The particular case we consider here is the I(1) linear process xt, such that the Wold 
representation of the differences is

 Dxt 5 C(L)et (7.10)

where conditions (a), (b) and (c) are satisfied in the right- hand side. The key relation in 
this analysis is commonly known as the Beveridge–Nelson (BN) decomposition (Beveridge 
and Nelson, 1981). This is nothing but an easily verified identity for polynomials,

 C(z) 5 C(1) 1 (1 2 z)C*(z)

where C*(z) 5g`

j50C*j zj and C*j 5 2g`

k5 j11Ck. Thus, we can write,

 Dxt 5 Cet 1 zt 2 zt21.

where zt 5 C*(L)et is a I(0) process, by 1- summability. Integrating11 this sequence from 
an initial value x0,12 which we must assume finite, yields

 xt 2 x0 5 Cwt 1 zt (7.11)

where wt 5g t
s51es is a random walk process. Thus, we are able to decompose a linear 

process rather straightforwardly into stationary and non-stationary components. Since 
the first right- hand side term is Op (t1/2)  and the second one is Op (1) ,13 equation (7.11) 
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can be used to verify directly the result that was previously determined by substitution 
in (7.9), that is,

 lim
TS`

1
T

E (xT 2 x0) (xT 2 x0)r5CSC r 5 W. (7.12)

Now, consider the case where C , and hence W, is singular with rank m 2 s. There must 
exist in this case a matrix b (m 3 s) of rank s such that brC 5 0, and it follows immedi-
ately that

 zt 5 br (xt 2 x0) 5 brzt

is an I(0) process. In other words, deficient rank of the matrix C implies the existence of 
cointegration in the non- stationary series xt. In the extreme case, C 5 0 implies that xt is 
stationary, since the factor D cancels in (7.10).

Next, consider an autoregressive representation of the process. Suppose

 A(L) (xt 2 x0) 5 et.

Writing A(z) 5  A1 (z) (1 2 z)  shows that the Wold polynomial C(z)  must have the rep-
resentation A1 (z) 21.14 Substituting the BN decomposition A(z) 5 (1 2 z)A*(z) 1 A 
where A 5 A(1)  yields

 et 5 A*(L)Dxt 1 A(xt 2 x0) . (7.13)

For this equation to balance requires A(xt 2 x0) | I(0), so there must exist a decomposi-
tion of the form A 5 2abr for some a (m 3 s)  of rank s. Therefore, note from (7.13) 
and (7.10) that

 (1 2 z)Im 5 C(z)A(z)

 5 C(z)A*(z) (1 2 z)2C(z)abr

 5 C(z)B(z) (1 2 z) 2 zC(z)abr (7.14)

where B(z) 5A*(z) 2 abr. Evaluating (7.14) at the point z 5 1 yields Ca 5 0, since b has 
full rank, and hence CA 5 0 and also note that AC 52abrC 5 0. The matrices A and 
C  span orthogonal spaces, respectively the cointegrating space of dimension s and the 
space of dimension m 2 s containing the common trends, through (7.11).

Evaluating (7.14) at the point z 5 0, noting C0 5 Im, also yields B0 5 Im. Accordingly, 
defining G(z)  by B(z) 5 Im 2 zG(z) , the error correction form of the system is obtained 
from (7.13), after some rearrangement, as

 Dxt 5 G(L)Dxt21 1 azt21 1 et (7.15)

where zt 5 brxt 2 m and m 5  brx0. This is the generalization of (7.5), although it is also a 
simplification since the possibility of drift terms has been excluded here. (To re- introduce 
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these would be a useful exercise for the reader.) Note that an intercept appears in the 
cointegrating relation, in general, unless the data are explicitly initialized at zero.

This system has the feature that Dxt is explained only by lagged variables, whereas 
the macroeconometrics literature generally allows for the existence of contemporaneous 
interactions between variables, which might either be truly simultaneous relations, or 
involve some kind of causal ordering within the period of observation. The extension to 
cover this case is a simple matter of treating (7.15) as a solved form. Writing

 B0Dxt 5 B1 (L)Dxt21 1 rzt21 1 ut, (7.16)

where B0 is a square non- singular matrix, we then recover (7.15) with the substitutions 
G(L) 5 B21

0 B1 (L) , a 5 B21
0 r and et 5 B21

0 ut, so that E(utu rt) 5 B0SB r0. We call (7.16) a 
structural form, where B0 5 Im is a permissible case but not a requisite.

While (7.15) is perhaps the commonest representation of a cointegrated system in the 
applied literature, the Park–Phillips triangular form (see Park and Phillips, 1988, 1989; 
Phillips and Loretan, 1991; Phillips, 1991 inter alia) has considerable virtues of simplicity 
and ease of manipulation. Partitioning the vector of variables as xt 5 (x r1t,x r2t)r where x1t 
is s 3 1 and x2t (m 2 s) 3 1, write15

 x1t 5 Bx2t 1 v1t (7.17a)

 Dx2t 5 v2t (7.18b)

where v1t and v2t are constrained solely to be I(0) stochastic processes. If we form the 
partition

 b 5 cb1

b2
d s 3 s

(m 2 s) 3 s

after re- ordering variables as necessary to ensure b1 has full rank, the first equation 
shows the cointegrating relations expressed as a reduced form with B 5 2b21

1 b2. This 
matrix is accordingly unique, given this partition of the variables.

The second block of equations is merely the relevant block from the Wold representa-
tion (7.10). Writing the system as A(L)xt 5 vt where

 A(L) 5 cIs 2B
0 DIm2s

d ,
the Wold form is obtained as Dxt 5 DA(L) 21vt or, in partitioned form,

 cDx1t

Dx2t
d 5 D cIs D21B

0 D21Im2s
d cv1t

v2t
d 5 cDv1t 1 Bv2t

v2t
d .

This simple case gives a little insight into the mechanism of cointegration. The m 2 s 
common trends are supplied as the integrals of v2t, whereas v1t contributes only the noise 
component in the cointegrating relations. We discuss below how the triangular form can 
be the basis for a useful approach to estimation and inference.
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Let’s summarize the conclusions of this section. We have shown that an arbitrary 
linear model, that need not have a finite- order VAR representation but has 1- summable 
coefficients in its Wold representation, satisfies the Granger representation theorem. In 
other words, if the matrix C  has reduced rank m 2 s in the representation Dxt 5 C(L)et, 
then the variables are cointegrated with rank s and the system admits an error- correction 
representation. Note that the choice of a first- order lag in (7.15) is completely arbitrary. 
It can be set to any finite value, p, by a suitable redefinition of the polynomial G(L) . It is 
customary in the literature to let p match the order of the VAR when this is finite, such 
that G(L)  is a polynomial of order p 2 1.

4 INTERPRETING COINTEGRATION

In his earliest contributions on the topic of   cointegration, Granger (1981) was keen to 
emphasize his debt to the macroeconometric research of the time, in particular Sargan 
(1964) on wages and prices and Davidson et al. (1978) on consumption and income. 
These authors had explicitly built dynamic equations for non- stationary series that cor-
related logarithmic changes with the logarithms of ‘long- run’ ratios, which were now 
to be recognized as cointegrating relations. In both the cited cases the relations happily 
involved no unknown parameters so the resulting regressions were easily fitted by ordi-
nary least squares. The technical challenges involved for estimation when zt in (7.15) 
involves unknown parameters (of which more later) did not have to be faced.

However, these models were somewhat casual in their approach to the dynamics of 
economic behaviour. It was assumed, first, that there existed identifiable economic rela-
tions that described behaviour in a ‘steady state’, abstracting from business cycle fluctua-
tions but possibly allowing for a secular drift; and second, that these relations are not 
expected to hold period- to- period (nor of course are they observed to) due to unspecified 
dynamic effects about which economic theory is taken to be mute. There was a simple 
presumption that in a dynamic setting agents would formulate plans (say, for the con-
sumption/savings balance as income changes) that combined ‘rule of thumb’ responses 
to changes in driving variables represented by the G(L)  coefficients in (7.15) with 
compensating adjustments, represented by the a coefficients, to achieve a proportion 
of the required adjustment towards the long- run (steady state) relation in each period. 
The actual behavioural mechanisms were treated as beyond the reach of economics to 
explain, and hence this modelling approach is often spoken of as ad hoc, with a mildly 
pejorative tone.

We should not overlook that the error correction form is only nominally dynamic, 
and subsumes instantaneous adjustment. The static equation yt 5 bxt 1 et, where et is an 
independent disturbance, can of course be written equivalently as

 Dyt 5 bDxt 1 a (yt21 2 bxt21) 1 et

with a 5 21. However, empirical work with such equations invariably shows a closer 
to zero than to 21, and also no match between the ‘dynamic’ and ‘long run’ coeffi-
cients. These observed adjustment dynamics called for some explanation, and a number 
of authors have attempted to lay more rigorous economic foundations for the ECM 
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scheme, notably Salmon (1982), Nickell (1985) and Campbell and Shiller (1988). Natural 
precursors are the partial adjustment model of Lovell (1961) and the habit persistence 
model of Brown (1952). Assuming that agents face costs associated with speedy adjust-
ment (physical building costs in the case of inventory investment, psychological costs of 
changing behaviour in the case of decisions by consumers) it is straightforward to formu-
late a quadratic loss function for a decision variable yt involving both the costs of change 
yt 2 yt21, and the costs of deviation from equilibrium yt 2 y*t , where y*t  is the function of 
forcing variables defining equilibrium. Optimizing with respect to the choice of yt leads 
directly to a plan to set yt to a value intermediate between y*t  and yt21,

 yt 5 lyt21 1 (1 2 l)y*t ,  0 # l # 1

which, after a simple rearrangement, and the addition of a shock representing random 
deviations from the plan, can be cast in the ECM form

 Dyt 5 (1 2 l)Dy*t 1 (1 2 l) (y*t21 2 yt21)1 et

replacing y* in practice by a linear combination of forcing variables.
The constraints across these dynamic adjustment coefficients are a consequence of the 

extreme simplicity (or maybe we should say naïveté) of this particular set- up. However, 
the framework is easily elaborated to allow for forward- looking behaviour and multi- 
step dynamic optimization. See Nickell (1985) also Davidson (2000, Section 5.5.4) for 
illustrations. What these examples show is that the solved form of the dynamic adjust-
ment depends not only on the agent’s optimization rule but also on the form of the proc-
esses generating the forcing variables.

Campbell and Shiller (1988) argue that error- correction behaviour can be observed 
even without the existence of adjustment costs, and illustrate their case with the class 
of present value models. Theory has the spread between long and short rates depending 
mechanically on the difference between the former and rational forecasts of the latter; 
but if these forecasts use information not available to the modeller, the spread involves a 
random component that, moreover, must Granger- cause the future changes in the short 
rate. This gives rise to an error correction structure with the spread representing the 
cointegrating residual, but note that this structure does not arise through agents reacting 
to resolve perceived disequilibria, as the classic ECM framework suggests.

Cointegration has been derived in the preceding sections as the attribute of a system of 
dynamic equations. However, many of the models that appear in the applied literature, 
the prototypical examples of Sargan (1964), Davidson et al. (1978), Hendry (1979) and 
many others, are cast as single equations and estimated by least squares. The driving 
variables are assumed to be weakly exogenous within the time frame of observation. 
Weak exogeneity is a technical concept, defined formally in Engle et al. (1982), but it 
can be loosely interpreted to describe a variable that is regarded as given and condition-
ally fixed by agents within the decision period, even though it could be endogenous in 
the wider sense of depending on past values of the variables it drives. A key implication 
of weak exogeneity is that the variable is uncorrelated with the shocks in the regres-
sion model, and hence ordinary least squares is a consistent estimator for the dynamic 
equation.
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Without loss of generality, assume that the equation of interest is the first equation in 
the system, and so partition the variables as xt 5 (x1t, x r2t)r. Further assume, in concert 
with the cited references, that the cointegrating rank is 1. The structural system (7.16) is 
then partitioned as

 c1 b r0,12

b0,21 B0,22
d cDx1t

Dx2t
d

 5 cb1,11 (L) b r1,12 (L)
b1,21(L) B1,22 (L) d cDx1,t21

Dx2,t21
d 1 cr1

r2
d zt21 1 cu1t

u2t
d  (7.18)

where zt 5 brxt 2 m. The noteworthy feature of this set- up is the potential dependence 
of all the variables on zt21. If  b is known then zt can be treated as a datum and there 
is no obstacle to estimating the first equation by least squares, subject to the usual 
weak  exogeneity restrictions on the distribution of x2t, specifically that b0,21 5 0 and 
E(u1tu2t) 5 0. On the other hand, if b is unknown, then it is potentially involved in all the 
equations of the system. Weak exogeneity of x2t in the first equation requires the extra 
condition r2 5 0, so that the error correction effect is wholly focused on the evolution of 
x1t. Under these circumstances, the first equation can be studied in isolation, conditional 
on x2t. Note that b could be estimated by non- linear least squares applied to this equa-
tion. We say more about this estimation question below.

5 ESTIMATING COINTEGRATING RELATIONS

We start the discussion of estimation with the focus  of attention on the matrix b of 
cointegrating coefficients. Immediately, we run into the difficulty that this matrix is not 
in general unique. It is defined merely to span a space of m- vectors having the property 
that any element of the space cointegrates the variables of the model. One approach to 
estimation is to impose normalization restrictions, such as having the columns orthogo-
nal and with unit length. The structural modelling approach, on the other hand, sup-
poses that cointegration is to be explained by the existence of some long- run economic 
relations, and the cointegrating space is relevant because these structural vectors span it, 
in particular. When the cointegrating rank s is greater than 1, however, any linear combi-
nation of the hypothesized structural vectors is also a cointegrating vector. We therefore 
face a problem of identifying the parameters of interest.

Before approaching that more difficult case, assume initially that s 5 1. Then 
b (m 3 1) is unique up to a choice of normalization and, normalizing on x1t in the 
 partition xt 5 (x1t, x r2t)r, with almost no loss of generality,16 we can write the cointegrat-
ing relation as a regression model,

 x1t 5 g rx2t 1 m 1 zt (7.19)

where b5(1, 2gr)r, and it is natural to consider the possibility of OLS estimation. If

 S(g, m) 5aT

t51
(x1t 2 g rx2t 2 m) 2
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it can be shown that S(g, m) 5  Op (T)  for any m, whereas S(g,m) 5 Op (T 2)  at points 
where g 2 g. The proof of consistency of least squares is therefore very direct, and 
(letting hats denote the least squares estimators) ĝ 2 g 5 Op (T21)  by comparison with 
the usual convergence rate of Op (T21/2)  in stationary data. This property is known as 
superconsistency.17 The other features of this regression include R2 S 1 as T S `.

However, notwithstanding these desirable properties, the large- sample distribution 
of T(ĝ 2 g)  is non- standard, and depends critically on the structure of the model. 
Consider the OLS formula in the standard notation ĝ 5 (X rX) 21X ry, the rows of X  
having the form (x2t 2 x2)r for t 5 1,. . . ,T  where x2 is the vector of sample means, and 
y 5 (x11, ...,x1T)r. The problem with cointegrating regression is that the regressors do not 
obey the law of large numbers. It can be shown that

 T(ĝ 2 g) 5 aX rX
T 2 b21X ru

T

 Sd
P21q (7.20)

where Sd  denotes convergence in distribution, and u 5 (z1,. . ., zT)r. P and q, the limits 
in distribution of the normalized sums of squares and products matrices, are in general 
random variables and correlated with each other. Since q typically has a mean different 
from zero, there can be substantial finite sample biases. Similarly, the usual regression 
standard errors do not converge to constants, as in the stationary data analysis, but to 
random elements proportional to the square roots of the diagonal elements of P21. The 
asymptotic distributions of the regression t- ratios are therefore not merely non- standard, 
but depend on nuisance parameters and cannot be tabulated. All these facts are bad news 
for making inferences on cointegrating vectors.

However, there is a favourable special case. Suppose that x2t is strictly exogenous in 
equation (7.19), which means that E(Dx2t2 j zt) 5 0 for 2` , j , `. For this condition to 
be satisfied, note that in (7.18) the parameters b0,21, b1,21 (L)  and r2 will all need to be zero, 
and in addition, E(u1tu r2t) 5 0. In this case, the distribution of T(ĝ 2 g)  is asymptotically 
mixed normal. Under strict exogeneity, X  in (7.20) can be treated as conditionally fixed 
when considering the distribution of u. It can be shown that T(ĝ 2 g)  is asymptotically 
normally distributed under the conditional distribution, holding X  fixed, although its 
variance matrix is a random drawing under the unconditional distribution, hence ‘mixed 
normal’. Further, we can compute t- ratios that (on the null hypothesis) are conditionally 
N(0,1) in the limit. However, since this distribution is the same for any set of condition-
ing variables, the same limit result holds unconditionally. This means that standard 
inference procedures, using tabulations of the standard normal and chi- squared distribu-
tions, are asymptotically valid. The only modification of the usual least squares inference 
procedure that may be necessary, since the residuals are typically autocorrelated, is to 
use a heteroscedasticity and autocorrelation consistent (HAC) estimator for the residual 
variance, such as that derived by Newey and West (1987).18

Unfortunately, strict exogeneity is a very strong assumption in macroeconomic data, 
and this favourable case is the exception to the rule. An alternative approach, while 
maintaining the single- equation framework, is to estimate the dynamic error correction 
model itself by non- linear least squares. This method is analysed by Stock (1987). The 
first equation of (7.18) may be written
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 Dx1t 5 a0 2 b r0,12Dx2t 1 b1,1 (L)rDxt21 1 r1 (x1,t21 2grx2,t21) 1 u1t (7.21)

This equation can be estimated unrestrictedly by least squares, and ĝ recovered by divid-
ing the coefficients of x2,t21 by minus the coefficient of x1,t21. Alternatively, a non- linear 
optimization algorithm may be used. This estimator can be shown to be superconsistent, 
and it is also asymptotically mixed normal (meaning that standard inference applies, as 
above) subject to the weak exogeneity condition detailed following (7.18). In particular, 
in addition to the usual requirements of no simultaneity, the condition r2 5 0 is needed 
to ensure that all the sample information about the cointegrating relation is contained in 
(7.21). Without these conditions, there is once again a failure of mixed normality, and a 
dependence of the limit distributions on nuisance parameters. However, note that these 
conditions are less severe than those required to obtain the equivalent result for the OLS 
estimator of the cointegrating relation itself.

To achieve standard asymptotic inference in arbitrary cases of (7.18), a number of 
proposals have been made to modify the least squares estimator. Saikkonen (1991) and 
Stock and Watson (1993) independently proposed similar procedures. Consider the tri-
angular representation in (7.17), assuming s 5 1 for present purposes. Saikkonen shows 
that the x2t variables can be treated as conditionally fixed in the regression of the first 
block if E(v1tv r2,t2 j) 5 0 for 2` , j , ` where, in this context, v2t 5 Dx2t. However, by 
augmenting the first equation in (7.17) with these observed variables, the same condition 
can be engineered. Substituting from the second block, the ideal set of additional regres-
sors are Dx2,t2 j for 2` , j , `. Whereas this is not a feasible choice, the same asymp-
totic distribution is obtained by running the finite- order regression

 x1t 5 g rx2t 1aKT

j52KT

pjDx2,t2 j 1 m1et (7.22)

where KT increases with T , although at a slower rate. Saikkonen proposes KT 5 o(T1/3) .19 
In this regression, the regressors are ‘as if’ strictly exogenous. The coefficients pj are merely 
projection parameters and their values are generally not of direct interest. The unusual 
(from an econometric modelling point of view) step of including leads as well as lags in the 
regression has to be understood as allowing for the possibility that x1t Granger- causes x2t 
through endogenous feedbacks, hence the disturbance term must be purged of both past 
and future dependence on x2t. Thus, (7.22) must not be confused with a conventional struc-
tural equation describing agents’ behaviour. Implicitly, we need the full multi- equation 
system to do this correctly.

The augmented least squares estimator is asymptotically mixed normal when correctly 
specified. Note that the regression in (7.22) does not make allowance for autocorrelation 
in the residual disturbance et, which can clearly exist even following the projection onto 
the Dx2,t2 j variables. This fact does not invalidate the asymptotic distribution results, 
provided that the covariance matrix is computed in the correct manner. As already noted 
for the strictly exogenous case, it is typically necessary to use a HAC estimator for the 
residual variance. Conventional t- and F- test statistics then have standard distributions 
asymptotically and the usual normal and chi- squared tables can be used to get approxi-
mate critical values. Saikkonen also shows that the augmented estimator is optimal, in 
the sense of achieving the maximum concentration of the asymptotic distribution about 
the true values.
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An alternative approach to this type of correction is the fully modified least squares 
(FMLS) estimator of Phillips and Hansen (1990). The essential idea here is to derive 
the limiting distribution of  P21q in (7.20), identify the components of this formula that 
produce the deviation from the centred mixed normal distribution, and estimate these 
components using the sample. The ingredients of these modifications include the cov-
ariance matrix of the data increments and disturbances, estimated by an HAC formula 
using the consistent OLS estimator of the parameters computed in a preliminary step. 
The resulting formulae are somewhat technical, and will not be reproduced here. The 
main thing to be aware of is that the asymptotic distribution of this estimator matches 
that of the Saikkonen–Stock–Watson augmented least squares estimator. Both of these 
methods are suitable for dealing with arbitrary forms of the distribution of the cointe-
grating VAR, and hence are inherently more robust than the single- equation ECM 
method of (7.21).

We have discussed the estimation of the vector g, but naturally we shall also be inter-
ested in inference on the dynamic parameters of an equation such as (7.21). In particular, 
we may be interested in knowing how rapidly the error- correction mechanism moves the 
variables towards their cointegrating relations. However, given an efficient  estimator of 
g, we can now exploit the super- consistency property. Construct ẑt 5 x1t 2 ĝrx2t, and 
insert this constructed sequence into (7.21) with coefficient r1. These residuals can be 
treated effectively as data from the standpoint of the asymptotic distribution, and are 
(by hypothesis) I(0), so the usual asymptotics for stationary data can be used to make 
inferences about r1 and the other parameters of the equation.

6 MULTIPLE COINTEGRATING VECTORS

Consider the case when there are two or more linearly independent vectors span-
ning t  he cointegrating space. Here is a simple example with m 5 3. Suppose that 
xt 5 (x1t, x2t, x3t)r| I(1) and

 pt 5 x1t 2 mx2t| I(0)  (7.23a)

 qt 5 x2t 2 nx3t | I(0). (7.23b)

Then, for any l,

 pt 1 lqt 5 x1t 2 (m 2 l)x2t 2 lnx3t | I(0) .

The vectors bl 5 (1, 2(m 2 l) , 2ln)r are cointegrating for all choices of l. If an attempt 
is made to estimate this vector, say by OLS regression of x1t onto x2t and x3t, then the 
estimated coefficients will merely correspond to the case of l that minimizes the sum of 
squares, which in turn depends on the relative sample variances of the variables pt and qt. 
It cannot tell us anything about the values of m or n, as such. While setting l 5 0 returns 
us relation (7.23a), there is in fact no value of l that can return (7.23b) because of the 
choice of normalization.

Nonetheless, there is a simple way to estimate m and n, given that we know the 
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 structure. This is to run two regressions,20 the first one excluding x3t and the second one 
excluding x1t and normalized on x2t. In fact the regression of x1t onto x3t will estimate a 
third cointegrating vector of the system, bm 5 (1, 0, 2mn)r.

On the other hand, suppose that (7.23a) holds, but not (7.23b), and instead there exists 
a cointegrating relation of the form

 x1t 2 d1x2t 2 d2x3t | I(0) (7.24)

It is easy to see that while the same restricted regression procedure will consistently 
estimate m, there is no way to estimate the coefficients of (7.24). Running the regression 
with all three variables inevitably gives us an arbitrary linear combination of (7.23a) and 
(7.24). We say in this situation that the coefficients d1 and d2 are unidentified.

Generalizing from this example we see that the problem has a strong affinity with the 
analysis of static simultaneous equations that we now associate with the research agenda 
of the Cowles Commission at the University of Chicago in the 1940s (see Koopmans, 
1949, and also any number of econometrics texts, such as Johnston and DiNardo, 1997). 
If b (m 3 s) is a matrix spanning the cointegrating space, any vector of the form br is a 
cointegrating vector where r (s 3 1) is arbitrary. The only way that one of these vectors 
can be distinguished from another is by the existence of known restrictions on the coef-
ficients. Assume for the sake of argument that the columns of b are ‘structural’ in the 
sense that the elements have a specific interpretation in terms of economic behaviour. 
In particular, some of these elements are known to be zero, since structural economic 
relations do not in general involve all the variables in a system. Such a relation (say, the 
first column of b with no loss of generality) is said to be identified if the only choice of 
r that preserves the known restrictions is r 5 e1 5 (1, 0, . . . , 0)r. Assume, without loss of 
generality, that the variables are ordered so that the first g1 of the elements of column 
1 of b are non- zero, with the first element set to 1 as normalization, and the last m 2 g1 
elements are zeros. Accordingly, partition b by rows as b 5 cb1

b2
d  where b2 (m 2 g1 3 s)  

has first column equal to zero by construction, so that its rank cannot exceed s 2 1. The 
following well- known proposition is the rank condition for identification:

● Equation 1 is identified if and only if b2 has rank s 2 1.

Clearly, b2 having maximum rank means that it is not possible to construct a zero linear 
combination of its columns except for the specific cases of ae1 for scalar a, where the 
normalization rules out all of these cases except a 5 1. An important by- product of this 
result is the order condition for identification (necessary but not sufficient) that requires 
g1 # m 2 s 1 1.

We now have the following result: a structural cointegrating relation that is identified 
by zero restrictions is consistently estimated by a least squares regression (or efficient 
counterpart) imposing these zero restrictions.21 In text- book accounts of the simultane-
ous equations model, recall that it is necessary to separate the variables of the model 
into endogenous and exogenous categories, and implement estimation by (for example) 
two- stage least squares, where the order condition for identification determines whether 
sufficient instruments are available to estimate the unrestricted coefficients. Here, 
there is no such separation. All the variables are on the same footing and least squares 
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is  consistent, with identification achieved by excluding variables to match the known 
restrictions. Every identified structural cointegrating relation can be consistently and 
efficiently estimated by running either the Saikkonen–Stock–Watson or Phillips–Hansen 
procedures on equations containing only the non- excluded variables. For example, fol-
lowing Saikkonen’s notation, equation (7.22) would become

 x1t5 grx2t 1aKT

j52KT

pjDxc,t2 j 1m 1 et (7.25)

where xct 5 (xr2t, x r3t)r, and the subscript 3 denotes the excluded variables. Each identified 
relation is estimated with a different partition of the variables into inclusions and exclu-
sions, not overlooking the fact that the identity of the normalizing variable x1t needs to 
be changed if it is itself to be excluded from the relation.

A further point of interest about identified structural relations is that they are irre-
ducible. In other words, no variable can be dropped without the relation ceasing to be 
cointegrating. The examples in (7.23) are a good case in point, and this is how in practice 
we can detect the fact that a relation such as (7.24) cannot be both structural and iden-
tified. To appreciate the role of irreducibility, consider the triangular form (7.17) once 
again. We had assumed s 5 1. Suppose however that, contrary to the implicit assump-
tion, the variables x2t in fact featured a cointegrating relation amongst themselves. 
Clearly, in this case, the first relation is not irreducible, although to discover this it may 
be necessary to change the normalization. Likewise if there are two or more cointegrat-
ing vectors containing x1t, so that the estimated g is a composite relation, there will 
necessarily exist a linear combination of these vectors that excludes one of the vari-
ables, and is cointegrating. So, again, it cannot be irreducible. Ideally, the irreducibility 
property should be checked (see section 8 on cointegration testing) on each postulated 
structural relation. However, it’s important to note that irreducibility is not an exclusive 
property of identified structures. In the three- variable example, it is of course shared 
by the solved relation involving x1t and x3t. There is no way except by prior knowledge 
of the structure that we can be sure of distinguishing structural from irreducible solved 
forms.

7 ESTIMATING COINTEGRATED SYSTEMS

In a series of papers focusing chiefly on the triangular parameterization (7.17), Peter 
Phillips an  d co- authors (Phillips, 1988; Park and Phillips, 1988, 1989; Phillips and 
Hansen, 1990; Phillips, 1991; Phillips and Loretan, 1991) have provided a careful analy-
sis of the issue of valid inference in cointegrated systems. One feature of their approach 
is that the cointegrated relations are always parameterized in reduced form. In other 
words, if

 b 5 cb1

b2
d s 3 s

(m 2 s) 3 s

then, in (7.17), B 5 2b21
1 b2. While the normalization on x1t is basically arbitrary – any 

partition of the variables that delivers a b1 of full rank will do – there is no reason in 
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principle why the matrix [I:2B ]r should not be replaced with a matrix b of structural 
vectors, subject to identifying restrictions. Such an approach is less easy to implement in 
practice, however.

The primary lesson of this research is that the number of cointegrating vectors 
in the system is the crucial piece of information for efficient, mixed normal estima-
tion. It’s convenient as a pedagogical device to consider the case where vt5(v r1t,v r2t)r 
in (7.17) is an i.i.d. vector. Then the efficient, asymptotically mixed normal estima-
tor of the system is simply computed by applying least squares to the s augmented 
equations.

 x1t 5 Bx2t 1 G12Dx2t 1 et

where we define G12 5 W21
22 W21 with W22 5 E(v2tv r2t) , W21 5E(v2tv r1t) , and, with Gaussian 

disturbances,

 et 5 v1t 2G12Dx2t 5 v1t 2 E(v1t 0v2t) .

In the event that vt is autocorrelated, the further augmentation by leads and lags of Dx2t 
will provide efficiency, as detailed in section 5 above. Contrast this with the case of the 
triangular model

 x1t 5 Bx2t 1 v1t (7.26)

 x2t 5 Px2t21 1 v2t

where P is unrestricted. The roots of the autoregressive system could be either unity 
or stable and the identity v2t 5 Dx2t no longer obtains. Phillips (1991) shows that the 
maximum likelihood estimator of B in this system has an asymptotic distribution con-
taminated by nuisance parameters such that conventional inference is not possible. The 
knowledge that P 5 Im2s is the key to mixed- normal asymptotics.

Thanks largely to the influential contributions of Søren Johansen (1988a, 1988b, 
1991, 1995), the most popular approach to system estimation is the reduced rank 
regression estimator. This works with the representation in (7.15), although special-
ized by assuming a finite- order vector autoregressive specification. To describe how 
this method works with the maximum clarity we develop the case of the first- order 
VECM

 Dxt 5 a0 1 abrxt21 1 et (7.27)

as in (7.4). As before, the key piece of prior information is the cointegrating rank of the 
system.

The natural estimator for a system of reduced form equations is least generalized vari-
ance (LGV), which is also the maximum likelihood estimator when the disturbances are 
Gaussian. This minimizes the determinant of the system covariance matrix,

 Ls(a,b) 5 0aT

t52
etert 05 0S00 2 abrS10 2 S01bar 1 abrS11bar 0   (7.28)
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where

 S00 5 aT

t52
(Dxt 2 Dx) (Dxt 2 Dx)r

 S01 5 aT

t52
(Dxt 2 Dx) (xt21 2 x21)r

 S11 5 aT

t52
(xt21 2 x21) (xt21 2 x21) r

and S10 5 S r01. Note that the value of s is built into this function through the dimen-
sions of the unknown matrices a and b, and so is indicated in the subscript in (7.28). 
If additional non- I(1) variables are to be included in (7.27), such as dummy variables 
and lagged values of Dxt, these are removed by regressing Dxt and xt21 onto them and 
taking the residuals. The mean- deviations shown here are just the simplest possible case 
of this ‘partialling out’ operation. It’s conventional to replace xt21 by xt2p where p is the 
maximum lag order, but this is optional. Either choice of lag will yield the same asymp-
totic properties.

To minimize Ls, first fix b temporarily and regress Dxt onto brxt21 to get a conditional 
estimate of a; that is,

 â 5 (brS11b)21brS10. (7.29)

Substitution of (7.29) into (7.28) yields the concentrated criterion function

 L*s (b) 5 0S00 2 S01b(brS11b)21brS10 0 . (7.30)

Now, the rule for determinants of partitioned matrices gives the twin identities

 2 S00 S01b

brS10 brS11b
2 5 0brS11b 0 0S00 2 S01b(brS11b)21brS10 0

 5 0S00 0 0brS11b 2 brS10S21
00 S01b 0

from which we obtain the alternative form of (7.30),

 L*s (b) 5 0S00 0 0br(S11 2 S10S21
00 S01)b 00brS11b 0  (7.31)

where 0S00 0  does not depend on b and so can be omitted from the function. The next 
step is to appeal to a well- known result from multivariate analysis. The minimum with 
respect to b of the ratio of determinants in (7.31) is obtained by solving the generalized 
eigenvalue problem

 0lS11 2 S10S21
00 S01 0 5 0. (7.32)

Specifically, L*s(b)  is minimized uniquely when the columns of b are the solutions 
q1,. . .,qs of the s homogeneous equations
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 (ljS11 2 S10S21
00 S01)qj 5 0 (7.33)

where l1, . . . ,ls are the s largest solutions to (7.32), subject to the normalization

 q ri S11qj 5 e1, i 5 j
0, otherwise.

 (7.34)

The eigenvalues must fall in the interval [0, 1]. Noting that S11 5 O(T 2) whereas 
S10S21

00 S01 5 O(T) , observe how necessarily lj 5 Op (T21)  unless the solution to 
(7.33) is a cointegrating vector. The normalization in (7.34) is not convenient, but letting 
L (m 3 m) be defined by S21

11 5 LLr, so that LrS11L 5 Im, the l1, . . .,lm are also the 
simple  eigenvalues of the matrix LrS10S21

00 S01L, whereas the eigenvectors are b̂j 5 Lqj, 
which are orthonormal (orthogonal with unit length).

Care is needed in interpreting this result. The orthonormal matrix b̂ 5 (b̂1, . . ., b̂s) 
asymptotically spans the cointegrating space, but it is not a reduced form nor, of 
course, a structural form. Given the arbitrary nature of the normalization, it is dif-
ficult to give an interpretation to these vectors, but for the fact that any structural 
cointegrating vector can be found asymptotically as a linear combination of the 
columns.

While inference on the elements of b̂ itself is neither possible nor indeed useful, it is 
possible to impose and test linear restrictions on the cointegrating space. Following 
Johansen and Juselius (1992), one can write for example

 b 5 H�

where H  is an m 3 (m 2 r)  matrix of known constants (0 and 1 typically) and 
�(m 2 r 3 s)  is an unrestricted matrix of parameters. This parameterization allows the 
cointegrating space to satisfy a certain type of linear restriction, and permits a likelihood 
ratio test of these restrictions.

Davidson (1998a) shows how to test a set of p restrictions expressed in the form

● There exists a vector a (s 3 1) such that Hba 5 0

where here, H  is a p 3 m matrix of known constants. This approach allows testing of 
hypotheses such as ‘a vector subject to p specified zero restrictions lies in the cointegrat-
ing space’. Given asymptotic mixed normality of the estimators b̂, which can be demon-
strated subject to regularity conditions, these tests can be performed making use of the 
standard chi- squared tables in large samples.

8 TESTING COINTEGRATION

We have shown that the cointegrating rank of a collection of I(1) processes is the key 
piece of information, without which inference on the system canno  t realistically proceed. 
It is in this context in particular that Søren Johansen’s contributions have proved essen-
tial. The discussion of the last section has already provided the clue. Consider the m 
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solutions to (7.32), ordered as l1 $ l2 $ c$ lm. These are functions of the data set but 
their computation does not depend on a choice of s. The m 2 s smallest converge to zero 
as T S `, because the corresponding eigenvectors qj are not cointegrating vectors, and 
the terms S11qj and S10S21

00 S01qj in (7.33) are therefore diverging at different rates, respec-
tively Op (T 2)  and Op (T) . Balancing the equation imposes lj 5 Op (T21) for s , j # m, 
while lj 5 Op (1)  for 1 # j # s.

This provides the basis for a test based on the statistics Tlj, which are computed 
as a by- product of the reduced rank regression. If j # s then Tlj 5 Op (T) , otherwise 
Tlj 5  Op (1) . Suppose that the distributions of the Tlj in the second case can be tabu-
lated. We can then proceed to compare the statistic with this distribution for the cases 
j 5 1, 2, . . . , m, in decreasing order of magnitude, until the chosen critical value is not 
exceeded. Then, s can be estimated as the last case of j before this non- rejection occurs. 
For any choice of s, the tests can be formally cast in the form H0 : cointegrating rank 5 s 
against the alternative H1 : cointegrating rank $ s 1 1.

It is shown by an ingenious argument that, under the null hypothesis, the non- 
divergent Tlj (the cases j 5 s 1 1. . . , m) are tending as T S ` to the eigenvalues of a 
certain random matrix of dimension (m 2 s) 3 (m 2 s)  whose distribution is free of 
nuisance parameters. This limiting distribution is shared with matrices that can be gener-
ated on the computer using pseudo- random numbers, so the distribution of its eigenval-
ues can be tabulated in a Monte Carlo simulation exercise.

There are two ways in which this idea might be implemented as a test. One is to look 
at Tls11, the largest of the set of the m 2 s smallest rescaled eigenvalues. This is called 
the maximum eigenvalue test. The second implementation is to look at gm

j5s11Tlj. 
This latter statistic converges to the trace of the limit matrix, and so this is known as 
the trace test. Each of these distributions has been tabulated for a range of values of 
m 2 s, although not depending on m, note, since the cases (m, s)  and (m 1 1, s 1 1)  are 
equivalent.

It can also be shown that the minimized value of the generalized variance is

 L*s (b̂) 5 qs

j51
(1 2 lj)

(the product of the s terms) and hence, using the fact that log(1 1 x) < x when x is 
small,

 T logL*s ( b̂) 2 T logL*s11 (b̂) 5 2T log(1 2 ls11) |Tls11

and

 T logL*s(b̂) 2 T logL*m( b̂) 5 2Tam

j5s11
log(1 2 lj) |am

j5s11
Tlj

where ‘|’ denotes that the ratio of the two sides converges to 1. Hence, asymptotically 
equivalent tests can be based on the estimation minimands. If the disturbances are 
Gaussian, the maximized likelihood takes the form 21

2T logL*s (b̂) and then these forms 
have the natural interpretation of likelihood ratio tests. However, be careful to note that 
these limiting distributions are not chi- squared. It is a general rule of I(1) asymptotics 
that restrictions affecting the orders of integration of variables – in other words that 
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concern unit roots – give rise to non- standard distributions. Be careful to note that the 
standard asymptotic tests that we have described in this chapter all share the feature that 
the cointegrating rank is given and not part of the tested hypothesis.

An interesting special case is the test based on the statistic Tlm, for the null hypoth-
esis of a single common trend (cointegrating rank s 5 m 2 1) against the alternative 
that the data are stationary. In this case the trace and maximal eigenvalue statistics 
coincide and, interestingly enough, the null limiting distribution is none other than the 
square of the Dickey–Fuller distribution associated with the standard test for a unit 
root.

An alternative approach to testing cointegration is to estimate a single equation and 
test whether the resulting residual is I(0). In these tests, non- cointegration is the null 
hypothesis. This is basically comparable to testing the hypothesis H0: s 5 0 in the cointe-
grating VECM framework, but avoids modelling the complete system. A well- known 
paper by Phillips and Ouliaris (1990) compares a range of alternative implementations 
of this idea. The best known is based on the augmented Dickey–Fuller (ADF) test for a 
unit root (Dickey and Fuller, 1979, 1981; Said and Dickey, 1984) applied to the residuals 
from an ordinary least squares regression. The test statistic takes the form of the t- ratio 
for the parameter estimate �̂ in the regression

 Dût 5 �ût21 1 aKT

j51
pjDût2 j 1 et (7.35)

where ût 5 x1t 2 m̂ 2 ĝrx2t and KT 5 o(T 1/3).
Although this test closely resembles the augmented Dickey–Fuller test for a unit root, 

there are a number of important issues to be aware of. When the null hypothesis is true, 
there is no cointegration and ĝ does not converge in probability and is a random vector 
even in the limit as T S `. A linear combination of random walks with random coef-
ficients, where these coefficients are computed specifically to minimize the variance of 
the combination, is not itself a random walk, in the sense that the regular Dickey–Fuller 
distribution should be expected to apply. In fact, the asymptotic distribution of this test 
depends only on the number of elements in x2t, and tabulation of the distributions is 
therefore feasible (see Engle and Yoo, 1987). However, while it might be assumed that an 
efficient single- equation estimator would be a better choice than OLS for the estimator 
of g, in fact the limit distributions have been derived on the assumption of OLS estima-
tion and depend on this for their validity. The requirement that KT S ` is important 
because, under H0, Dût is a random combination of stationary processes. Even if these 
have finite- order autoregressive structures individually, there is no reason to assume 
this of the combination. The idea of approximating a finite- order ARMA process by an 
AR(`), approximated in finite samples by the AR(KT), is due to Said and Dickey (1984). 
In practice it should give an adequate account of the autocorrelation structure of most 
I(0) processes.

Leading alternatives to the ADF statistic are the statistics denoted Ẑa and Ẑt in 
Phillips (1987), where the coefficient �̂ is subjected to specifically tailored corrections 
that play an equivalent role to the lag- difference terms in (7.35). These corrections 
are similar in principle to those in the Phillips–Hansen (1990) fully modified least 
squares estimator of g, and make use of HAC estimates of the data long- run covari-
ance matrix.
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9 CONCLUSION

This chapter has aimed to survey the main issues in the specification and estimation 
of cointegrating relationships in non- stationary data. This is now a very large body 
of l  iterature, and inevitably there are many aspects which there has been no space to 
deal with here. In particular, while a number of conclusions about the large- sample 
distributions of estimators have been asserted, no attempt has been made to describe 
the asymptotic analysis on which these conclusions rest. This theory makes a clever 
use of the calculus of Brownian motion, following from the fundamental idea that 
non- stationary economic time series, when viewed in the large, move much like pollen 
grains suspended in water as first observed microscopically by the botanist Robert 
Brown. The same mathematics can be used to analyse either phenomenon. The key 
result in this theory is the functional central limit theorem, generalizing the ordinary 
central limit theorem to show the limiting Gaussianity of every increment of the path 
of a normalized partial sum process. Interested readers can find many of the details 
omitted here in Part IV of the present author’s text Econometric Theory (Davidson, 
2000).

NOTES

 1. With repeated eigenvalues M  is generally not diagonal. When mk 5 mk11, a ‘1’ appears in position 
{k, k 1 1}. However, note that A and M  have the same rank and M  is either diagonal or upper triangu-
lar. While only in symmetric matrices is the rank always equal to the number of non- zero eigenvalues, a 
singular matrix always has one or more zero eigenvalues.

 2. This matrix can be written in closed form only with the use of Vec notation, but it’s easy to see that it must 
satisfy the identity Sx 2 ASxAr 5 S.

 3. The difference operator is D 5 1 2 L where L is the lag operator.
 4. s cannot be less than the number of non- zero eigenvalues, but could be greater.
 5. The space spanned by b is the collection of vectors br for all s- vectors r 2 0. Clearly, this is identical with 

the collection bDrr, for any s 3 s non- singular D.
 6. A variable x is said to Granger- cause another variable y if knowledge of xt improves the forecasts of yt1 j 

for j . 0. This concept is defined in Granger (1969), Clive Granger’s first notable contribution to time 
series econometrics.

 7. It is convenient to give the properties of a lag polynomial in the context of a dummy numerical argument 
z, in general complex- valued.

 8.  7A 7 5 "tr(ArA)  is one of several alternative definitions of the matrix norm. This is a simple way to 
specify absolute summability, ruling out the possibility of offsetting signs allowing elements to be sum-
mable while their squares, for example, are not summable.

 9. In the VAR(1) case (1), W 5 (I 2 A)21S (I 2 Ar)21. Be careful to distinguish between this formula and 
Sx.

10. Some of the results in this theory can be proved under the weaker condition (cr) g`

j50 j1/2 7Cj 7 , `, see for 
example Phillips and Solo (1992). The conditions stated here are sufficient for the properties we discuss, 
and are hopefully the most intuitive ones.

11. Note the conventions governing the use of the difference operator D and its inverse, the integration opera-
tor D21 5 1 1 L 1 c1 L 

t. Consider a sequence y1, . . . , yT. Since D21y1 5 y1, the operator D must be 
accordingly defined by Dy1 5 y1 and Dyt 5 yt 2 yt21 for t . 1.

12. Some care is needed in the treatment of initial conditions. Expressing the observed process as the devia-
tion from an initial value x0 allows assumptions about how x0 is generated to be sidelined. To avoid infini-
ties, this clearly has to be by a different mechanism from that generating xt for t . 0.

13. We write XT 5 Op (T k)  to denote that for every e . 0, there exists Be , ` such that P( 0XT 0 /T k . Be) , e. 
In particular, a stationary process is Op (1) .

14. Be careful to note that A1 (z)  is an invertible autoregressive polynomial, of finite or infinite order, driving 
the stationary differences, whereas A (z)  involves the finite- order integration operator D21. Cumulation 
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must be initiated at some finitely remote date. However, considering the sequence xt 2 x0 allows us to set 
this date as t 5 1 without loss of generality.

15. We follow the cited papers by Phillips and co- authors in using B for the reduced form cointegrating coef-
ficients. Don’t confuse this usage with the lag polynomial B(z)  appearing earlier.

16. Where the choice of normalization has unintended consequences as in the case where the first element of 
b is actually zero, so that x1t is not in the cointegrating set. This is a valid special case of the model and 
obviously needs to be ruled out by assumption. To pre- empt this possibility it’s desirable to compare 
alternative normalizations.

17. Note, however, that m̂ 2 m 5 Op (T1/2) in the usual way.
18. Think of this as a method for estimating (an element of) W in (7.9), rather than the corresponding 

(element of) S.
19. The o ()  notation is a shorthand for the condition 0KT 0 /T1/3 S 0 as T S `.
20. Here we use the term ‘regression’ generically, to denote any of the consistent methods described in section 

5.
21. Further discussion of this and related results can be found in Davidson (1994, 1998b).
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8 Estimation and inference in threshold type regime 
switching models*
Jesús Gonzalo and Jean- Yves Pitarakis

1 INTRODUCTION

The recognition that linear time series models may be too restrictive to capture economi-
cally interesting asymmetries and empirically observed non- linear dynamics has over the 
past twenty years generated a vast research agenda on designing models which could 
capture such features while remaining parsimonious and analytically tractable. Models 
that are capable of capturing non- linear dynamics have also been the subject of a much 
earlier and extensive research led by statisticians as well as practitioners in fields as broad 
as biology, physics and engineering with a very wide range of proposed specifications 
designed to capture, model and forecast field specific phenomena (for example bilinear 
models, random coefficient models, state dependent models and so on). The amount 
of research that has been devoted to describing the non- linear dynamics of sunspot 
numbers and Canadian lynx data is an obvious manifestation of this quest (see Tong, 
1990; Granger and Terasvirta, 1993; Hansen, 1999; Terasvirta et al., 2010, and references 
therein).

A particular behaviour of interest to economists has been that of regime change or 
regime switching whereby the parameters of a model are made to change depending 
on the occurrence of a particular event, episode or policy (for example recessions or 
expansions, periods of low/high stock market valuations, low/high interest rates) but are 
otherwise constant within regimes. Popular models that can be categorized within this 
group are the well known Markov switching models popularized by Hamilton’s early 
work (see Hamilton, 1989) which model parameter change via the use of an unobserv-
able discrete time Markov process. This class of models in which parameter changes are 
triggered by an unobservable binary variable has been used extensively as an intuitive 
way of capturing policy shifts in macroeconomic models as well as numerous other con-
texts such as forecasting economic growth and dating business cycles. In Leeper and Zha 
(2003), Farmer et al. (2009), Davig and Leeper (2007) and Benhabib (2010), for instance, 
the authors use such models to introduce the concept of monetary policy switches and 
regime- specific Taylor rules. Other particularly fruitful areas of application of such 
regime switching specifications have involved the dating of business cycles and the 
modelling of time variation in expected returns, among numerous others (see Hamilton, 
2011; Perez- Quiros and Timmermann, 2000).

An alternative, parsimonious and dynamically very rich way of modelling regime 
switching behaviour in economic data is to take an explicit stand on what might be trig-
gering such switches and adopt a piecewise linear setting in which regime switches are 
triggered by an observed variable crossing an unknown threshold. Such models have 
been proposed by Howell Tong in the mid- 1970s and have gone through an important 
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revival following their adoption by economists and econometricians during the 1980s 
and 1990s following the methodological work of Bruce Hansen (see also Hansen, 2011 
and references therein for a historical overview), Ruey Tsay (Tsay, 1989, 1991), Koop 
et al. (1996), Koop and Potter (1999) and others. When each regime is described by 
an autoregressive process and the threshold variable causing the regime change is also 
a lagged value of the variable being modelled we have the well known Self Exciting 
Threshold AutoRegressive class of models (SETAR) extensively studied in the early 
work of Tong and others (see Tong and Lim, 1980; Tong, 1983, 1990; Chan, 1990, 1993). 
In general, however, the threshold principle may apply to a wider range of linear univari-
ate or multivariate models and need not be solely confined to autoregressive functional 
forms. Similarly the threshold variable triggering regime switches may or may not be 
one of the variables included in the linear part of the model. Despite their simplicity, 
such models have been shown to be able to capture a very diverse set of dynamics and 
asymmetries particularly relevant to economic data. Important examples include the 
modelling of phenomena such as costly arbitrage whereby arbitrage occurs solely after 
the spread in prices exceeds a threshold due, for instance, to transport costs (see Lo and 
Zivot, 2001; Obstfeld and Taylor, 1997; O’Connell and Wei, 1997; Balke and Fomby, 
1997). Other areas of application include the study of asymmetries in the business cycles 
explored in Beaudry and Koop (1993), Potter (1995), Koop and Potter (1999), Altissimo 
and Violante (1999), the modelling of asymmetries in gasoline and crude oil prices 
(Borenstein et al., 1997) and other markets (Balke, 2000; Gospodinov, 2005; Griffin et 
al., 2007 among others).

Threshold models are particularly simple to estimate and conduct inferences on, and 
despite the lack of guidance offered by economic theory for a particular non- linear func-
tional form such piecewise linear structures can be viewed as approximations to a wider 
range of functional forms as discussed in Petruccelli (1992) and Tong (1990, pp. 98–100). 
Two key econometric problems that need to be addressed when contemplating the use 
of such models for one’s own data involve tests for detecting the presence of threshold 
effects and if supported by the data the subsequent estimation of the underlying model 
parameters.

The purpose of this chapter is to offer a pedagogical overview of the most commonly 
used inference and estimation techniques developed in the recent literature on threshold 
models. In so doing, we also aim to highlight the key strengths, weaknesses and limita-
tions of each procedure and perhaps more importantly discuss potential areas requiring 
further research and interesting extensions. The plan of the chapter is as follows. Section 
2 concentrates on tests for detecting the presence of threshold non- linearities against 
linear specifications. Section 3 explores methods of estimating the model parameters and 
their properties. Section 4 discusses important extensions and interesting areas for future 
work. Section 5 concludes.

2 DETECTING THRESHOLD EFFECTS

In what follows we will be interested in methods for assessing whether the dynamics 
of a univariate time series yt and a p- dimensional regressor vector xt may be plausibly 
described by a threshold specification given by
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 yt 5 e xrt b1 1 ut qt # g

x rtb2 1 ut qt . g
 (8.1)

with qt denoting the threshold variable triggering the regime switches and ut the random 
disturbance term. At this stage it is important to note that our parameterization in 
(8.1) is general enough to also be viewed as encompassing threshold autoregressions by 
requiring xt to contain lagged values of yt. Similarly, the threshold variable qt may be one 
of the components of xt or some external variable. The threshold parameter g is assumed 
unknown throughout but following common practice we require g [ G with G 5 [g,g ] 
denoting a compact subset of the threshold variable sample space. Given our specifica-
tion in (8.1) the first concern of an empirical investigation is to test the null hypothesis of 
linearity H0  :  b1 5 b2 against H1  :  b12b2.

Before proceeding with the various testing procedures it is useful to document alterna-
tive and occasionally more convenient formulations of the threshold model by introduc-
ing relevant indicator functions. Letting I(qt # g)  be such that I(qt # g) 5 1 when qt # g 
and I(qt # g) 5 0 otherwise we define x1t(g) 5 xt*I(qt # g)  and x2t(g) 5 xt*I(qt . g)  
so that (8.1) can also be written as

 yt 5 x1t(g)rb11 x2t(g)rb2 1ut (8.2)

or in matrix notation as

 y 5 X1 (g)b1 1X2 (g)b2 1u (8.3)

with Xi(g)  stacking the elements of xit(g)  for i 5 1, 2 and which is such that 
X1 (g)rX2 (g) 5 0. Our notation in (8.2) and (8.3) also makes it clear that for a known g, 
say g 5 0, the above models are linear in their parameters and we are in fact in a basic 
textbook linear regression setting. This latter observation also highlights the importance 
of recognizing the role played by the unknown threshold parameter when it comes to 
conducting inferences in threshold models. The price to pay for our desire to remain 
agnostic about the possible magnitude of g and whether it exists at all is that we will need 
to develop tests that are suitable for any g [ G. Naturally, we will also need to develop 
methods of obtaining a good estimator of g once we are confident that the existence of 
such a quantity is supported by the data.

Within the general context of threshold models such as (8.1) the main difficulty for 
testing hypotheses such as H0  :  b1 5 b2 arises from the fact that the threshold param-
eter g is unidentified under this null hypothesis of linearity. This can be observed very 
clearly from our formulation in (8.3) since setting b1 5 b2 leads to a linear model via 
X1 (g) 1 X2 (g);X  and in which g plays no role. This problem is occasionally referred 
to as the Davies problem (see Davies, 1977, 1987 and Hansen 1996) and is typically 
addressed by viewing the traditional Wald, LM or LR type test statistics as functionals 
of g and subsequently focusing inferences on quantities such as the supremum or average 
of the test statistics across all possible values of g.

Letting X 5X1 (g)1X2 (g)  denote the p- dimensional regressor matrix in the linear model 
we can write its corresponding residual sum of squares as ST 5 y ry 2 y rX(X rX)21X ry 
while that corresponding to the threshold model is given by
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 ST (g)5 y ry 2a
2

i51
yrXi(g) (Xi(g)rXi(g))21Xi(g)ry (8.4)

for any g [ G. This then allows us to write a Wald type test statistic for testing 
H0  :  b1 5 b2 as

 WT (g) 5
T(ST 2 ST (g))

ST (g) . (8.5)

Naturally we could also formulate alternative test statistics such as the likeli-
hood ratio or LM in a similar manner, for example LRT (g) 5 T ln ST/ST (g)  and 
LMT (g) 5 T(ST 2 ST (g)) /ST. Due to the unidentified nuisance parameter problem, 
inferences are typically based on quantities such as supg[GWT (g)  or their variants (see 
Hansen, 1996).

For practical purposes the maximum Wald statistic is constructed as follows.

● Step 1: Let qs denote the T 3 1 dimensional sorted version of qt. Since we operate 
under the assumption that g [ G a compact subset of {qs[1],. . .,qs[T]} we trim a 
given fraction p from the top and bottom components of the T 3 1 vector qs so as 
to obtain a new vector of threshold variable observations qss 5 qs [Tp  :  T (1 2 p)]. 
If T 5 1000 for instance and p 5 10 per cent the new sorted and trimmed version 
of the threshold variable is given by qss 5 qs [100  :  900 ]. Let Ts denote the 
number of observations included in qss.

● Step 2: For each i 5 1,. . .,Ts construct the top and bottom regime regressor matri-
ces given by X1

[ i ] 5 x [1  :  T ]*I(qt # qss [ i ])  and X2
[ i ] 5 x [1  :  T ]*I(qt . qss [ i ]) . 

Note that for each possible value of i, X1
[ i ] and X2

[ i ] are T 3 p regressor matrices 
with * denoting the element by element multiplication operator and x [1  :  T ] refers 
to the T 3 p original regressor matrix X.

● Step 3: Using X1
[ i ], X2

[ i ] and X construct, ST
[ i ] 5 yry 2 yrX1

[ i ] (X1
[ i ]rX1

[ i ])21X1

[ i ]ry 2 yrX2
[ i ] (X2

[ i ]rX2
[ i ])21X2

[ i ]ry, ST 5 yry 2 yrX(XrX)21Xry and obtain a magni-
tude of the Wald statistics as defined above for each i, say WT

[ i ] with i 5 1,. . .,Ts.
● Step 4: Use max1# i#Ts

WT
[ i ] as the supremum Wald statistic and proceed similarly 

for max1# i#Ts
LRT

[ i ] or max1# i#Ts
LMT

[ i ] as required. Alternative test statistics may 
involve the use of averages such as gTs

i51
WT

[ i ] /Ts.

Upon completion of the loop, the decision regarding H0  :  b1 5 b2 involves rejecting 
the null hypothesis for large values of the test statistics. Cut- offs and implied p- values are 
obviously dictated by the limiting distribution of objects such as maxiWT

[ i ] which may or 
may not be tractable, an issue we concentrate on below.

The early research on tests of the null hypothesis of linearity focused on SETAR ver-
sions of (8.1) and among the first generation of tests we note the CUSUM type of tests 
developed in Petruccelli and Davies (1986) and Tsay (1989). Chan (1990, 1991) subse-
quently extended this testing toolkit by obtaining the limiting distribution of a maximum 
LR type test statistic whose construction we described above. Chan (1990, 1991) estab-
lished that under the null hypothesis H0  :  b1 5 b2, suitable assumptions requiring sta-
tionarity, ergodicity and the iid- ness of the urts, the limiting distribution of the supremum 
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LR is such that supgLRT (g) 1 supgz(g)rW (g)z(g) ; supgG`
(g)  with z(g)  denoting a 

zero mean Gaussian process and W (g)  its corresponding covariance kernel. Naturally 
the same result would hold for the Sup Wald or Sup LM statistics.

These results were obtained within a SETAR setting with the covariance kernel of z(g)  
depending on model- specific population moments in a complicated manner (for example 
unknown population quantities such as E [x2

t I(qt # g) ] and so on). This latter aspect is 
important to emphasize since it highlights the unavailability of universal tabulations for 
supgG`

(g) . Differently put the limiting distribution given by G`
(g)  depends on model- 

specific nuisance parameters and can therefore not be tabulated for practical inference 
purposes. There are, however, some very restrictive instances under which G`

(g)  may 
simplify into a random variable with a familiar distribution that is free of any nuisance 
parameters. This can happen for instance if the threshold variable is taken as external, 
say independent of xt and ut. In this instance G`

(g)  can be shown to be equivalent to a 
normalized squared Brownian Bridge process identical to the limiting distribution of 
the Wald, LR or LM statistic for testing the null of linearity against a single structural 
break tabulated in Andrews (1993). More specifically, the limiting distribution is given 
by [W(l) 2 lW(1) ]2/l (1 2 l)  with W(l)  denoting a standard Brownian Motion asso-
ciated with ut. Tong (1990, pp. 240–44) documents some additional special cases in which 
the limiting random variable takes the simple Brownian Bridge type formulation. See 
also Wong and Li (1997) for an application of the same test to a SETAR model with con-
ditional heteroscedasticity. Note also that inferences would be considerably simplified if 
we were to proceed for a given value of g, say g 5 0. This scenario could arise if one were 
interested in testing for the presence of threshold effects at a specific location such as qt 
crossing the zero line. In this instance it can be shown that since z(g 5 0) is a multivari-
ate normally distributed random variable with covariance W (g 5 0), the resulting Wald 
statistic evaluated at g 5 0, say WT (0) , will have a c2 limit.

The lack of universal tabulations for test statistics such as maxiWT
[ i ] perhaps explains 

the limited take- up of threshold- based specifications by economists prior to the 1990s. 
In an important paper, Hansen (1996) proposed a broadly applicable simulation- based 
method for obtaining asymptotic p- values associated with maxi WT

[ i ] and related test 
statistics. Hansen’s method is general enough to apply to both SETAR or any other 
threshold model setting, and bypasses the constraint of having to deal with unknown 
nuisance parameters in the limiting distribution. Hansen’s simulation- based method 
proposes to replace the population moments of the limiting random variable with their 
sample counterparts and simulates the score under the null using NID(0,1) draws. 
This simulation- based method is justified by the multiplier CLT (see Van der Vaart 
and Wellner, 1996) and can in a way be viewed as an external bootstrap. It should 
not be confused, however, with the idea of obtaining critical values from a bootstrap 
distribution.

A useful exposition of Hansen’s simulation- based approach which we repeat below 
can be found in Hansen (1999). For practical purposes Hansen’s (1996) method involves 
writing the sample counterpart of G`

(g) , say GT (g)  obtained by replacing the  population 
moments with their sample counterparts (the scores are simulated using NID(0,1) 
random variables). One can then obtain a large sample of draws, say N510000, from 
max1# i#Ts

GT
[ i ] so as to construct an approximation to the limiting distribution given by 

supgG`
(g) . The computed test statistic max1# i#Ts

WT [i ] can then be compared with either 
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the quantiles of the simulated distribution (for example 9750th sorted value) or alterna-
tively p- values can be computed.

It is important to note that this approach is applicable to general threshold specifica-
tions and is not restricted to the SETAR family. Gauss, Matlab and R codes applicable 
to a general threshold specification as in (8.1) can be found as a companion code to 
Hansen (1997). The general format of the procedure involves the arguments y, x and q 
(i.e. the data) together with the desired level of trimming p and the number of replica-
tions N. The output then consists of max1# i#Ts

WT
[ i ] together with its p- value, say

 TEST (y,x,q,p,N) S ( max
1# i#Ts

WT
[ i ], pval) . (8.6)

The above approach allows one to test the null hypothesis H0  :  b1 5 b2 under quite 
general conditions and is commonly used in applied work.

An alternative and equally general model selection- based approach that does not 
require any simulations has been proposed more recently by Gonzalo and Pitarakis 
(2002). Here, the problem of detecting the presence of threshold effects is viewed as a 
model selection problem among two competing models given by the linear specification 
yt 5 x rtb 1 ut, say M0, and M1 its threshold counterpart (8.2). The decision rule is based 
on an information theoretic criterion of the type

 ICT (g) 5 lnST (g) 1 2p
cT

T
. (8.7)

Here 2p refers to the number of estimated parameters in the threshold model (i.e. p 
slopes in each regime) and cT is a deterministic penalty term. Naturally, under the linear 
model M0, we can write the criterion as

 ICT 5 ln ST 1 p
cT

T
. (8.8)

Intuitively, as we move from the linear to the less parsimonious threshold specification, 
the residual sum of squares declines and this decline is balanced by a greater penalty 
term (i.e. 2p  cT versus p cT). The optimal model is then selected as the model that leads 
to the smallest value of the IC criterion. More formally, we choose the linear specifica-
tion if

 ICT , min 
g[G

ICT (g)  (8.9)

and opt for the threshold model otherwise. It is interesting to note that this deci-
sion rule is very much similar to using a maximum LR type test statistic since 
ICT 2 mingICT (g) 5 maxg [ICT 2ICT (g)] 5 maxg [ln(ST/ST (g)) 2 p cT/T ]. Equivalently, 
the model selection- based approach points to the threshold model when 
maxgLRT (g) . p cT. Thus, rather than basing inferences on the quantiles of the limiting 
distribution of maxgLRT (g)  we instead reach our decision by comparing the magnitude 
of maxgLRT (g)  with the deterministic quantity p cT. This also makes it clear that the 
practical implementation of this model selection approach follows trivially once Steps 
3 and 4 above have been completed. More specifically noting that the model selection- 
based approach points to the threshold specification when 
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 max
g

T(ST 2 ST (g))
ST (g) . T(e

p c
T

T 2 1). (8.10)

it is easy to see that the decision rule can be based on comparing max1# i#Ts
WT

[ i ] with the 
deterministic term T(e

p c T
T 2 1).

Gonzalo and Pitarakis (2002) further established that this model  selection-based 
approach leads to the correct choice of models (i.e.  limTS` P(M1 0M0) 5

limTS`P(M0 0M1) 5 0) provided that the chosen penalty term is such that cT S ` and 
cT/T S 0. Through extensive simulations Gonzalo and Pitarakis (2002) further argued 
that a choice of cT 5 lnT  leads to excellent finite sample results.

In Table 8.1 we present a small simulation experiment in which we contrast the size 
properties of the test- based approach with the ability of the model selection approach to 
point to the linear specification when the latter is true (that is, correct decision frequen-
cies). Our Data Generating Process (DGP) is given by yt 5 1 1 0.5xt21 1 ut with xt 
generated from an AR(1) process given by xt 5 0.5xt21 1 vt. The random disturbances 
wt 5 (ut,vt)  are modelled as an NID(0, W2)  random variable with W 5 { (1.0.5) ,(0.5,1) }. 
The empirical size estimates presented in Table 8.1 are obtained as the number of 
times across the N replications that the empirical p- value exceeds 1 per cent, 2.5 per 
cent and 5 per cent respectively. The empirical p- values associated with the computed 
Wald type maxWT [i ] test statistic are obtained using Bruce Hansen’s publicly available 
thrtest routine. The correct decision frequencies associated with the model selection 
procedure MSEL correspond to the number of times across the N replications that 
maxgT(ST 2 ST (g)) /ST (g) , T(ep lnT/T 2 1).

The above figures suggest that the test based on supgWT (g)  has good size properties 
even under small sample sizes. We also note that the ability of the model selection pro-
cedure to point to the true model converges to 1 as we increase the sample size. This is 
expected from the underlying theory since the choice of a BIC type of penalty cT 5 lnT  
satisfies the two conditions ensuring vanishing probabilities of over-  and under- fitting.

In summary, we have reviewed two popular approaches for conducting inferences 
about the presence or absence of threshold effects within multiple regression models 
that may or may not include lagged variables. Important operating assumptions include 
stationarity and ergodicity, absence of serial correlation in the error sequence ut, absence 
of endogeneity, and a series of finiteness of moments assumptions ensuring that laws of 
large numbers and CLTs can be applied. Typically, existing results are valid under a mar-
tingale difference assumption on ut (see for instance Hansen, 1999) so that some forms 
of heterogeneity (for example conditional heteroscedasticity) would not be  invalidating 

Table 8.1  Size properties of maxi WT 
[i] and model selection- based correct decision 

frequencies under a linear DGP

0.010 0.025 0.050 MSEL

T 5 100 0.009 0.019 0.041 0.862
T 5 200 0.013 0.029 0.055 0.902
T 5 400 0.011 0.023 0.052 0.964
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inferences. In fact all of the test statistics considered in Hansen (1996) are heteroscedas-
ticity robust versions of Wald, LR and LM. It is important to note, however, that regime- 
dependent heteroscedasticity is typically ruled out. A unified theory that may allow 
inferences in a setting with threshold effects in both the conditional mean and variance 
(with possibly different threshold parameters) is not readily available although numer-
ous authors have explored the impact of allowing for GARCH type effects in threshold 
models (see Wong and Li, 1997; Gospodinov, 2005, 2008). It will also be interesting to 
assess the possibility of handling serial correlation in models such as (8.1). Finally, some 
recent research has also explored the possibility of including persistent variables (for 
example near unit root processes) in threshold models. This literature was triggered by 
the work of Caner and Hansen (2001) who extended tests for threshold effects to models 
with unit root processes, but much more remains to be done in this area (see Pitarakis 
(2008), Gonzalo and Pitarakis (2012a, 2012b)).

3  ESTIMATION OF THRESHOLD MODELS AND FURTHER 
TESTS

The natural objective of an empirical investigation following the rejection of the null 
hypothesis of linearity is the estimation of the unknown true threshold parameter, say g0, 
together with the unknown slope coefficients b10 and b20.

3.1 Threshold and Slope Parameter Estimation

The true model is now understood to be given by yt 5 x1t(g0)rb10 1 x2t(g0)rb20 1 ut and 
our initial goal is the construction of a suitable estimator for g0. A natural choice is given 
by the least squares principle, which we write as

 ĝ 5 arg min
g[G

ST (g)  (8.11)

with ST (g)  denoting the concentrated sum of squared errors function. In words, the least 
squares estimator of g is the value of g that minimizes ST (g) . It is also important to note 
that this argmin estimator is numerically equivalent to the value of g that maximizes the 
homoscedastic Wald statistic for testing H0  :  b1 5 b2, that is ĝ 5 arg maxgWT (g)  with 
WT (g) 5T(ST 2 ST (g)) /ST (g) . From a practical viewpoint therefore ĝ is a natural by- 
product of the test procedure described earlier (see Appendix for a simple Gauss code for 
estimating ĝ). We have

● Step 1: Record the index i 5 1,. . .,Ts that maximizes WT
[ i ], say î

● Step 2: ĝ is obtained as qss [ î ].

The asymptotic properties of ĝ that have been explored in the literature have 
 concentrated on its superconsistency properties together with its limiting distribution. 
Early work on these properties was completed in Chan (1993) in the context of SETAR- 
type threshold models (see also Koul and Qian, 2002). Chan (1993) established the 
important result of the T- consistency of ĝ in the sense that T(ĝ 2 g0) 5 Op (1) . This 
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result was also obtained by Gonzalo and Pitarakis (2002) who concentrated on general 
threshold models with multiple regimes instead. Proving the consistency of the argmin 
estimator ĝ is typically done following a standard two- step approach. In a first instance 
it is important to show that the objective function, say ST (g) /T, satisfies

 sup
g[G

0ST (g)
T

2 S`
(g) 0 Sp

0 (8.12)

with S`
(g)  denoting a non- stochastic limit with a unique minimum. The consist-

ency of ĝ then follows by showing that S`
(g)  is uniquely minimized at g 5 g0, that is 

S`
(g) . S`

(g0)  for g , g0 and S`
(g) . S`

(g0)  for g . g0.
In Chan (1993) the author also obtained the limiting distribution of T(ĝ 2 g0) , with 

the latter shown to be a function of a compound Poisson process. This limit did not lend 
itself to any practical inferences, however, since it was dependent on a large number of 
nuisance parameters besides being particularly difficult to simulate due to the presence 
of continuous time jump processes.

As a way out of these difficulties and for the purpose of developing a toolkit that can 
be used by practitioners, Hansen (2000) adopted an alternative parameterization of the 
threshold model that was then shown to lead to a convenient nuisance parameter- free 
limiting distribution for ĝ. The price to pay for this more favourable limiting theory 
was a rate of convergence for ĝ that was slightly lower than T. The main idea behind 
Hansen’s approach was to reparameterize the threshold model in (8.1) in such a way 
that the threshold effect vanishes with T  in the sense that dT 5 b2 2 b1 S 0 as T S `. 
Assuming Gaussian errors and using this vanishing threshold framework, Hansen 
(2000) was able to obtain a convenient distribution theory for ĝ that is usable for con-
ducting inferences and confidence interval construction. In particular, Hansen (2000) 
derived the limiting distribution of a likelihood ratio test for testing the null hypothesis 
H0  :  g 5 g0 and showed it to be free of nuisance parameters provided that dT S 0 at a 
suitable rate. As mentioned earlier, the price to pay for this asymptotically vanishing 
threshold parameterization is the slightly slower convergence rate of ĝ. More specifically 
T122a (ĝ 2 g0) 5 Op (1)  for 0 , a ,

1
2 which can be contrasted with the T- consistency 

documented under non- vanishing threshold effects. Note that here a is directly linked 
to the rate of decay of dT 5 b2 2 b1 5 c/Ta so that the faster the threshold is allowed to 
vanish, the slower the ensuing convergence of ĝ.

Hansen (2000) subsequently showed that a likelihood ratio- type test for testing the 
null hypothesis H0  :  g 5 g0 takes a convenient and well known limiting expression that is 
free of nuisance parameters provided that ut is assumed to be homoscedastic in the sense 
that E [u2

t 0qt ] 5 s2
u. More specifically, Hansen (2000) established that

 LRT (g0) Sd z (8.13)

with P(z # x) 5 (1 2 e2x/2) 2. The practical implementation of the test is now trivial 
and can be performed in two simple steps. Suppose for instance that one wishes to test 
H0  :  g 5 0. This can be achieved as follows:

● Step 1: Construct LRT 5 T(ST (g 5 0) 2 ST (ĝ)) /ST (ĝ)  with ĝ 5 argming[GST (g) .
● Step 2: The p- value corresponding to the test statistic is p 5 1 2 (1 2 e2LRT/2) 2.
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Following the work of Hansen (2000) numerous authors explored the possibility of 
developing inferences about g (for example confidence intervals) without the need to 
operate within a vanishing threshold framework with Gaussian errors and/or assuming 
error variances that cannot shift across regimes. In Gonzalo and Wolf (2005) the authors 
developed a flexible subsampling approach in the context of SETAR models, while more 
recently Li and Ling (2012) revisited the early work of Chan (1993) and explored the pos-
sibility of using simulation methods to make the compound Poisson type of limit usable 
for inferences. The above discussions have highlighted the important complications that 
are caused by the presence of the discontinuity induced by the threshold variable. This 
prompted Seo and Linton (2007) to propose an alternative approach for estimating the 
parameters of a threshold model that relies on replacing the indicator functions that 
appear in (8.2) with a smoothed function à la smoothed maximum score of Horowitz 
(1992).

Finally, following the availability of an estimator for g, the remaining slope parameter 
estimators can be constructed in a straightforward manner as

 b̂i(ĝ) 5(Xi(ĝ)rXi(ĝ))21Xi(ĝ)ry (8.14)

for i 5 1,2. An important result that follows from the consistency of ĝ and that makes 
inferences about the slopes simple to implement is the fact that b̂i(ĝ)  and b̂i(g0)  are 
asymptotically equivalent. More formally, we have "T(b̂i(ĝ) 2 b̂i(g0) ) S

p
0 so that 

inferences about the slopes can proceed as if g were known. Under conditional homo-
scedasticity, for instance, t- ratios can be constructed in the usual manner via the use of 
covariances given by ŝ2

u (ĝ) (Xi(ĝ)rXi(ĝ))21 with ŝ2
u (ĝ) 5 ST (ĝ) /T.

3.2 Finite Sample Properties

At this stage it is also useful to gain some insights on the behaviour of estimators such 
as ĝ and b̂i(ĝ)  in finite samples commonly encountered in economics. The bias and vari-
ability of ĝ is of particular importance since the asymptotics of b̂i(ĝ)  rely on the fact that 
we may proceed as if g0 were known. As noted in Hansen (2000) it is unlikely that we will 
ever encounter a scenario whereby ĝ 5 g0, and taking this uncertainty into account in 
subsquent confidence intervals about the bri s becomes particulary important.

In order to evaluate the finite sample behaviour of the threshold and slope parameter 
estimators we consider a simple specification given by

 yt 5 eb10 1 b11xt21 1 ut qt21 # g0

b20 1 b21xt21 1 ut qt21 . g0
 (8.15)

with xt 5 �xxt21 1 vt and qt 5 �qqt21 1 et. Letting wt 5 (ut,vt,et)  we take wt ; NID(0, W)  
and set W5{(1,0.5,20.3) ,(0.3,1.0.4) , (20.5,0.4,1)} so as to allow for some dependence 
across the random shocks while satisfying the assumptions of the underlying distribu-
tional theory. Regarding the choice of parameters we use {�q,�x}5{0.5,0.5} throughout 
and set the threshold parameter g0 5 0.25.

Our initial goal is to assess the finite sample bias and variability of ĝ 5 argminST (g) . 
For this purpose we distinguish between two scenarios of strong and weak threshold 

HASHIMZADE 9780857931016 CHS. 6-13 (M3110).indd   198HASHIMZADE 9780857931016 CHS. 6-13 (M3110).indd   198 01/07/2013   09:5901/07/2013   09:59



Estimation and inference in threshold type regime switching models   199

effects. Results for this experiment are presented in Table 8.2 which displays averages 
and standard deviations across N 5 1000 replications.

The figures in Table 8.2 suggest that both the threshold and slope parameter estima-
tors have good small sample properties as judged by their bias and variability. We note 
that ĝ has negligible finite sample bias even under small sample sizes such as T 5 200. 
However, an interesting distinguishing feature of ĝ is its substantial variability relative to 
that characterizing the slope parameter estimators. Under the weak threshold scenario 
for instance and the moderately large sample size of T 5 400, we note that s(ĝ) < E(ĝ) , 
whereas the standard deviations of the b̂i(ĝ)rs are substantially smaller. It will be inter-
esting in future work to explore alternative estimators that may have lower variability.

The above data generating process can also be used to assess the properties of the 
LR- based test for testing hypotheses about g. Using the same parameterization as in 
Table 8.2 we next consider the finite sample size properties of the likelihood ratio test for 
testing H0  :  g 5 0.25. Results for this experiment are presented in Table 8.3, which con-
trasts nominal and empirical sizes. Empirical sizes have been estimated as the number of 
times (across N replications) that the estimated p- value is smaller than 1 per cent, 2.5 per 
cent and 5 per cent respectively. The scenario under consideration corresponds to Case 2 
under a weak threshold parameterization.

Table 8.3 suggests an excellent match of theoretical and empirical sizes across a wide 
range of small to moderately large sample sizes. Note also that this happens under a 
rather weak threshold effect forcing solely the slope parameters to switch once qt21 cross 
the value 0.25. It is also important to recall that the above inferences based on a nuisance 

Table 8.2 Finite sample properties of ĝ and b̂i(ĝ)

E (ĝ) s (ĝ) E (b̂10) s (b̂10) E (b̂20) s (b̂20) E (b̂11) s (b̂11) E (b̂21) s (b̂21)

Case 1(strong) :  b10 5 1, b20 5 2, b11 5 0.5, b12 5 1, g0 5 0.25

T 5 100 0.227 0.183 0.991 0.142 2.012 0.199 0.515 0.138 1.009 0.163
T 5 200 0.243 0.080 0.996 0.099 2.004 0.128 0.507 0.087 1.014 0.104
T 5 400 0.246 0.034 0.999 0.069 2.000 0.087 0.502 0.059 1.004 0.073

Case 2 (weak) :  b10 5 1, b20 5 1, b11 5 0.5, b12 5 1, g0 5 0.25

T 5 100 0.156 0.621 1.016 0.239 0.962 0.276 0.494 0.201 1.052 0.212
T 5 200 0.219 0.396 0.994 0.126 0.981 0.156 0.489 0.109 1.041 0.131
T 5 400 0.248 0.215 1.000 0.074 0.987 0.098 0.495 0.064 1.021 0.082

Table 8.3 Size Properties of the LR test for H0 : g 5 0.25 

0.010 0.025 0.050

T 5 100 0.010 0.025 0.065
T 5 200 0.017 0.030 0.065
T 5 400 0.015 0.032 0.054
T 5 800 0.010 0.024 0.055
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parameter- free limiting distribution are valid solely under a homoscedasticity restriction 
forcing E [u2

t 0qt ] to be constant.

4  GOING BEYOND THE STANDARD ASSUMPTIONS AND 
SUGGESTIONS FOR FURTHER WORK

The various methods for detecting the presence of threshold effects and subsequently 
estimating the model parameters that we reviewed above crucially depend on the 
 stationarity and ergodicity of the series being modelled. It is indeed interesting to note 
that, despite the enormous growth of the unit root literature, the vast majority of the 
research agenda on exploring non- linearities in economic data has operated under the 
assumption of stationarity, highlighting the fact that non- stationarity and non- linearities 
have been mainly treated in isolation. In fact one could also argue that they have often 
been viewed as mutually exclusive phenomena with an important strand of the literature 
arguing that neglected non- linearities may be the underlying cause of the observed per-
sistence in numerous series.

One area through which threshold specifications entered the world of unit roots is 
through the concept of cointegration, a statistical counterpart to the notion of a long- 
run equilibrium linking two or more variables. This naturally avoided the technical 
problems one may face when interacting non- linearities with non- stationarities, since 
cointegrated relationships are by definition stationary processes and their residuals can 
be interpreted as mean- reverting equilibrium errors whose dynamics may describe the 
adjustment process to the long- run equilibrium. Consider for instance two I(1) variables 
yt and xt and assume that they are cointegrated in the sense that the equilibrium error zt 
is such that 0r 0,1 in

 yt 5 bxt 1 zt

 zt 5 rzt21 1 ut. (8.16)

Researchers such as Balke and Fomby (1997) proposed to use threshold type 
 specifications for error correction terms for capturing the idea that adjustments to 
long- run equilibria may be characterized by discontinuities or that there may be periods 
during which the speed of adjustment to equilibrium (summarized by r) may be slower 
or faster depending on how far we are from the equilibrium, or alternatively depending 
on some external variable summarizing the state of the economy. More formally the 
equilibrium error or error correction term can be formulated as

 Dẑt 5 er1ẑt21 1 vt qt21 # g

r2ẑt21 1 vt qt21 . g
 (8.17)

with ẑt 5 yt 2 b̂xt typically taken as the threshold variable qt. Naturally one could also 
incorporate more complicated dynamics to the right- hand side of (8.17) in a manner 
similar to an Augmented Dickey–Fuller regression. The natural hypothesis to test in this 
context is again that of linear adjustment versus threshold adjustment via H0  :  r1 5 r2. 
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This simple example highlights a series of important issues that triggered a rich body of 
literature on testing for the presence of non- linear dynamics in error correction models. 
First, the above framework assumes that yt and xt are known to be cointegrated so that 
zt is stationary under both the null and alternative hypotheses being tested. In principle 
therefore the theory developed in Hansen (1996) should hold and standard tests dis-
cussed earlier should be usable (see also Enders and Siklos, 2001). Another difficulty 
with the specification of a SETAR type of model for ẑt is that its stationarity properties 
are still not very well understood beyond some simple cases (see Chan and Tong, 1985 
and Caner and Hansen, 2001, pp. 1567–8).1

One complication with alternative tests such as H0  :  r1 5 r2 5 0 is that under this 
null the threshold variable (when qt ; ẑt) is no longer stationary. It is our understanding 
that some of these issues are still in need of a rigorous methodological research agenda. 
Note for instance that fitting a threshold model to ẑt in (8.17) involves using a gener-
ated variable via yt 2 b̂xt unless one is willing to assume that the cointegrating vector 
is known.

Perhaps a more intuitive and rigorous framework for handling all of the above issues 
is to operate within a multivariate vector error correction setting à la Johansen. Early 
research in this area has been developed in Hansen and Seo (2002) who proposed a test of 
the null hypothesis of linear versus threshold adjustment in the context of a vector error 
correction model (VECM). Assuming a VECM with a single cointegrating relationship 
and a known cointegrating vector, Hansen and Seo (2002) showed that the limiting 
theory developed in Hansen (1996) continues to apply in this setting. However, and as 
recognized by the authors, the validity of the distributional theory under an estimated 
cointegrating vector is unclear. These two points are directly relevant to our earlier claim 
about testing H0  :  r1 5 r2 in (8.17). If we are willing to operate under a known b then the 
theory of Hansen (1996) applies, and inferences can be implemented using a supgWT (g)  
or similar test statistic.

In Seo (2006) the author concentrates on the null hypothesis of no linear cointegration 
which would correspond to testing the joint null hypothesis H0  :  r1 5 r2 5 0 within our 
earlier ECM specification. Seo’s work clearly highlights the impact that a non- stationary 
threshold variable has since under this null hypothesis the error correction term used as 
the threshold variable is also I(1), and Hansen’s (1996) distributional framework is no 
longer valid. It is also worth emphasizing that Seo’s distributional results operate under 
the assumption of a known cointegrating vector. In a more recent paper Seo (2011) 
explores in greater depth the issue of an unknown cointegrating vector and derives a 
series of large sample results about b̂ and ĝ via a smoothed indicator function approach 
along the same lines as Seo and Linton (2007).

Overall there is much that remains to be done. We can note for instance that all of 
the above research operated under the assumption that threshold effects were relevant 
solely in the adjustment process to the long- run equilibrium with the latter systemati-
cally assumed to be given by a single linear cointegrating regression. An economically 
interesting feature that could greatly enhance the scope of the VECMs is the possibil-
ity of allowing the cointegrating vectors also to be characterized by threshold effects. 
This would be particularly interesting for the statistical modelling of switching equi-
libria. Preliminary work in this context can be found in Gonzalo and Pitarakis (2006a, 
2006b).
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5 CONCLUSIONS

The purpose of this chapter was to provide a comprehensive methodological overview of 
the econometrics of threshold models as used by economists in applied work. We started 
our review with the most commonly used methods for detecting threshold effects and 
subsequently moved towards the techniques for estimating the unknown model param-
eters. Finally we also briefly surveyed how the originally developed stationary threshold 
specifications have evolved to also include unit root variables for the purpose of captur-
ing economically interesting phenomena such as asymmetric adjustment to equilibrium. 
Despite the enormous methodological developments over the past ten to twenty years 
this line of research is still in its infancy. Important new developments should include 
the full development of an estimation and testing methodology for threshold VARs 
similar to Johansen’s linear VAR analysis, together with a full representation theory that 
could allow for switches in both the cointegrating vectors and their associated adjust-
ment process. As discussed in Gonzalo and Pitarakis (2006a, 2006b) such developments 
are further complicated by the fact that it is difficult to associate a formal definition of 
threshold cointegration with the rank properties of VAR- based long- run impact matri-
ces, as is the case in linearly cointegrated VARs.

NOTES

* Financial support from the ESRC is gratefully acknowledged.
1. Caner and Hansen (2001) was in fact one of the first papers that sought to combine the presence of unit 

root type of non- stationarities and threshold type non- linear dynamics. Their main contribution was the 
development of a new asymptotic theory for detecting the presence of threshold effects in a series which 
was restricted to be a unit root process under the null of linearity (for example testing H0  :  b1 5 b2 in 
Dyt 5 b1yt21I(qt21 # g) 1 b2yt21I(qt21 . g) 1 ut with qt ; Dyt2k for some k $ 1 when under the null of 
linearity we have Dyt 5 ut so that yt is a pure unit root process). Pitarakis (2008) has shown that when the 
fitted threshold model contains solely deterministic regressors such as a constant and deterministic trend 
together with the unit root regressor yt21 the limiting distribution of maxiWT

[ i ] takes a familiar form given 
by a normalized quadratic form in Brownian Bridges and readily tabulated in Hansen (1997). Caner and 
Hansen (2001) also explore further tests such as H0  :  b1 5 b2 5 0 which are directly relevant for testing 
H0  :  r1 5 r2 5 0 in the above error correction model (ECM).
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APPENDIX

The code below estimates the threshold parameter ĝ 5 argmingST (g)  using the specifica-
tion in (8.15). It takes as inputs the variables y ; yt, x ; xt21 and qt ; qt21 and outputs 
ĝ. The user also needs to input the desired percentage of data trimming used in the deter-
mination of G (for example trimper50.10).

proc gamhatLS(y,x,q,trimper);
local t,qs,top,bot,qss,sigsq1,r,xmat1,xmat2,thetahat,zmat,
res1,idx;

t=rows(y); /* sample size */
qs=sortc(q[1:t- 1],1); /* threshold variable */
top=t*trimper;
bot=t*(1- trimper);
qss=qs[top+1:bot]; /* Sorted and Trimmed Threshold Variable 
*/

sigsq1=zeros(rows(qss),1); /* Initialisation: Defining some 
vector of length (bot- top) */

r=1; /* Looping over all possible values of qss */
do while r<=rows(qss);
xmat1=ones(t- 1,1).*(q[1:t- 1].<=qss[r])~x[1:t- 1].*(q[1:t-1].
<=qss[r]);

xmat2=ones(t- 1,1).*(q[1:t- 1].>qss[r])~x[1:t- 1].*(q[1:t- 1].
>qss[r]);

zmat=xmat1~xmat2;
thetahat=invpd(zmat’zmat)*zmat’y[2:t];
res1=y[2:t]- zmat*thetahat;
sigsq1[r]=res1’res1; /* Residual Sum of Squares for each 
 possible value of qss */

r=r+1;
endo;
idx=minindc(sigsq1); /* Fetch the index where the smallest 
value of sigsq1 is located */

retp(qss[idx]); /* Returns the threshold parameter estimator 
*/

endp;
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9 Testing structural stability in macroeconometric 
models*
Otilia Boldea and Alastair R. Hall

1 INTRODUCTION

Since the earliest days of macroeconometric analysis, researchers have been con-
cerned about the appropriateness of the assumption that model parameters remain 
constant over long periods of time; for example see Tinbergen (1939).1 This concern 
is also central to the so- called Lucas (1976) critique which has played a central role in 
shaping macroeconometric analysis in the last thirty years. Lucas (1976) emphasizes 
the fact that the decision models of economic agents are hard to describe in terms of 
stable parameterizations, simply because changes in policy may change these decision 
models and their respective parameterization. These arguments underscore the impor-
tance of using structural stability tests as diagnostic checks for macroeconometric 
models.

A large body of empirical macroeconomic studies provides evidence for parameter 
instability in a variety of macroeconomic models. For example, considerable evidence 
exists that the New Keynesian Phillips curve has become flat and/or less persistent in 
recent years; see for example Alogoskoufis and Smith (1991), Cogley and Sargent (2001), 
Zhang et al. (2008), Kang et al. (2009). Similarly, there is evidence that the interest rate 
reaction function is asymmetric over the business cycle; see for example Boivin and 
Giannoni (2006), Surico (2007), Benati and Surico (2008), Liu et al. (2009). Examples 
of parameter instability are not confined to monetary policy, but also extend to: growth 
models (Ben- David et al., 2003); output models (Perron, 1997, Hansen, 1992); exchange 
rate models (Rossi, 2006); unemployment rate models (Weber, 1995, Papell et al., 2000, 
Hansen, 1997b), and many more. If such instabilities are ignored in the estimation 
procedure, they lead to incorrect policy recommendations and flawed macroeconomic 
forecasts.

Thus, it is essential – and it has become common practice – to test for instability in 
macroeconomic models. Instabilities can be of many types. In this chapter, we describe 
econometric tests for three main types of instability: parameter breaks, other parameter 
instabilities and model instabilities.

The first category, parameter breaks, focuses on sudden parameter changes. It may be 
desired to test for change that occurs at a particular time. In this case, the time of change, 
called break- point in econometrics and change- point in statistics, is said to be known. It 
can also be that it is desired to test for change at some unspecified point in the sample. In 
this case, the break- point is said to be unknown. We discuss tests for both a known and 
an unknown break. We also present methods for detecting multiple break- points, and 
their practical implementation.

For the second category, other parameter instabilities, we give a brief but thorough 
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account of the state- of- the- art tests for threshold models, smooth transition models and 
Markov- switching models.

In practice, there is no reason to assume that only parameters change, while the under-
lying functional form stays the same. Therefore, the third category of tests we describe is 
for model instabilities, when the functional form of the model is allowed to change after 
a known or unknown break.

In macroeconomics, the tests we present are often viewed as tests for Lucas critique. 
Lucas critique, at the time it was written, was directed against the use of backward- 
looking expectations, which did not take into account that agents will change their 
decision making when policy changes occur, leading to parameter or model instability. 
However, as Estrella and Fuhrer (2003) point out, using forward- looking expectations 
that incorporate certain policy changes does not make a model immune either to Lucas 
critique or to parameter or model instability. To see this, note that even if a structural 
model of the economy exists – with forward- looking behaviour, based on solid micro-
economic foundations, with important policy functions specified – it is unclear whether 
one can derive the complete model, or estimate it in practice. Any simplification, param-
eter calibration, omission or misspecification of relevant policy functions and other 
agent decisions can lead to parameter or model instability. Thus, even though it is often 
stated that Lucas critique implies that only reduced- form models suffer from instability 
(see for instance Lubik and Surico, 2010), in practice all models are prone to this problem 
and need to be tested for instability.2

In this chapter, we discuss Wald- type tests for breaks that are based on least- squares 
(LS) type methods, suitable for reduced- form models, and also on two- stage least- 
squares (2SLS) and generalized method of moments (GMM) estimation, more suitable 
for structural models. The chapter is organized as follows. In section 2, we present struc-
tural stability tests for a single break based on GMM estimation. In section 3, we discuss 
testing strategies for multiple break- points. Section 4 provides a brief but thorough 
account of tests for other types of parameter instability, with comments on the most 
recent developments in this literature. Section 5 focuses on testing for model instabilities 
rather than parameter instabilities. Section 6 concludes.

2  TESTING FOR DISCRETE PARAMETER CHANGE AT A 
SINGLE POINT

In this section, we summarize the literature on testing for discrete parameter change in 
macroeconometric models based on GMM. GMM provides a method for estimation 
of the parameters of a macroeconomic model based on the information in a popula-
tion moment condition. GMM is described elsewhere in this Handbook, see Chapter 
14 by Alastair Hall, and so here we assume knowledge of the basic GMM framework. 
For ease of reference, we adopt the same generic notation as in Chapter 14: thus, the 
population moment condition is written as E [ f (vt,q0)] 5 0 in which q0 denotes the true 
value of the p 3 1 parameter, vt is a random vector, and f ( 

#
 ) is a q 3 1 vector of con-

tinuous differentiable functions.3 The sample is assumed to consist of observations on 
{vt,  t 5 1, 2, . . . T}.

As befits the GMM framework, the null and alternative hypotheses are expressed 
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in terms of the population moment condition. The null hypothesis is that the popula-
tion moment condition holds at the same parameter value throughout the sample. 
The alternative of interest here is that the population moment condition holds at one 
value of the parameters up until a particular point in the sample, called break- point, 
after which the population moment condition holds at a different parameter value. 
To formally present the hypotheses of interest here, we need a notation for the break- 
point. Following the convention in the literature, we let l be a constant defined on 
(0, 1)  and let [Tl ] denote the potential break- point at which some aspect of the model 
changes.4 For our purposes here, it is convenient to divide the original sample into two 
subsamples. Subsample 1 consists of the observations before the break- point, namely 
T1 (l) 5 {1, 2, . . . , [lT ]}, and subsample 2 consists of the observations after the break- 
point, T2 (l) 5 {[lT ] 1 1, . . . T}.

As mentioned in the introduction, this break- point may be treated as known or 
unknown in the construction of the tests. If it is known, then the break- point is specified 
a priori by the researcher and it is only desired to test for instability at this point alone. 
For example, Clarida et al. (2000) investigate whether the monetary policy reaction func-
tion of the Federal Reserve Board is different during the tenure of different chairmen. Of 
particular interest in their study is whether or not the reaction function is different pre-  
and post- 1979, the year Paul Volcker was appointed as Chairman. Since their analysis 
uses quarterly data, this involves exploring whether or not there is parameter change at 
the fixed break date with [Tl ] 5 1979.2. If the break- point is unknown, the alternative 
is the broader hypothesis that there is parameter change at some point in the sample. We 
begin our discussion with the simpler case in which the break- point is known, and then 
consider the extension to the unknown break- point case.

For a fixed break- point indexed by l, the null hypothesis of interest can be expressed 
mathematically as

 H0 :  E [ f (vt,q0) ] 5  0,   for t 5 1, 2, . . . , T, (9.1)

and the alternative hypothesis as

 H1 (l) :   
E [ f (vt,q1)] 5  0, for t [ T1 (l)
E [ f (vt,q2)] 5  0, for t [ T2 (l) ,

where q1 2 q2.
This statement of the alternative allows all elements of the parameter vector to change; 

this scenario is referred to in the literature as ‘pure structural change’. It is also possible 
to restrict attention to an alternative in which only certain elements of the parameter 
vector are allowed to change with the remainder taking the same value before and after 
the break- point; this scenario is referred to as ‘partial structural change’. Given space 
limitations, we focus on the case of pure structural change, which is arguably of most 
practical interest. We note parenthetically that all the methods discussed can be adapted 
to test for partial structural change in a relatively straightforward fashion, and that the 
qualitative discussion of the properties of the tests below also extends to those for partial 
structural change.

Andrews and Fair (1988) propose Wald, Lagrange Multiplier (LM) and Difference 
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(D) statistics to test H0 versus H1 (l) . These statistics are actually derived by applying 
the test principles concerned to a different but equivalent specification of the null and 
alternative hypothesis in terms of a set of linear restrictions on an augmented param-
eter vector that indexes an augmented population moment condition. Since all three 
statistics have the same limiting properties under null and local alternatives, we focus 
exclusively on the Wald statistic and use it to discuss issues common to all three tests. As 
emerges below, the Wald statistic has an appealing intuitive structure that can be moti-
vated without appealing to Andrews and Fair’s (1988) framework involving augmented 
parameter vectors and moments; we therefore do not describe their approach, leaving 
the interested reader to refer to their paper or to Hall (2005, Chapter 5.4).

The form of the Wald statistic can be motivated as follows. The null hypothesis is that 
the parameters take the same value before and after the break- point, and the alternative 
hypothesis is that the parameters take a different value before and after the break- point. 
Given this structure, a natural way to assess which is true is to estimate the parameters 
based on the observations in T1 (l) and T2 (l) separately and then compare these estima-
tors. If the null is true there should be no difference between them – allowing for sam-
pling variation – while if the alternative is true, there should be a difference. This is the 
essence of the Wald statistic.

To present the formula for the statistic, we require certain notation. For i 5 1, 2, let 
gi, T (q;l) 5 T21St[Ti (l) f (vt,q) , where St[Ti(l) denotes summation over t for all values 
in Ti(l) , Gi, T (q;l) 5 0gi, T (q;l) /0qr, Si(l) 5  lim TS`Var [T1/2gi, T (q; l) ] and Si, T (l) be a 
consistent estimator for Si(l) . The subsample parameter estimators referred to in the 
previous paragraph are calculated in the following way.

Definition 1 For i 5 1, 2, q̂i, T (l) is defined to be the GMM estimator of qi based on the 
population moment condition E [ f (vt,qi) ] 5 0 calculated from observations in Ti(l) and 
using weighting matrix Wi, T 5 {Si, T (l)}21.

In the literature, q̂i, T (l) , i 5 1, 2, are often referred to as ‘partial- sum’ GMM estima-
tors because they are based on the part of the sample, either up to or after the break- 
point. Notice that the specified choice of weighting matrix is optimal, and that in practice 
the estimators would be obtained using a two- step or iterated estimation; see Chapter 14 
in this volume for further details.

The Wald test statistic is as follows:

 WT (l) 5  T [q̂1, T (l)  2  q̂2, T (l) ]r V̂W
(l)21

 [q̂1, T (l)  2  q̂2, T (l) ], (9.2)

where, using q̂i 5 q̂i,T (l) for ease of notation,

 V̂W (l) 5 [G1,T (q̂1;l)rW1,T (l)G1,T (q̂1;l) ]21  

 1 [G2,T (q̂2;l)rW2,T (l)G2,T (q̂2;l) ]21. (9.3)

The limiting distribution of the Wald statistic under the null hypothesis is given in the 
following proposition:
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Proposition 1 If certain regularity conditions hold then under H0, WT (l) Sd c2
p.

The regularity conditions referred to in Proposition 1 are the same as those needed 
for the standard first order asymptotic theory of GMM estimators (see Andrews and 
Fair, 1988 or Hall, 2005, Chapter 5.4). They include the crucial assumptions that 
vt is  non- trending, the function f (vt, # ) is smooth in q, and that the parameters are 
identified.5

As anticipated in our motivation of the test above, the test statistic behaves very dif-
ferently under H1 (l) . For in this case, we have

 q̂1, T (l) 2 q̂2, T (l)  Sp q1 2 q2 5 m (l) ,

say, with m (l) 2 0 because q1 2 q2. As a result, it can be shown that WT (l) diverges as 
T S `, in consequence of which WT (l)  is said to be a consistent test of H0 (l)  versus 
H1 (l) .6

While the statistic is designed to test for parameter change at a particular point in 
the sample and is consistent against that alternative, caution needs to be exercised in 
interpreting the outcome of the test. To see why, we now consider the behaviour of 
WT (l)  if the parameters do not change at [Tl] but do change at some other point in the 
sample. Let this true break- point be indexed by l* and, for sake of argument, assume 
l* . l, that is, WT (l)  is designed to test for parameter change at a point in the sample 
before it actually occurs. Further assume the population moment condition is satisfied 
at q*1  for observations t # [Tl* ], and is satisfied at q*2  for observations t . [T l* ]. In 
this case, T1 (l)  contains observations for which E [ f (vt,q*1 ) ] 5 0, and so q̂1, T (l)  Sp  q*1 ; 
but T2 (l) contains some observations for which E [ f (vt,q*1 ) ] 5 0 and some for which 
E [ f (vt,q*2 )] 5 0, and, as a result, it can be shown that q̂2, T (l)  Sp  h(q*1 ,q*2 ) for some func-
tion h( 

#
 , 

#
 ). Therefore, under this scenario, we have

 q̂1, T (l) 2 q̂2, T (l)  Sp  q*1 2 h(q*1 ,q*2 ) 5 m*(l,l*) , say.

In general, m*(l,l*) 2 0, and so by similar arguments to the above the test diverges in 
this case as well.7 Thus in the limit, the test rejects with probability 1 when T  is large 
even if the wrong break- point has been specified under the alternative. In finite samples, 
the impact is less clear because – loosely speaking – h(q*1 ,q*2 ) is a weighted average of 
q*1  and q*2 : if h(q*1 , q*2 ) is close to q*2  then the test is more likely to reject than if h(q*1 , q*2 ) 
is close to q*1  ceteris paribus. Either way, the possibility of parameter change at other 
points in the sample complicates the interpretation of the outcome of the fixed break- 
point test, and motivates the use of the unknown break- point tests to which we now 
turn.

If the break- point is unknown, then it is necessary to test whether there is evidence of 
instability at any point in the sample. However, in practice, it is necessary to limit atten-
tion to potential breaks indexed by l values within a closed subset of the unit interval 
that is, l [ L 5 [ll, lu ] ( [0, 1]. The choice of L is critical and typically governed by 
two main considerations: on the one hand, given the alternative of interest, it is desirable 
for L to be as wide as possible; on the other hand, it must not be so wide that asymptotic 
theory is a poor approximation in the subsamples. In applications to models of eco-
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nomic time series, it has become customary to use L equal to [0.15, 0.85] or (less often) 
[0.20, 0.80]. The null hypothesis is again H0 in (9.1). The alternative is

 H1 (L) 5  H1 (l)  holds for some l [ L.

The construction of statistics for testing H0 versus H1 (L)  is a natural extension of the 
fixed break- point methods. In this setting, WT (l)  is calculated for each possible l to 
produce a sequence of statistics indexed by l, and inference is based on some function 
of this sequence.8 Three functions of this sequence have become popular in the literature 
and these lead to the so- called ‘Sup- , ‘Av- ’ and ‘Exp- ’ statistics which are respectively 
given by,9

 SupWT 5 sup
l[L

 {  WT (l)  },

 AvWT 5 3
L

WT (l)dJ(l) ,

 ExpWT 5 log e  3
L

 exp[0.5WT (l) ]dJ(l)  f ,

where J(l) 5 (lu 2 ll)21dl. As they stand, these statistics are not operational because 
we have treated l as continuous, whereas in practice it is discrete. For a given sample 
size, the set of possible break- points are Tb 5 {i/T ; i 5 [llT ], [llT ] 1 1, . . . , [luT ]}. 
So in practice, inference is based on the discrete analogs to SupWT, AvWT and ExpWT :

 SupWT 5 sup
i[Tb

 {  WT (i/T )  }

 AvWT 5 d21
b a

[luT]

i5 [llT]
WT (i/T)

 ExpWT 5 log e  d21
b a

[luT]

i5 [llT]
 exp[0.5WT (i/T) ]  f

where db 5 [luT ] 2 [llT ] 1 1. Various statistical arguments can be made to justify 
one statistic over another, but it has become common practice to report all three in the 
empirical literature.

The limiting distribution of the three statistics is given in the following proposition.10

Proposition 2 If certain regularity conditions hold then under H0,  we  have: 
SupWT 1 Supl[LW (l) , AvWT 1eLW (l)dJ(l) , and ExpWT 1  log[  eLexp{0.5W (l)}dJ(l)  ] 
where W (l) 5 {l (1 2 l)}21BBp (l)rBBp (l) and BBp (l)  denotes a p 3 1 Brownian 
Bridge on [0, 1].

The limiting distributions in Proposition 2 are non- standard but depend only on 
p, the dimension of the parameter vector. Percentiles are reported in Andrews (2003) 
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(Sup- ) and Andrews and Ploberger (1994) (Av-  and Exp- ). These percentiles enable the 
researcher to ascertain whether the statistic is significant at a prescribed level. Hansen 
(1997a) reports response surfaces which can be used to calculate approximate p- values 
for all three versions of these tests.

The use of unknown break- point tests removes the concern about the interpretation 
of fixed break- point tests, but the tests are still only designed against an alternative in 
which there is one break- point. This is a limitation because in many cases of interest there 
are likely to be multiple events in the sample which may have caused the parameters to 
change. In the next section, we describe various tests that can be used to test for param-
eter change at multiple unknown break- points.

3  TESTING DISCRETE PARAMETER CHANGE AT MULTIPLE 
POINTS

Tests for multiple break- points have been proposed predominantly in the context of 
models that can be estimated via LS- type criteria, such as ordinary least- squares (OLS), 
two- stage least- squares (2SLS) and non- linear least- squares (NLS). The most widely 
used testing strategy for multiple breaks in linear models estimated via ordinary least- 
squares is the one proposed by Bai and Perron (1998). This strategy involves three types 
of tests: (i) testing no breaks versus a known number of breaks; (ii) testing no breaks 
against an unknown number of breaks up to a fixed upper bound, and (iii) testing , 
versus , 1 1 breaks.

These tests are useful as their by- products are consistent estimates for the break loca-
tions (see Bai and Perron, 1998). The strategy for determining the number of break- points 
in a sample involves, as a first step, testing zero versus a known or unknown number of 
breaks, via tests in (i)–(ii), described below. It is common to test for a maximum of five 
breaks. If the null of zero breaks is not rejected, we conclude that there are no breaks. If 
the null is rejected, it implies we have at least one break, and so we employ the tests in 
(iii), described below, for one versus two breaks. If we do not reject, then we conclude we 
have one break; if we reject, then we have at least two breaks and test via the tests in (iii) 
for two versus three breaks. If we do not reject, then we conclude we have two breaks. If 
we reject, then we continue testing for an additional break until we cannot reject the null 
or a maximum number of breaks has been reached. This is a simple sequential strategy 
for estimating the number of breaks, and provided the significance level of each test is 
shrunk in each step towards zero,11 we will obtain the true number of breaks with prob-
ability 1 for large T.

To describe these tests, consider the following univariate linear model, estimable via 
OLS:

 yt 5  xrtqi 1 ut  (t 5 T 0
i21 1 1, . . . , T 0

i )  (i 5 1, . . . , m 1 1) (9.4)

where yt is a scalar dependent variable, xt is a p 3 1 vector of exogenous regres-
sors, uncorrelated with ut, possibly including lags of yt. Also, the number of breaks 
m is fixed, T 0

i 5 [l0
i T ] are the true break- points, l0

i  are the true break- fractions, for 
i 5 0, . . . , m 1 1, and l0

0 5 0, l0
m11 5 1 by convention. Here, we treat l0

i  as unknown 
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quantities; the tests for unknown break- points simplify as in the previous section when 
the l0

i s are known.

(i) Tests for a Fixed Number of Breaks

Under the notation above, the tests for a fixed number of breaks are for the following 
null and alternative hypotheses:

 H0 :  m 5 0  H1 :  m 5 k, for a fixed k. (9.5)

Since the LM and LR tests are asymptotically equivalent to the Wald test, we restrict 
our attention to the latter. To derive Wald tests from their principles, rewrite the null 
hypothesis in terms of restricting the parameters to be the same across subsamples:

 H0  : q1 5 q2 5 . . . 5 qk11 (9.6)

 H1  : qi 2 qj for all i 2 j,  (i, j 5 1, . . ., k 1 1). (9.7)

To define the Wald test, let R|k be the k 3 (k 1 1)  matrix with the ( j, j)th element 
equal  to 1, the ( j, j 1 1)th element equal to 21, and the rest equal to zero, for 
j 5 1, 2, . . . , k. Also let Rk 5 R|k # Ip, where #  denotes the Kronecker product. 
Then H0 above can be written as Rkq

c 5 0, where qc is a (k 1 1)p vector that ver-
tically stacks q1, . . . ,qk11. Let lc 5 (0,l1,l2, . . . , lk, 1)r the break- fractions associ-
ated with any candidate partition of the sample Tc 5 (0, T1, T2, . . . , Tk, T )r, where 
Ti 5 [liT ] for i 5 1, 2, . . . , k. Also, let the corresponding subsamples be denoted by 
Ti(lc) 5{ [li21T ]1 1, [li21T ] 1 2, . . . , [liT ]} for i 5 1, 2, . . . , k 1 1. Since the Wald 
tests are constructed using estimates under the alternative, we have to estimate 
q1, . . . ,qk11.

Definition 2 For i 5 1, 2, . . . , k 1 1, q̂i, T (lc) is defined to be the OLS estimator of qi, 
based on minimizing the sum of squared residuals calculated from observations in Ti(lc) . 
Also, q̂c

i,T (lc) is the (k 1 1)p vector that vertically stacks q̂i,T (lc), for i 5 1, . . . , m 1 1.

Let also Vi(lc) 5  lim T S `Var(T1/2 [qi,T ( lc) 2 qi ]),Vi, T (lc)  be a consistent estimator of 
Vi(lc)  and VT (lc) the (k 1 1) 3 (k 1 1) block- diagonal matrix with the (i, i)th diagonal 
block equal to Vi, T (lc). Then the Wald test for a particular sample partition lc is defined 
as follows:

 WT (lc)5  T [Rk q̂c
i, T (lc) ]r [Rk VT (lc)  Rrk ]21 [Rk q̂c

i, T (lc) ] (9.8)

For k 5 1, this test is the OLS equivalent of its GMM counterpart in equation (9.2). 
As in the previous section, it depends on the particular partition of the sample used, so 
for unknown break- points, we use its SupWT version, defined as:

 SupWT (k) 5 sup
lc[Lc

e

 {  WT (lc)  }, (9.9)
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where Lc
e 5 {(0,l1, . . . ,lk, 1) : 0li 2 li21 0 $ e, (i 5 1, . . . , k) , l1 $ e, 12lk $ e for some 

positive e. In practice, e is usually chosen to be 0.15; this implies not only that the breaks 
cannot be too close to the beginning or end of the sample, but also that there are enough 
observations in each subsample so that OLS estimation can be performed. The asymp-
totic distribution of this test is given below.

Proposition 3 Under certain regularity conditions and H0 in (9.6), SupWT (k)  
1 sup

lc[Lc
e
W (lc) , where

 W (lc) 5 Brp(k11) {  [C21
k R|rk (R|kC21

k R|r)21
k R|kC21

k ] # Ip }  Bp(k11),

with Bp (k11) 5 [Brp (l1) , Brp (l2) 2 Brp (l1) , . . . , Brp (lk11) 2 Brp (lk) ]r, a p(k 1 1) 3 1 vector 
of pairwise independent vector of Brownian motion increments of dimensions p, Ck is 
a k 3 k diagonal matrix with elements l1,l2 2 l1, . . . ,lk11 2 lk on the diagonal, and 
lk11 5 1 by convention.

The most important regularity conditions in Proposition 3 are that the regressors are 
not trending, they are orthogonal to the errors, that there is no unit root, and that there 
are no changes in the marginal distribution of xt.12 Unlike for LR- type tests, these regu-
larity conditions allow for heteroscedasticity and autocorrelation. In particular, they 
allow for the variance of ut to change at the same time as the parameters. As pointed 
out by Lubik and Surico (2010), this is an important feature of the SupWT (k)  test that 
allows practitioners to test more accurately for monetary policy breaks during the Great 
Moderation.

The SupWT (k)  test is consistent against H1. For k 5 1, its distribution reduces to the 
one in Proposition 1, and its optimality properties are the same as for GMM settings,13 
but they are not known for k . 1. However, for most practical purposes, it suffices to 
know that in the OLS setting, the SupWT (k) delivers consistent estimators of the true k 
break- fractions indexing the break- points.

(ii) Tests for an Unknown Number of Breaks

The test in (9.9) also rejects with probability 1 when T  is large, if the true number of 
breaks under the alternative is k* 2 k. However, if the true alternative is H1 :  m 5 k*, 
in small samples it might not have good power properties because it is not designed for 
this alternative. To address this issue, Bai and Perron (1998) propose a second set of 
tests, presented below, against the alternative of an unknown number of breaks up to a 
maximum:

 H0 :  m 5 0  H1  : 1 # m # M, for a fixed M. (9.10)

These tests are known as double- maximum or Dmax- type tests. The idea behind these 
tests is to construct for each m [ {1, . . . , M} a SupWT (m)- test (thus a maximum for each 
m), and then to maximize over weighted versions of these statistics to obtain a unique 
test statistic for the null and alternative hypotheses in (9.10). This test is defined below:
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 DmaxWT 5  max
1#m#M

am

p  SupWT (m) , (9.11)

for some fixed, strictly positive weights am. The distribution of this test generalizes in a 
straightforward fashion from Proposition 3:

Proposition 4 Under certain regularity conditions and H0,

 DmaxWT 1 max
1#m#M

am

p sup
lc[Lc

e
a

m11

i51
Wi(lc)

The regularity conditions are the same as for SupWT (m) test, for each m. The weights 
for the DmaxWT test should be set larger for a certain m if one believes that m is more 
likely to be the correct number of breaks. If there is no clear a priori belief about the 
true number of breaks, one can use equal weights am 5 1/M, in which case the test is 
known as a UDmax test. However, note that the scaling p is used because in its absence 
and with equal weights am, this test will be equivalent to testing zero against M breaks, 
since the critical values increase in m for a fixed p. Since, despite the scaling, the critical 
values still tend to increase with m, let c(m,p,a) be the asymptotic critical value of the 
test SupWT (m) /p at significance level 100a%.14 Then the problem of increasing critical 
values is alleviated by setting a1 5 1 and am 5 c(1, p,a) /  c(m, p,a) , and the correspond-
ing test is called a WDmax test.

(iii) Tests for an Additional Break

The third category of tests for multiple breaks (iii) are called sequential Wald tests, since 
they are Wald tests for an additional break. The null and alternative hypotheses are, for 
any given ,:

 H0 :  m 5 ,  H1  : m 5 , 1 1. (9.12)

An LR- type test is proposed in Bai and Perron (1998). However, asymptotically 
equivalent Wald- type tests can be derived as a special case of the sequential Wald tests 
in Boldea and Hall (2013) and Hall et al. (2012). For the Wald test, one ideally uses the 
estimates only under the alternative hypothesis.15 However, for computational ease, it 
has become routine among practitioners to use Bai and Perron’s (1998) approach of 
pre- estimating the model with , breaks. This implies that estimates of the , breaks are 
obtained as a by- product of calculating the Wald statistic SupWT (,), imposed as if they 
were the true ones, and for the alternative hypothesis in (9.12), evidence is maximized for 
exactly one additional break, occurring in only one of the , 1 1 subsamples obtained 
by partitioning the sample with the pre- estimated , breaks. To define the test, let m 
denote each candidate additional break- fraction in the pre- estimated , 1 1 subsamples 
Lq (q 5 1, 2, . . . ,, 1 1), with

 Lq 5 {m : T̂q21 1 (T̂q 2 T̂q21)h # [mT ] # T̂q 2 (T̂q 2 T̂q21)h}.
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In these subsamples, the OLS parameter estimates before and after each candidate addi-
tional break are denoted by qq (m) 5 [q̂1 (m, q)r,q̂2 (m, q)r ]r, where q 5 1, 2, . . . ,, 1 1, and 
the restriction that they are equal is defined through the restriction matrix R* 5 [Ip ;2Ip ]. 
Then the sequential Wald test is:

 WT (, 1 1 0,) 5  max
1#q#,11

sup
m[Lq

WT, , (m, q) (9.13)

where

 WT, , (m, q) 5  T [R*q̂q (m) ]r [R*V*T (m, q)R*r ]21 R*q̂q (m)

and V*T (m, q) is the 2p 3 2p block- diagonal matrix with diagonal blocks V1, T (m, q) 
and V2, T (m, q) . The latter two are defined as consistent estimators of their asymp-
totic equivalents V1 (m, q) 5  lim T S `Var T1/2 [q̂1 (m, q) 2 qq ], respectively V2 (m, q) 5  
lim T S `Var T 1/2 [q̂m,q 2 qq11 ], for q 5 1, 2, . . . ,,.

The asymptotic distribution of the test is described below:

Proposition 5 Under certain regularity conditions and H0 in (9.3), 
 lim  P(WT (, 1 1 0,) # x) 5 G,11

p, h , where Gp, h is the cumulative distribution function of 
sup

h#m#12h

iBp(m) 2 mBp(1) i2

m (1 2 m) .

The regularity conditions follow directly from Hall et al. (2012), by treating all endog-
enous variables as exogenous. They allow for breaks in the error variance occurring at 
the same time as the parameters under H1 in (9.12). Critical values for the tests (i)–(iii) 
can be found in Bai and Perron (1998), and p- values based on approximate response 
surfaces can be found in Hall and Sakkas (2013).

As mentioned above, these tests are useful for models that can be estimated by OLS, 
thus with exogenous regresssors. When some regressors are endogenous, Hall et al. (2012) 
show that a similar sequential procedure for finding the number of breaks in models with 
endogenous regressors can be developed, based on tests constructed with 2SLS estimates.

However, unlike for OLS, with 2SLS, one needs first to assess whether there are 
any breaks in the first- stage regression. To see why this is important, assume that the 
researcher has in mind an economic model, from which the first and second stages of 
2SLS estimation arise naturally. For example, consider the following structural model:

 yt 5 qxt 1 ut (9.14)

 xt 5 g1yt  1  g2ht  1  g3z1, t 1 v1, t (9.15)

 ht 5 d1xt  1  d2z2, t 1 v2, t (9.16)

where yt, xt, ht are scalar dependent variables, zt 5 (z1, t, z2, t)r are scalar exogenous regres-
sors, ut, v1, t, v2, t are errors and q,g1,g2,g3,d1,d2 are scalar unknown parameters that may 
break at unknown locations in the sample.

If one is interested in estimating q, the equation of interest is (9.14), and will be the 
second stage in a 2SLS regression, with the first stage instrumenting for the endogeneity 
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of xt via instruments zt. In this example, the first stage arises naturally, since the reduced 
form for xt can be found by substituting (9.16) and (9.14) into (9.15):

 xt 5 zrtD 1 vt

 D 5 a g3

1 2 qg1 2 d1g2
,

g2d2

1 2 qg1 2 d1g2
b r

 vt 5
g1ut 1 v1,t 1 g2v2,t

1 2 qg1 2 d1g2
. (9.17)

In this context, we can see that all breaks in q, thus in (9.14), will also be in (9.17) by 
default, unless g1 5 0. When g1 5 0, if no other parameters change besides q, (9.17) will 
have no breaks. If any of the parameters gj( j 5 1, 2,3) ,d1,d2 change, then these changes 
are only reflected in (9.17). Thus the first stage can have no breaks, or breaks that are 
common to the second stage, or breaks that are idiosyncratic to the first stage.

In practice, one does not necessarily know which scenario occurs, so it is important to 
consider both the case where the first stage is stable and where it is unstable. For simplic-
ity, consider a data generating process with m and m* breaks in the second and first stage 
regressions respectively:

 yt 5  xtqi 1 ut  (t 5 T 0
i21 1 1, . . . ,T 0

i )  (i 5 1, . . . , m 1 1) (9.18)

where xt is a scalar endogenous regressor, that is, correlated with ut, and thus needs to be 
predicted via the first stage OLS regression with s 3 1 strong instruments zt:

 xt 5 zrtDj 1 vt  (t 5 T*j21 1 1, . . . , T*j )  ( j 5 1, . . . , m* 1 1) (9.19)

with ut correlated with vt, T0 5 T*0 5 1, T 0
i 5 [l0

i T ], T*j 5 [l*j T ], Tm11 5 Tm*11 5 T, 
and some breaks may be common to both equations.

If there are no breaks in the first stage, that is, m* 5 0, the 2SLS structural stability 
tests are computed exactly as their OLS conterparts in (i)–(iii), but for the second stage 
equation (9.18), and with xt replaced by x̂t, its predicted counterpart from an OLS regres-
sion in (9.19). For clarity, the 2SLS estimators are defined below.

Definition 3 For i 5 1, 2, . . . , k 1 1, q̂i,T (lc) is defined to be the 2SLS estimator of qi, 
based on minimizing the OLS sum of squared residuals calculated for the second stage 
(9.18), from observations in Ti(lc) – defined as before – using as regressors x̂t instead of 
xt, where x̂t is the full- sample OLS estimator from the first stage equation (9.19). Also, 
q̂c

T (lc) is the (k 1 1)p vector that vertically stacks q̂i,T (lc), for i 5 1, . . . , m 1 1.

(iv) Sequential Testing Strategy for Stable First Stage Regression

For sequential testing, the tests in (i)–(iii), SupWT, DmaxWT and WT (, 1 1 0,) , are 
defined in the same way as before, except that the 2SLS estimators replace their OLS 
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counterparts in the definition of the tests. As Hall et al. (2012) show, the asymptotic 
distributions of these tests are also the same as in Propositions 3–5. Thus, a 2SLS 
sequential strategy for estimating the number and location of breaks can be con-
structed in the same way from these tests as before, when the first stage equation (9.19) 
is stable.

However, in general (9.19) may also have breaks, that is, m* 2 0. One can test this 
equation for breaks, and find their locations, via the OLS sequential testing strategy in 
(i)–(iii). As discussed above, these tests also provide consistent estimators of the number 
of break- points, m*, and their locations, T*j , ( j 5 1, 2, . . . , m*) .

It remains to find the number of breaks in the second stage, for which x̂t, a pre-
diction of xt based on estimating the first stage equation (9.19), needs to be com-
puted. If one ignores the breaks found in (9.19) in computing x̂t, the 2SLS tests in 
the second stage will pick up these breaks and reject with probability 1 for large T  
even if there are no breaks in the second stage. If one computes x̂t by OLS in each 
subsample   constructed  via the estimates of T*j , and then proceeds with testing for 
breaks in the full sample of the second stage (9.18) via the tests in (i)–(iii), but with 
xt replaced by x̂t, then the asymptotic distributions in Propositions 3–5 are no longer 
valid.16

Fortunately, there is a simple way to side- step these issues and sequentially test for 
breaks in (9.18). A strategy for finding these breaks is described below.

(v) Sequential Testing Strategy for Unstable First Stage Regression

(v-i) Tests for Breaks that are Idiosyncratic to the Second Stage
If breaks are found in the first stage, a strategy for finding the breaks that only occur in 
the second stage is described below.

● Obtain estimates m̂* for the number of breaks m* and T̂*j ( j 5 1, . . . , m̂*) for the 
associated break- points T*j ( j 5 1, . . . , m*) , either as a by- product of the OLS 
sequential strategy in (9.19), or by global estimation via the methods in Bai and 
Perron (1998). If the sequential strategy is used, reduce the critical value in each 
step to make sure that m̂* 5 m* with probability 1 as T  grows larger. This ensures 
that we can treat m̂* as if it were m* in the next steps.

● Split the sample into subsamples T̂ *j 5 {T̂*j21 1 1, T̂*j21 1 2,. . . ,T̂*j } for 
( j 5 1, . . . , m̂*) . In each subsample T̂ *j , compute x̂t via OLS, and run the sequen-
tial testing strategy in (iv) for each of these subsamples of the second stage model 
(9.18).

● As a by- product of the testing strategy, or the re- estimation of the breaks in 
sub- samples T̂ *j  (see Boldea et al., 2012), one obtains consistent estimates of the 
non- common break fractions in (9.18). Denote their break- point counterparts by 
T̂n, (n 5 1, 2, . . . , N) , with N # m. These are the breaks that are idiosyncratic to 
the second stage.

● Let T̂0 5 0 and T̂N11 5 T, to include sample ends. Obtain the union of 
sample  end- points and the breaks in the first stage and second stage, ordered, as 
B 5 {T̂0, . . . , T̂N11}< {T̂*1 , . . . , T̂ *̂m*}. Thus, B contains all the breaks in the first 
and second stage equation in (9.18) and (9.19).
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Thus, via this strategy, the researcher knows the idiosyncratic breaks to the second 
stage, and all the breaks in the first stage. However, for practical purposes, one needs to 
know which breaks are common to the two stages. This is not only important for correct 
estimation of the subsamples in the second stage, it is also of interest to practitioners. 
For example, in the estimation of a hybrid New Keynesian Phillips Curve (NKPC), 
with measured expectations, Boldea et al. (2012) show that a break at the end of 1980 
occurred in the modelled inflation expectations, but that break did not further occur in 
the NKPC itself once the change in expectations was taken into account. The test they 
use to detect common breaks is a usual Wald test for a known break- point, and is defined 
below.

(v-ii) Tests for breaks that are common to both stages

To describe these tests, let the ordered breaks in B be T|1, T|2, . . . , T|H, with H 5 m̂* 1 N. 
Then for any s 5 1, 2, . . . , H such that T̂*j 5 T|s, take the smallest subsample encom-
passing it, {T|s21 1 1, . . . , T|s11}, and calculate the 2SLS estimators q̂s and q̂s11, based on 
subsamples Bs 5 {T|s21 1 1,. . . , T|s}, respectively Bs11 5 {T|s 1 1, . . . , T|s11}. Treat the 
end- points T|s21 and T|s11, and T̂*j  as known. Then the Wald test for a common break T|s, 
to both equations (9.18) and (9.19), is:

 WT 5 T(q̂s 2 q̂s11)r [Vs, T 1 Vs11, T ]21 (q̂s 2 q̂s11) , (9.20)

where Vi, T are consistent estimates of the asymptotic variances Vi 5 limT S ` Var
[T1/2 (q̂i 2 qi)], for i 5 s, s 1 1. Because we test in the second stage for a break pre- 
estimated from another equation, the first stage, the distribution is the same as if the 
break- point T̂s were known.

Proposition 6 Under certain regularity conditions,17 under the null hypothesis of no 
common break in the subsample tested,

 WT Sd c2
1 (9.21)

Thus, all the breaks in the equation of interest (9.18) can be retrieved via the sequential 
strategy in (v), or (iv) if no breaks are found in the first stage regression.

This procedure was defined for one endogenous regressor, but can be generalized to 
p multiple endogenous regressors Xt in which case the degrees of freedom become p. 
Intuitively, one just needs to consistently predict the endogenous regressors from the first 
stage, so the OLS sequential strategy in (i)–(iii) can be applied to the first stage equation 
pertaining to each endogenous regressor separately.18 If the second stage equation also 
has exogenous regressors at, then the tests in (iv)–(v) remain valid, with x̂t replaced by 
(x̂ rt, a rt)r. The optimality of these procedures is, as for OLS methods, unclear, but all the 
tests reject with probability 1 for large T, regardless of whether the breaks are small or 
large.

In non- linear models, a similar sequential procedure as in (i)–(iii) is available for 
models that can be estimated via non- linear least squares (see Boldea and Hall, 2013). 
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Given a known parametric regression function with multiple parameter changes, the 
tests in (i)–(iii) remain valid, and so do their distributions, as long as the OLS estimators 
in (i)–(iii) are replaced by their NLS counterparts.

Even though a procedure for testing for multiple breaks in linear models estimated via 
GMM is not known, its 2SLS counterpart can be used, and as a by- product, one obtains 
consistent break- points as well as parameter estimates. Thanks to the dynamic program-
ming algorithm introduced in Bai and Perron, the computational burden for a sample 
size of T  is less than T(T 1 1) /2 operations, independent of the number of breaks. 
MATLAB code for testing for multiple breaks can be found at https://sites.google.com/
site/otiliaboldea/home.

The testing procedures above are all designed for multiple breaks, when the parameter 
changes infrequently and permanently from one value to another at a few locations in 
the sample. Other types of parameter instability are summarized in the next section.

4 TESTING FOR OTHER TYPES OF PARAMETER CHANGE

Break- points are by default exogenous to the model, since time is an exogenous quan-
tity. When parameter changes are believed to be driven by some observed variables that 
indicate the state of the business cycle or some other important economic indicators, 
researchers resort to other types of parameter change models, called threshold and 
smooth transition models.

Threshold and smooth transition models have been used to model GDP growth, 
unemployment, interest rates, prices, stock returns and exchange rates (for a review 
of the empirical and theoretical econometrics literature, see Van Dijk et al., 2002 and 
Hansen, 2011).

The threshold model, introduced by Howell Tong,19 in many ways resembles the 
break- point model. To see the connection, for simplicity we revert to an exposition with 
one break. Thus, consider the model (9.4) but m 5 1, rewritten in the following way:

 yt 5  xrtqt 1 ut with qt 5 q1 1 (q2 2 q1)1{t $ T1} (9.22)

where 1 is the indicator function. If instead, qt is defined as:

 yt 5  xrtqt 1 ut with qt 5 q1 1 (q2 2 q1)1{qt $ c}, (9.23)

where yt is a scalar dependent variable, c is an unknown parameter, to be estimated, and 
xt and qt are exogenous observed regressors, uncorrelated with ut, one obtains the thresh-
old model. If xt contains lags of yt, this model is known as the threshold autoregressive 
(TAR) model.

In this model, the parameter change is driven by the observed variable qt, called a state 
variable, and c denotes the threshold above which the parameters of the model change 
from q1 to q2. If one orders the data (yt, xt)  on the values of qt, say in ascending order, one 
obtains two subsamples, one for which the true parameter is q1, and another for which 
the true parameter is q2. These two subsamples resemble the break- point subsamples; 
the break- point here is the point in the newly ordered sample where qt changes from a 
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value below c to a value above c. Hansen (1997b) shows that by re- ordering of the data 
as described above, a SupWT of the type described in the previous section can be con-
structed, and its asymptotic distribution for one threshold is the same as in Proposition 3 
for k 5 1. This procedure is extended to estimating multiple thresholds in Gonzalo and 
Pitarakis (2002).

When some of the regressors in xt are endogenous, but qt is exogenous, for one thresh-
old model, Caner and Hansen propose the Sup- type Wald test constructed with a 2SLS 
estimator of the threshold c and GMM estimators of the other parameters. Its asymptotic 
distribution is computed by simulation in Caner and Hansen (2004). For endogenous qt, 
no tests are known so far, although estimation of models with one endogenous threshold 
can be done via 2SLS estimation with bias correction (see Kourtellos et al., 2008).

An equally influential model in empirical macroeconomics is the smooth transition 
autoregressive (STAR) model, introduced by Teräsvirta (1994). This model is mostly 
suitable for policy functions such as the interest rate functions, where the parameter is 
not changing in a sudden fashion from q1 to q2, but in a smooth way. The smoothness is 
imputed by replacing the indicator function with a smooth function, with values in the 
interval (0, 1) , meaning that true parameters at each point in time no longer take two 
values, q1 and q2, but are most of the time in between these values. We present here the 
simplest STAR model, called the logistic STAR, where the indicator function is replaced 
by the smooth logistic function f ( # , # , # ) , defined below:

 yt 5  xrtqt 1 ut with qt 5 q1 1 (q2 2 q1) f (qt,g, c) (9.24)

 f (qt,g, c)  5  
exp{g(qt 2 c)}

1 1 exp{g(qt 2 c)}  (9.25)

Here qt and xt are observed and uncorrelated with the errors ut, and may contain lags of 
yt, g is an unknown smoothness parameter and c is the unknown ‘threshold’ parameter. 
The latter two need to be estimated. When g is large, the transition is faster as the transi-
tion function moves faster from 0 to 1 when qt is above c; when g is small, the transition 
is slower.

This model is different from the threshold or break model in the sense that it can be 
written as a smooth non- linear regression. Unfortunately, the usual non- linear regres-
sion Wald tests do not directly apply. The reason is because, under the null hypothesis 
of q1 5 q2, or no non- linearity, the parameters g, c are not identified, since any value 
of these parameters will render the same linear regression function. This implies that 
we may have a similar problem to the break- point or threshold model, of unidentified 
parameters under the null hypothesis. However, because the regression function in (9.24) 
is smooth under the alternative, one can write a third- order Taylor expansion of f (qt, # , c) 
around g 5 0. This yields a model that has the parameters g, c also identified under the 
null hypothesis, and Eitrheim and Teräsvirta (1996) show that the resulting model can 
be tested for no non- linearity via a usual LM test. If one doesn’t use this expansion, the 
optimality properties of a Sup- type LR test over all possible values of g, c, are studied in 
Andrews et al. (2011), who show that this test may not have the right size.

STAR models have recently been shown to be estimable via GMM in the presence of 
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endogenous regressors using the usual GMM asymptotic theory (see Areosa et al., 2011). 
Thus, we conjecture that the tests discussed here for STAR models can be used in their 
equivalent GMM form with no further complications.

So far, we have discussed models for parameter change driven by an observed vari-
able. However, one may think that the behaviour of macroeconomic variables changes 
with an unobserved variable such as the state of the business cycle. Such models are 
called regime- switching models (or Markov- switching under certain regularity con-
ditions) and were introduced in econometrics by Hamilton (1989). To write down a 
Markov- switching model, let st be an unobserved state variable, with values zero or one 
(that is, for recession or expansion). Then:

 yt 5 xrtqt 1 ut with qt 5 q1 1 (q2 2 q1)st (9.26)

 P(st 5 1 0st21 5 1,It) 5 p1; P(st 5 0 0st21 5 0,It) 5 p2 (9.27)

Here, xt usually includes some lags of yt, and is uncorrelated with ut. Also, st [ {0, 1}, 
and the probabilities of being in a certain state are entirely determined by the previous 
state and the information set at time t, It, which includes xt and all its previous values.

Suppose one wants to test whether the parameter change q2 2 q1 is zero or not. In this 
case, p1 and q2 are the parameters that are not identified under the null hypothesis, but there 
are other complications related to the cases of p1 or q2 being close to zero or 1. This presence 
implies that we cannot use Taylor expansions as in the STAR example to test for parameter 
change. Hansen (1992) proposes an upper bound for a Sup- type LR test, but this bound 
depends on the data and is often burdensome to compute. Garcia (1998) proposes to restrict 
testing to cases where p1, q2 are bounded away from 0, 1, and use the Sup- LR test, where the 
supremum is taken over (p1, q2), and gives the asymptotic distribution of the test. However, 
because the framework he uses to justify his test, taken from Andrews and Ploberger (1994), 
does not apply to Markov- switching models, this test may not have optimal power. To that 
end, we recommend the test by Carrasco et al. (2009), an information- matrix type LM test 
that is shown to have certain desired optimality properties.

When xt is endogenous, Kim (2004) and Kim (2009) show that either a bias- corrected 
maximum- likelihood estimation or a two- step maximum likelihood ignoring the bias 
can be used to estimate the Markov- switching model with two regimes. Similarly, when 
st is endogenous but xt is exogenous, Kim et al. (2008) propose a bias- corrected filter 
to estimate the model. As for STAR, we conjecture that tests can be constructed based 
on these inference procedures, adapted from the Markov switching tests for exogenous 
regressors.

There are many other types of parameter change, but the main types are summarized 
here and they all have their merits for the applied researcher.

5  TESTING FOR OTHER TYPES OF STRUCTURAL 
INSTABILITY

So far, the focus of this chapter has been on testing for parameter change; however, this 
is not the only scenario that can lead to structural instability. In this section, we explore 
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tests for other forms of structural instability that have been developed within the GMM 
framework. To this end, we return to the framework in section 2.

A natural alternative to H0 in (9.1) that captures the notion of structural instability at 
a fixed break- point T1 5 [Tl ] is

 Hr1 (l) :   
E [ f (vt,q0) ] 5 0 for t 5 1, 2, . . . , T1,
E [ f (vt,q0)]  2  0 for t 5 T1 1 1, . . . , T.

Under H r1 (l) , the population moment holds at q0 before the break- point, but fails to 
hold after. Before proceeding further, we note that all that follows applies equally if the 
population moment condition holds at q0 after but not before the break- point.

If q 5 p – and so there are the same number of moment conditions as parameters – 
then it can be shown that H1 (l)  and H r1 (l) are equivalent.20 However, if q . p – and so 
there are more moment conditions than parameters – then this equivalence does not 
hold. Exploiting the decomposition of the population moment condition inherent in 
GMM estimation,21 Hall and Sen (1999) show that H r1 (l) can be decomposed into two 
parts: structural instability in the identifying restrictions at [Tl ] and structural insta-
bility in the overidentifying restrictions at [Tl ]. Instability of the identifying restric-
tions is equivalent to H1 (l) , that is, to parameter change at [Tl ]. Instability of the 
overidentifying restrictions means that some aspect of the model beyond the parameters 
alone has changed at [Tl ]. Rather than specifying this alternative mathematically, we 
present an intuitive explanation. To this end, consider Hansen and Singleton’s (1982) 
consumption- based asset pricing in which a representative agent makes consumption 
and investment decisions to maximize discounted expected lifetime utility based on a 
utility function,

 Ut(ct) 5  
cg

t   2  1
g

.

The parameters of this model are g, with 1 2 g being the coefficient of relative risk aver-
sion, and b, the discount factor; so, in our notation, q 5 (g,b)r. It is customary to esti-
mate q0 via GMM based on E [ut(q0)zt ] 5 0 where ut(q0)  is the so- called Euler residual 
derived from the underlying economic model, and zt is a vector of variables contained 
in the representative agent’s information set. Within this setting, H1 (l)  implies that the 
parameters have changed but the functional form of ut(q)  has stayed the same: this state 
of the world occurs if the functional form of the agent’s utility function is the same before 
and after the break- point but either his/her coefficient of relative risk aversion or his/her 
discount factor changes. Instability of the overidentifying restrictions implies that the 
structural change involves more than the parameters: this state of the world would occur 
if the functional form of the agent’s utility function changes at the break- point.

Since instability of the identifying and overidentifying restrictions have different impli-
cations for the underlying model, Hall and Sen (1999) argue that it is advantageous to 
test H0 (l)  against each separately. To test against instability of the identifying restric-
tions, we can use the statistics for testing against H1 (l)  described in section 2. To test 
against instability of the overidentifying restrictions, Hall and Sen (1999) propose the use 
of the following statistic,
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 OT (l) 5  O1, T (l) 1 O2, T (l)

where Oi, T (l) is the overidentifying restrictions tests based on the subsample Ti for 
i 5 1, 2.22 The following proposition gives the limiting distribution of OT (l) :

Proposition 7 If certain regularity conditions hold then under H0, we have: 
OT (l)  Sd  c2(q2p).

Hall and Sen (1999) show that under H0, OT (l) is asymptotically independent of the 
statistics, such as WT (l) , used to test parameter change. They further show that under 
local alternatives each of WT (l)  and OT (l) has power against its own specific alternative 
but none against the alternative of the other test. These properties underscore the notion 
that the two statistics are testing different aspects of instability and this provides some 
guidance on the interpretation of significant statistics, although the local nature of the 
results needs to be kept in mind.23

Hall and Sen (1999) also propose the following statistics for testing for instability of 
the overidentifying restrictions at an unknown break- point,24

 SupOT 5 sup
i[Tb

 {  OT (i/T)  }

 AvOT 5 d21
b a

[luT]

i5 [llT]
OT (i/T)

 ExpOT 5 log e  d21
b a

[luT]

i5 [llT]
 exp[0.5OT (i/T)]  f

The limiting distribution of these statistics is as follows:

Proposition 8 If certain regularity conditions hold then under H0, we 
have:  SupOT 1 Supl[LO(l) , AvOT 1 eLO(l)dJ(l), and ExpOT 1 log [  eLexp 
{0.5 O(l)}dJ(l)  ] where O(l) 5

1
lB rq2p (l) Bq2p (l) 1

1
1 2 l [Bq2p (1) 2 Bq2p (l) ]r [Bq2p (1)

– Bq2p (l)] and Bq2p (l) denotes a (q 2 p) 3 1 Brownian motion on [0, 1].

The limiting distributions in Proposition 8 are non- standard but depend only on 
q 2 p, the number of overidentifying restrictions. The percentiles of these limiting 
distributions are reported in Hall and Sen (1999). Sen and Hall (1999) report response 
surfaces which can be used to calculate approximate p- values for all three versions of 
these tests.

6 CONCLUSIONS

In this chapter we describe various structural stability tests that are best suited for empir-
ical analysis in macroeconomics. We discuss tests for parameter breaks, other types or 
parameter changes and also model instability. Most of our discussion is focused around 
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Wald- type tests, which are robust to heteroscedasticity and autocorrelation. The tests 
we described do not cover all possible scenarios, such as the presence of unit roots, long 
memory, cointegrating relationships. Instead, we strive to provide practitioners with a 
broad set of tools that cover most cases of interest – excluding the above – in empirical 
macroeconometrics. We emphasize structural stability tests for models with exogenous 
and endogenous regressors and the differences between the two.

The tools we summarize here can be readily applied to a wide range of macroeconomic 
and monetary policy models, contributing to important macroeconomic debates such as 
whether the New Keynesian Phillips curve has become less predictable, or whether the 
Great Moderation is due to good monetary policy or good luck (see Lubik and Surico, 
2010).

NOTES
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of this manuscript.

 1. See Morgan (1990) for a review of Tinbergen’s contributions.
 2. The name ‘structural instability’ refers to the economic structure being unstable, encompassing instability 

in both structural and reduced- form models.
 3. We adopt the convention of using ‘0’ to denote either a scalar, vector or matrix of zero(s) with the dimen-

sion determined by the term on the other side of the equation.
 4. Here, [ # ] stands for the integer part.
 5. In instrumental variables estimation, identification is commonly referred to as the case of ‘strong instru-

ments’. For break- point tests in the presence of weak instruments, see Caner (2011).
 6. See Andrews and Fair (1998) for a local power analysis of the test.
 7. See Hall and Sen (1999, Theorem 3.2) and Sen (1997) for a similar analysis using local alternatives.
 8. Inference can also be based on the D or LM statistics mentioned above and the discussion below equally 

applies to these statistics as well.
 9. This function is chosen to maximize power against a local alternative in which a weighting distribution 

is used to indicate the relative importance of departures from parameter constancy in different directions 
(i.e. q1 2 q2) at different break- points and also the relative importance of different break- points; see 
Andrews and Ploberger (1994) and Sowell (1996). The distribution over break- points is commonly taken 
to be uniform on L which is imposed in the presented formulae (via the specified J (p) ) for the Av-  and 
Exp-  statistics in the text.

10. For regularity conditions and proofs see: Sup- test, Andrews (1993); Av- , Exp-  tests, Andrews and 
Ploberger (1994) (in context of maximum likelihood) and Sowell (1996) (in context of GMM). In this 
context ‘ 1 ’ denotes weak convergence in distribution.

11. For details, see Bai and Perron (1998).
12. For tests that allow for changes in the marginal distribution of regressors, see Hansen (2000).
13. Corresponding AveWT and ExpWT and their optimality properties for one break in an OLS setting are 

discussed in Kim and Perron (2009).
14. These critical values can be found in Bai and Perron (1998).
15. For an equivalent LR test that estimates the model in 4 with ,, respectively , 1 1 breaks, see 

Bai (1999).
16. These distributions are much more complicated and depend on the relative positioning of the breaks in 

the first and second stage. To obtain critical values, bootstrap- based methods are proposed (see Boldea et 
al., 2011).

17. See Hall et al. (2012).
18. For estimating the breaks by considering a multivariate first stage for all endogenous regressors jointly, a 

comprehensive procedure can be found in Qu and Perron (2007).
19. For an early review of the threshold literature in statistics, see Tong (1983).
20. This result presumes that certain (relatively weak) regularity conditions hold and can be established via a 

similar argument to Hall and Inoue (2003, Proposition 1).
21. For example, see Chapter 14 in this volume.
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22. See Chapter 14 in this volume for a description of the overidentifying restrictions test.
23. To elaborate, WT(l)  significant but OT(l) insignificant is consistent with instability confined to the 

parameters alone; OT(l) significant is consistent with more general forms of instability. However, impor-
tant caveats are the local nature of these results and concerns about the interpretation of fixed break- 
point tests discussed in section 2.

24. Although the functionals are the same as the parameter change tests, it has proved impossible to date to 
deduce any optimality properties for the versions based on OT(l) due to the nature of the alternative in 
this case; see Hall (2005, p. 182) for further discussion.
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10 Dynamic panel data models
Badi H. Baltagi

1 INTRODUCTION

Many macroeconomic relationships are dynamic in nature in that they include at least 
one lagged dependent variable among the regressors:

 yit 5 dyi, t21 1 x ritb 1 uit i 5 1,. . . , N t 5 1,. . . ,T  (10.1)

where d is a scalar, x rit is 1 3 K  and b is K 3 1. The index i denotes countries, regions, 
firms, banks, and so on, while the index t denotes time.1 Some early examples include 
Islam (1995) on empirical growth models, Attanasio et al. (2000) on the relationship 
between saving, growth and investment, to mention a few. A simple and popular method 
for tackling heterogeneity among the countries is to allow the disturbances to follow a 
one- way error component model (see Hsiao, 2003)

 uit 5 mi 1 nit (10.2)

where mi could be a fixed or a random country- specific effect and nit , IID (0,s2
n). Note 

that mi is time- invariant and it accounts for any country- specific effect that is not included 
in the regression. This could be the fact that this country is an island, French speaking, 
was colonized by the French, predominantly Catholic, and so on. Let us start with some 
of the basic problems introduced by the inclusion of a lagged dependent variable. In a 
static model with no lagged dependent variable, if the mri s are correlated with the regres-
sors, the standard fixed effects (FE) estimator wipes out the mri s, by performing the within 
transformation (yi, t 2 yi. )  where yi. 5 gT

t51yi, t/T  is the average over time. This yields a 
consistent estimator of b because the resulting disturbances (nit 2 ni.)  are not correlated 
with (xit 2 xi.). Wiping out the mri s could have been also achieved by first- differencing 
(FD) the model and regressing (yit 2 yi, t21) on (xit 2 xi, t21). The latter transformation 
loses the initial N observations due to lagging. The FE estimator is in general more 
efficient than the FD estimator when the remainder disturbance nit , IID (0,s2

n) . The 
FD estimator is more efficient than the FE estimator when the remainder disturbance nit 
is a random walk. The presence of yi, t21 complicates matters because it renders the FE 
estimator inconsistent for small T ; see Nickell (1981), who showed that the FE estimator 
is biased of O(1/T). In fact, (yi, t21 2 yi.21) will be correlated with (nit 2 ni.). To see this, 
note that yi, t21 is correlated with ni. by construction. The latter average contains ni, t21, 
which is obviously correlated with yi, t21. Also, nit is correlated with yi.21 5 gT

t51 yi, t21/T  
because the latter average contains yit. These are two leading terms causing the correla-
tion and they are both of order T. This bias does not vanish as N increases. However, as 
T  gets large, the FE estimator becomes consistent. Several suggestions to correct for the 
bias of the popular FE estimator have been proposed. Most notable of these is Kiviet 
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(1995), who proposes a bias corrected FE estimator that subtracts a consistent estimator 
of this bias from the original FE estimator. However, in order to make this estimator fea-
sible, an initial estimator for d is needed.2 For large T, large N, as in macro- panel studies, 
such that lim(N/T) 5 c is finite, Hahn and Kuersteiner (2002) derive a bias corrected FE 
estimator which reduces to

 d̂c 5 aT 1 1
T

bd|FE 1
1
T

with "NT(d̂c 2 d) S N(0,1 2 d2) . Under the assumption of normality of the distur-
bances, d̂c is asymptotically efficient as N, T S ` at the same rate. Hahn and Moon 
(2006) showed that this result can be extended to dynamic linear panel data models with 
both individual and time effects. Hence, the same higher order bias correction approach 
as in Hahn and Kuersteiner (2002) can be adopted even when time effects are present. 
They stress that such robustness is limited only to linear models.

In summary, for typical micro- panels where N is large and T  is short and fixed, the FE 
estimator is biased and inconsistent, and it is worth emphasizing that only if T S ` will 
the FE estimator of d and b be consistent for the dynamic error component model. For 
macro- panels, T  is not very small relative to N, hence, some researchers may still favor 
the FE estimator, arguing that its bias may not be large. Judson and Owen (1999) per-
formed some Monte Carlo experiments for N 5 20 or 100 and T 5 5,10, 20 and 30 and 
found that the bias in the FE estimator can be as much as 20 per cent of the true value 
of the coefficient of interest, even when T 5 30. This bias increases with d, the coeffi-
cient of the lagged dependent variable, and decreases with T. For an empirical example, 
Attanasio et al. (2000) studied the relationship between saving, growth and investment 
using a panel of N 5 123 countries over the period 1961–94. However, not all variables 
were available for every country and for every year. Hence, they used three different data 
sets in their empirical investigation. One data set included N 5 50 countries for which 
all variables are available every year in the interval 1965–93 (T 5 29). Another data set 
included N 5 38 countries whose variables are available every year from 1961 to 1994 
(T 5 34). The last data set has comparable N and T  and it is not clear that we have N 
asymptotics as in the micro- panel case. For large N and T  asymptotics, see Phillips and 
Moon (1999).

For the first difference (FD) estimator, the right- hand differenced regressor 
(yi, t21 2 yi, t22) is correlated with the differenced error (ni, t 2 ni, t21), but this correla-
tion is easier to handle than FE. In fact, Anderson and Hsiao (1981) suggested using 
Dyi, t22 5 (yi, t22 2 yi, t23) or simply yi, t22 as an instrument for Dyi, t21 5 (yi, t21 2 yi, t22). 
These instruments will not be correlated with Dnit 5 ni, t 2 ni, t21, as long as the nit them-
selves are not serially correlated. This instrumental variable (IV) estimation method 
leads to consistent but not necessarily efficient estimates of the parameters in the model 
because it does not make use of all the available moment conditions (see Ahn and 
Schmidt, 1995), and it does not take into account the differenced structure on the resid-
ual disturbances (Dnit) . Arellano (1989) finds that for simple dynamic error components 
models, the estimator that uses differences Dyi, t22 rather than levels yi, t22 for instruments 
in a first- differenced equation, will yield a singularity point and very large variances over 
a significant range of parameter values. In contrast, the estimator that uses instruments 
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in levels, that is, yi, t22, for the first- differenced equation, has no singularities and much 
smaller variances and is therefore recommended.

Dessi and Robertson (2003) estimate dynamic panel regressions relating debt and 
Tobin’s Q using a panel of N 5 557 UK firms observed over the period 1967–89 
(T 5 23). They find that firm fixed effects are highly significant, concluding that unob-
served firm characteristics are important determinants of both capital structure and 
expected performance (as measured by Tobin’s Q). Applying the Anderson and Hsiao 
(1981) estimator, they find highly significant dynamic effects in the determination of debt 
and Tobin’s Q, hence emphasizing the importance of capturing firm heterogeneity and 
dynamics, two of the main advantages of applying panel data methods.

2 THE ARELLANO AND BOND ESTIMATOR

Arellano and Bond (1991) proposed a Generalized Method of Moments (GMM) pro-
cedure that is more efficient than the Anderson and Hsiao (1981) estimator. This can be 
demonstrated using the simple autoregressive model with no regressors:

 yit 5 dyi, t21 1 uit i 5 1,. . . , N t 5 1, . . ., T  (10.3)

Differencing this equation to eliminate the individual effects, one gets

 yit 2 yi, t21 5 d (yi, t21 2 yi, t22) 1 (nit 2 ni, t21) (10.4)

and note that (nit 2 ni, t21) is MA(1)  with unit root. If we only observe this panel for three 
periods, that is, t 5 3, then this is a cross- section regression

 yi3 2 yi2 5 d (yi2 2 yi1) 1 (vi3 2 vi2)  i 5 1, . . . , N

with yi1 being a valid instrument, since it is highly correlated with (yi2 2 yi1) and not 
correlated with (ni3 2 ni2)  as long as the nit are not serially correlated. But note what 
happens when we observe the panel for four periods, that is, t 5 4:

 yi4 2 yi3 5 d (yi3 2 yi2) 1 (ni4 2 ni3) i 5 1,. . . , N

In this case, yi2 as well as yi1 are valid instruments for (yi3 2 yi2) , since both yi2 and yi1 
are not correlated with (ni4 2 ni3) . One can continue in this fashion, adding an extra valid 
instrument with each additional period of observation, so that for period T, the set of 
valid instruments becomes (yi1, yi2, . . ., yi, T22).

Define the matrix of instruments

 Wi 5 ≥ [yi1 ] 0
[yi1,yi2 ]

f
0 [yi1,. . .,yi,T22 ]

¥  i 5 1, . . ., N (10.5)
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based on the moment conditions given by E(W ri  Dni) 5 0. It is important to emphasize 
that the number of instruments increases with T  and this estimation method relies on N 
being very large (N asymptotics) and T  being very small (N much larger than T) . For 
the whole panel, stacked such that the country index is slow and the time index is fast, 
the matrix of instruments becomes W 5 [W r1,. . .,W rN ]r. Pre- multiplying the differenced 
equation in vector form by W r, one gets

 W rDy 5 W r (Dy21)d 1 W rDn (10.6)

The differenced MA(1)  error term Dni has mean zero and variance

 E(DniDn ri) 5 s2
nG (10.7)

where Dn ri 5 (ni3 2 ni2, . . . ,niT 2 ni, T21) and

 G 5 ® 2 21 0 c 0 0 0
21 2 21 c 0 0 0

0 21 2 c 0 0 0
( ( ( f ( ( (
0 0 0 c 2 21 0
0 0 0 c 21 2 21

0 0 0 c 0 21 2

∏ .

The Arellano and Bond (1991) one- step GMM estimator performs GLS using this G 
matrix:

 d̂1 5 [ (Dy21)rW(W r(IN # G)W)21W r(Dy21) ]21

 3 [ (Dy21) rW(W r (IN # G)W)21W r(Dy) ] (10.8)

The optimal generalized method of moments (GMM) estimator replaces

 W r (IN # G)W 5 a
N

i51
W ri GWi

by

 VN 5 a
N

i51
W ri(Dni) (Dni)rWi

where Dn is replaced by differenced residuals obtained from the one step estimator   
d̂1. The resulting estimator is the two- step Arellano and Bond (1991) GMM estimator:

 d̂2 5 [(Dy21)rWV̂21
N W r (Dy21) ]21 [(Dy21)rWV̂21

N W r(Dy) ] (10.9)
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The one- step Arellano and Bond estimator d̂1 is the default option in Stata’s command 
xtabond. Adding the option two- step gives the estimator d^ 2. Of course, this is also avail-
able in other software such as EViews.

If there are additional strictly exogenous regressors xit satisfying E(xitnis) 5 0 for all 
t, s 5 1, 2, . . . , T, but where all the xit are correlated with mi, then all the xit are valid 
instruments for the first differenced equation. In this case, [x ri1, x ri2, . . . , x riT ] should be 
added to each diagonal element of Wi.

If xit are predetermined rather than strictly exogenous with E(xitnis) 2 0 for s , t, and 
zero otherwise, then only [x ri1, x ri2, . . . , x ri (s21) ] are valid instruments for the differenced 
equation at period s. In this case, the matrix of instruments becomes:

 Wi 5 ≥[yi1, x ri1, x ri2 ] 0
[yi1, yi2, x ri1, x ri2, x ri3 ]

f
0 [yi1, . . . , yi, T22, x ri1, . . . , x ri, T21 ]

¥ . (10.10)

2.1 Diagnostics for the Arellano and Bond Estimator

Arellano and Bond (1991) propose a test for the hypothesis that there is no second- order 
serial correlation for the disturbances of the first- differenced equation. This test is impor-
tant because the consistency of the GMM estimator relies upon the fact that nit is not 
serially correlated. A test for first order and second order serial correlation of Dnit can be 
obtained with Stata 11 using the command estat abond. One should reject the absence 
of first order serial correlation of Dnit, but not reject the absence of second order serial 
correlation of Dnit.

Additionally, Arellano and Bond (1991) suggest Sargan’s test of over- identifying 
restrictions given by

 m 5 Dn̂ rW caN
i51

W ri (Dn̂i) (Dn̂i)rWi d21

W r (Dn̂) , c2
p2K21

where p refers to the number of columns of W  and Dn̂ denote the residuals from the two- 
step estimator. Using Monte Carlo experiments, this test performs well for large N and 
very small T. However, Bowsher (2002) finds that the use of too many moment condi-
tions (large T) causes the Sargan test for overidentifying restrictions to be undersized and 
have extremely low power. The Sargan test never rejects when T  is too large for a given 
N. The test had zero size and power for the following (N, T) pairs (125, 16), (85, 13), and 
(40,10). This is attributed to poor estimates of the weighting matrix in GMM.

To summarize, dynamic panel data estimation with fixed effects suffers from the 
Nickell (1981) bias for small T. Hence FE in a dynamic panel model is only recom-
mended for very large T. The recommended estimator for large N and small T  is the 
GMM estimator suggested by Arellano and Bond (1991). However, the Arellano and 
Bond two- step estimator suffers from two weaknesses. The first one is poor estimation of 
the weight matrix, which leads to biased asymptotic standard errors and weak inference. 
In fact, Arellano and Bond warned that the estimated standard error of their  two- step 
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GMM estimator is downward biased. Windmeijer (2005) suggests a correction term based 
on a Taylor- series expansion that accounts for the estimation of this weight matrix. 
He shows that this correction term provides a more accurate approximation in finite 
samples when all the moment conditions are linear. These corrected standard errors are 
available using Stata 11 with the option vce (robust).

The second weakness of the Arellano and Bond GMM estimator is that it relies on too 
many moment conditions which were shown to suffer from the weak instruments prob-
lems (see Blundell and Bond, 1998). One solution suggested by Ziliak (1997) is not to use 
all the moment conditions but a sub- optimal number of instruments. Using Monte Carlo 
experiments, Ziliak showed that there is a bias/efficiency trade- off as one uses more 
moment conditions. Even though it is desirable from an asymptotic efficiency point of 
view to include as many moment conditions as possible, it may be infeasible or impracti-
cal to do so in many cases. The practical problem of not being able to use more moment 
conditions as well as the statistical problem of the trade- off between small sample bias 
and efficiency prompted Ahn and Schmidt (1999) to pose the following questions: ‘Under 
what conditions can we use a smaller set of moment conditions without incurring any 
loss of asymptotic efficiency? In other words, under what conditions are some moment 
conditions redundant in the sense that utilizing them does not improve efficiency?’ These 
questions were first dealt with by Im et al. (1999) who considered panel data models with 
strictly exogenous explanatory variables. They argued that, for example, with ten strictly 
exogenous time- varying variables and six time periods, the moment conditions available 
for the random effects (RE) model is 360 and this reduces to 300 moment conditions for 
the FE model. GMM utilizing all these moment conditions leads to an efficient estima-
tor. However, these moment conditions exceed what the simple RE and FE estimators 
use. Im et al. (1999) provide the assumptions under which this efficient GMM estimator 
reduces to the simpler FE or RE estimator. In other words, Im et al. (1999) show the 
redundancy of the moment conditions that these simple estimators do not use. Ahn and 
Schmidt (1999) provide a more systematic method by which redundant instruments can 
be found, and generalize this result to models with time- varying individual effects.

Blundell et al. (1992) apply the Arellano and Bond estimator to a panel of N 5 532 
UK manufacturing companies over the period 1975–86 (T 5 12). They study the impor-
tance of Tobin’s Q in the determination of investment decisions. Tobin’s Q is allowed 
to be endogenous and possibly correlated with the firm- specific effects. Utilizing past 
variables as instruments, Tobin’s Q effect is found to be small but significant. These 
results are sensitive to the choice of dynamic specification, exogeneity assumptions and 
measurement error in Q.

Becker et al. (1994) estimate a rational addiction model for cigarettes using a panel of 
50 states (and the District of Columbia) over the period 1955–85 (T 5 31). They apply 
fixed effects 2SLS to estimate a second- order difference equation in consumption of ciga-
rettes, finding support for forward- looking consumers and rejecting myopic behavior. 
Their long- run price elasticity estimate is 20.78 as compared to 20.44 for the short run. 
Baltagi and Griffin (2001) apply the FD- 2SLS, FE- 2SLS and Arellano and Bond GMM 
dynamic panel estimation methods to the Becker, Grossman and Murphy rational 
addiction model for cigarettes. Although the results are in general supportive of rational 
addiction, the estimates of the implied discount rate are not precise.

Bond et al. (2003) estimate dynamic investment equations using company panel data 
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for manufacturing firms in Belgium, France, Germany and the United Kingdom, cover-
ing the period 1978–89. Using GMM first difference estimation methods, they find that 
cash flow and profits appear to be both statistically and quantitatively more significant 
in the United Kingdom than in the three continental European countries. This is consist-
ent with the suggestion that financial constraints on investment may be relatively severe 
in the more market- oriented UK financial system.

More recently, Baltagi et al. (2009) use panel data of N 5 42 developing countries 
over the period 1980–2003 (T 5 24) to address the empirical question of whether trade 
and financial openness can help explain the recent pace in financial development, as 
well as its variation across countries in recent years. Using Arellano and Bond (1991) 
GMM dynamic panel estimation, they show that both types of openness are statistically 
significant determinants of banking sector development. They also show that the mar-
ginal effects of trade (financial) openness are negatively related to the degree of finan-
cial (trade) openness, indicating that relatively closed economies stand to benefit most 
from opening up their trade and/or capital accounts. Although these economies may be 
able to accomplish more by taking steps to open both their trade and capital accounts, 
opening up one without the other could still generate gains in terms of banking sector 
development.

3 SYSTEM ESTIMATION

Ahn and Schmidt (1995) show that under the standard assumptions used in a dynamic 
panel data model, there are additional non- linear moment conditions that are ignored 
by the Arellano and Bond (1991) estimator. The standard assumptions for the dynamic 
panel model are that:

(A.1) For all i,nit is uncorrelated with yi0 for all t.
(A.2) For all i,nit is uncorrelated with mi for all t.
(A.3) For all i, the nit are mutually uncorrelated.

Under these assumptions, one obtains the following T(T 2 1) /2 moment conditions:

 E(yisDuit) 5 0 t 5 2, . . . , T s 5 0, . . . , t 2 2 (10.11)

These are the same moment restrictions exploited by Arellano and Bond (1991). 
However, Ahn and Schmidt (1995) find T 2 2 additional moment conditions given by

 E(uiTDuit) 5 0 t 5 2, . . . , T 2 1 (10.12)

These T(T 2 1) /2 1 (T 2 2) moment conditions represent all of the moment condi-
tions implied by the assumptions that the vit are mutually uncorrelated among themselves 
and with mi and yi0.

Wansbeek and Bekker (1996) considered a simple dynamic panel data model with no 
exogenous regressors considered in (10.3). They derived an expression for the optimal 
instrumental variable estimator, that is, one with minimal asymptotic variance. A 
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 striking result is the difference in efficiency between the IV and ML estimators under 
the normality assumption. They find that for regions of the autoregressive parameter 
d which are likely in practice, ML is superior. The gap between IV (or GMM) and ML 
can be narrowed down by adding moment restrictions of the type considered by Ahn 
and Schmidt (1995). Hence, Wansbeek and Bekker (1996) find support for adding these 
non- linear moment restrictions and warn against the loss in efficiency as compared with 
MLE by ignoring them.

Blundell and Bond (1998) revisit the importance of exploiting the initial condition 
in generating efficient estimators of the dynamic panel data model when T  is small. 
Blundell and Bond (1998) focus on the case where T 5 3 with only one orthogonality 
condition given by E(yi1Dni3) 5 0, so that d is just- identified. In this case, the first stage 
IV regression is obtained by running Dyi2 on yi1. Note that this regression can be obtained 
from (10.3) evaluated at t 5 2 by subtracting yi1 from both sides of this equation, that is,

 Dyi2 5 (d 2 1)yi, 1 1 mi 1 ni2 (10.13)

Since we expect E(yi1mi) . 0, (d 2 1) will be biased upwards with

 plim (d̂ 2 1) 5 (d 2 1) c
c 1 (s2

m/s2
u)

 (10.14)

where c 5 (1 2 d) / (1 1 d) . The bias term effectively scales the estimated coefficient on 
the instrumental variable yi1 towards zero. They also find that the F- statistic of the first 
stage IV regression converges to c2

1 with non- centrality parameter

 t 5
(s2

uc) 2

s2
m 1 s2

uc
S 0 as d S 1 (10.15)

As t S 0, the instrumental variable estimator performs poorly. Hence, Blundell and 
Bond attribute the bias and the poor precision of the first difference Arellano and Bond 
GMM estimator to the problem of weak instruments and characterize this by its concen-
tration parameter t.

Next, Blundell and Bond (1998) show that an additional mild stationarity restriction 
on the initial conditions process allows the use of an extended system GMM estimator 
that uses lagged differences of yit as instruments for equations in levels, in addition to 
lagged levels of yit as instruments for equations in first differences. More specifically, 
this stationarity condition on yi1 requires E [ (yi1 2

mi

1 2 d)mi ] 5 0, so that yit converges 
towards its mean mi

1 2 d
 for each individual from period t 5 2 onwards. This in turn 

yields the condition E [Dyi, t21mi ] 5 0 for i 5 1,2, . . , N. Using the usual mild assumption 
that E [Dnitmi ] 5 0 for i 5 1, 2, . . , N and t 5 3, 4, . . . , T, we get the additional T 2 2 
non- redundant linear moment conditions E [Dyi, t21 (mi 1 nit) ] 5 0 for t 5 3, 4, . . . , T, 
obtained by Ahn and Schmidt (1995). Together with the Arellano and Bond (1991) 
conditions on the first differenced equation, these moment conditions on equations in 
levels yield the system GMM estimator.3 Blundell and Bond (1998) show that this system 
GMM estimator produces dramatic efficiency gains over the basic first difference GMM 
as d S 1 and (s2

m/s2
u)  increases. In fact, for T 5 4 and (s2

m/s2
u) 5 1, the asymptotic 
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variance ratio of the first difference Arellano and Bond GMM estimator to this system 
GMM estimator is 1.75 for d 5 0 and increases to 3.26 for d 5 0.5 and 55.4 for d 5 0.9. 
This clearly demonstrates that the levels restrictions remain informative in cases where 
first differenced instruments become weak. Things improve for first difference GMM as 
T  increases. However, with short T  and persistent series, the Blundell and Bond findings 
support the use of the extra moment conditions.

Blundell and Bond (2000) estimate a Cobb–Douglas production function using data 
on N 5 509 R&D performing US manufacturing companies observed over T 5 8 years 
(1982–89). The Arellano and Bond (1991) GMM estimator that uses moment conditions 
on the first differenced model finds a low estimate of the capital coefficient and low preci-
sion for all coefficients estimated. However, the system Blundell and Bond (2000) GMM 
estimator gives reasonable and more precise estimates of the capital coefficient, and con-
stant returns to scale is not rejected. Blundell and Bond (2000) conclude that ‘a careful 
examination of the original series and consideration of the system GMM estimator can 
usefully overcome many of the disappointing features of the standard GMM estimator 
for dynamic panel models’.

Acemoglu et al. (2005) use a dynamic panel data specification to revisit the relation-
ship between education and democracy across countries. They show that the positive and 
significant cross- sectional relationship between schooling and democracy across coun-
tries disappears when panel data fixed effects are included in the regression. Democracy 
is measured using the Freedom House Political Rights Index (from 1 to 7): these are 
transformed to lie between 0 and 1, with 1 corresponding to the most democratic set of 
institutions. Education is measured by the average years of schooling in the total popu-
lation of age 25 and above. Since the specification is dynamic, and the FE estimator is 
known to be biased, a two- step robust Arellano and Bond (1991) GMM estimator is 
applied, which also results in a negative and insignificant coefficient estimate for lagged 
education. Bobba and Coviello (2007) apply Blundell and Bond (1998) system GMM to 
the same equation and find that the lagged education coefficient estimate is now positive 
and significant.

4 LIMITED INFORMATION MAXIMUM LIKELIHOOD

The dynamic panel model generates many overidentifying restrictions even for moder-
ate values of T. Also, the number of instruments increases with T, but the quality of 
these instruments is often poor because they tend to be only weakly correlated with first 
differenced endogenous variables that appear in the equation. From the classic litera-
ture on simultaneous equations, it is well known that Limited Information Maximum 
Likelihood (LIML) is strongly preferred to 2SLS if the number of instruments gets large 
as the sample size tends to infinity. In fact, Alonso- Borrego and Arellano (1999) and 
Alvarez and Arellano (2003) advocate the use of LIML in dynamic panel models. The 
latter paper derives the asymptotic properties of the FE, GMM and LIML estimators of 
a dynamic model with random effects. When both T  and N S `, GMM and LIML are 
consistent and asymptotically equivalent to the FE estimator. When (T/N S 0), the fixed 
T  results for GMM and LIML remain valid, but FE, although consistent, still exhibits 
an asymptotic bias term in its asymptotic distribution. When T/N S c, where 0 , c # 2, 
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all three estimators are consistent. The basic intuition behind this result is that, contrary 
to the simultaneous equation setting where too many instruments produce over- fitting 
and undesirable closeness to OLS, with dynamic panels, a larger number of instruments 
is associated with larger values of T  and closeness to FE is desirable since the endogene-
ity bias S 0 as T S `. Nevertheless, FE, GMM and LIML exhibit a bias term in their 
asymptotic distributions; the biases are of order 1/T, 1/N and 1/ (2N 2 T) , respectively. 
Provided T , N, the asymptotic bias of GMM is always smaller than the FE bias, and 
the LIML bias is smaller than the other two. When T 5 N, the asymptotic bias is the 
same for all three estimators.

Alvarez and Arellano (2003) find that as T S `, regardless of whether N is fixed or 
tends to `, provided N/T 3 S 0,

 "NT cd|FE 2 ad 2
1
T

(1 1 d) bd S N(0, 1 2 d2) . (10.16)

Also, as N, T S ` such that (logT 2) /N S 0, d̂GMM S d. Moreover, provided T/N S c, 
0 , c , `,

 "NT c d̂GMM 2 ad 2
1
N

(1 1 d)bd S N(0, 1 2 d2) . (10.17)

When T S `, the number of GMM orthogonality conditions T(T 2 1) /2 S `. In spite 
of this fact, d^ GMM S d. Also, as N, T S ` provided T/N S c, 0 # c # 2, d̂LIML S d. 
Moreover,

 "NT c d̂LIML 2 ad 2
1

2N 2 T
(1 1 d) b d S N(0,1 2 d2) . (10.18)

LIML, like GMM, is consistent for d despite T S ` and T/N S c.

 Provided T , N, the bias of LIML , bias of GMM , bias of FE.

Wansbeek and Knaap (1999) consider a simple dynamic panel data model with heteroge-
neous coefficients on the lagged dependent variable and the time trend, i.e.,

 yit 5 diyi, t21 1 xit 1 mi 1 uit (10.19)

This model results from Islam’s (1995) version of Solow’s model on growth convergence 
among countries. Wansbeek and Knaap (1999) show that double differencing gets rid of 
the individual country effects (mi) on the first round of differencing and the heterogene-
ous coefficient on the time trend (xi) on the second round of differencing. Modified OLS, 
IV and GMM methods are adapted to this model and LIML is suggested as a viable 
alternative to GMM to guard against the small sample bias of GMM. Simulations show 
that LIML is the superior estimator for T $ 10 and N $ 50. Macroeconomic data are 
subject to measurement error and Wansbeek and Knaap (1999) show how these estima-
tors can be modified to account for measurement error that is white noise. For example, 
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GMM is modified so that it discards the orthogonality conditions that rely on the 
absence of measurement error.

Bun and Kiviet (2006) analyze the finite sample behavior of the FE, GLS and a range 
of GMM estimators in dynamic panel data models with individual effects and an addi-
tional regressor. The additional regressor may be correlated with the individual effects 
and is predetermined. Asymptotic expansions indicate how the order of magnitude of 
bias of these estimators depends on N and T. For example, they show that FE and GLS 
are biased of O(1/T)  irrespective of the value of N, while the GMM estimators are biased 
of the order O(1/N) , assuming T  fixed. They also reveal how the bias of the GMM esti-
mators tends to increase with the number of moment conditions exploited. They study 
both GMM based on the levels equation and those based on the forward orthogonaliza-
tion procedure. They provide analytic evidence on how the bias of the various estima-
tors depends on the feedbacks and on other model characteristics such as prominence 
of individual effects and correlation between observed and unobserved heterogeneity. 
Simulation results show that none of the techniques examined dominates regarding bias 
and mean squared error over all parametrization examined. For N and T  of moder-
ate size, all estimators show substantial bias and poor RMSE performance leading the 
authors to conclude that ‘standard first- order asymptotic theory is of little use indeed to 
establish and rank the qualities of the estimators’.

Andrews and Lu (2001) develop consistent model and moment selection criteria and 
downward testing procedures for GMM estimation that are able to select the correct 
model and moments with probability that goes to 1 as the sample size goes to infinity. 
This is applied to dynamic panel data models with unobserved individual effects. The 
selection criteria can be used to select the lag length for the lagged dependent variables, 
to determine the exogeneity of the regressors, and/or to determine the existence of corre-
lation between some regressors and the individual effects. Monte Carlo experiments are 
performed to study the small sample performance of the selection criteria and the testing 
procedures and their impact on parameter estimation.

Hahn et al. (2007) consider the simple autoregressive panel data model in (10.3) with 
the following strong assumptions: (i) nit , IIN(0,s2

n) over i and t, (ii) stationarity con-
ditions (yi0/mi) , N( mi

1 2 d, s2
n

1 2 d2)  and mi , N(0,s2
m) . They show that the Arellano and 

Bover (1995) GMM estimator, based on the forward demeaning transformation, can 
be represented as a linear combination of 2SLS estimators and therefore may be subject 
to a substantial finite sample bias. Using Monte Carlo experiments, they show that 
this is indeed the case. For example, for T 5 5, N 5 100 and d 5 0.1, the %bias of the 
GMM estimator is 216%. For d 5 0.8, the %bias is 228%, and for d 5 0.9, the %bias 
is 251%. Hahn et al. suggest two different approaches to eliminate this bias. The first 
is a second order Taylor series type approximation and the second is a long- difference 
estimator. The Monte Carlo results show that the second order Taylor series type 
approximation does a reasonably good job except when d is close to 1 and N is small. For 
T 5 5, N 5 100 and d 5 0.1, 0.8, 0.9 the %bias for this bias corrected estimator is 0.25%, 
211% and 242%, respectively.

The second order asymptotics fails to be a good approximation around d 5 1. This is 
due to the weak instrument problem discussed in Blundell and Bond (1998). Hahn et al. 
turn to the long difference estimator to deal with weak IV around the unit circle avoiding 
the stationarity assumption:
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 yit 2 yi1 5 d (yit 2 yi0) 1 nit 2 ni1 (10.20)

Here yi0 is a valid instrument. The residuals (yi, T21 2 dyi, T22) , . . , (yi, 2 2 dyi, 1) are also 
valid instruments. To make it operational, they suggest using the Arellano and Bover 
estimator for the first step and iterating using the long difference estimator. Hahn et al. 
analyze the class of GMM estimators that exploit the Ahn and Schmidt (1995) complete 
set of moment conditions and show that a strict subset of the full set of moment restric-
tions should be used in estimation in order to minimize bias. They show that the long 
difference estimator is a good approximation to the bias minimal procedure. They report 
the numerical values of the biases of the Arellano and Bond, Arellano and Bover and 
Ahn and Schmidt estimators under near unit root asymptotics and compare them with 
biases for the long difference estimator as well as the bias minimal estimator. Despite the 
fact that the long difference estimator does not achieve small bias reduction as the fully 
optimal estimator, it has significantly less bias than the more commonly used implemen-
tations of the GMM estimator.

5 THE KEANE AND RUNKLE ESTIMATOR

Keane and Runkle (1992) suggest an alternative estimation method to dynamic panel 
models with small T  and large N. This method of estimation eliminates the general serial 
correlation pattern in the data, while preserving the use of predetermined  instruments 
in obtaining consistent parameter estimates. This is based on the forward filtering 
idea from the time- series literature. More specifically, they allow for a general variance–
covariance structure S of dimension T  × T  for the disturbances across time. This S is 
invariant across i 5 1,. . . , N, so that

 W 5 E(uu r) 5 IN # S.

Keane and Runkle assume the existence of a set of predetermined instruments W  such 
that E(uit/Wis) 5 0 for s # t, but E(uit/Wis) 2 0 for s . t. In other words, W  may 
contain lagged values of yit. For this model, the 2SLS estimator will provide a consistent 
estimator of the residuals. Using the consistent 2SLS residuals, say ûi for the ith individ-
ual, where ûi is of dimension (T 3 1), one can get a consistent estimate of S as follows:

 Ŝ 5 Û rÛ/N 5 a
N

i51
ûiûri/N

where Û r 5 [û1, û2, . . . , ûN ] is of dimension (T 3 N) . Obtain Ŝ21 and its corresponding 
Cholesky’s decomposition P̂.4 Next, one pre- multiplies the model by Q̂ 5 (IN # P̂) and 
estimates the model by 2SLS using the original set of predetermined instruments.

Keane and Runkle suggest first differencing if one is worried about the presence of 
individual specific effects. To find out whether one should difference or not, they perform 
a Hausman (1978) type test based on the difference between FD- 2SLS and 2SLS. If the 
null is not rejected, there is no need to first difference. If the null is rejected, they perform 
their estimation procedure on the first- differenced (FD) model. They also suggest testing 
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the null hypothesis of the strong exogeneity of the instruments based on the contrast 
between FE- 2SLS and FD- 2SLS. Keane and Runkle apply their testing and estimation 
procedures to a simple version of the rational expectations life- cycle consumption model, 
based on a sample of 627 households surveyed between 1972 and 1982 by the Michigan 
Panel Study on Income Dynamics (PSID). They reject the strong exogeneity of the 
instruments, but fail to reject the null hypothesis of no correlation between the individual 
effects and the instruments. This means that there is no need to first- difference to get rid 
of the individual effects. Based on the KR- 2SLS estimates, the authors cannot reject the 
simple life- cycle model. However, they show that if one uses the Within estimates, one 
would get misleading evidence against the life- cycle model.

6 HETEROGENEOUS PANELS

Robertson and Symons (1992) and Pesaran and Smith (1995) questioned the poolability 
of the data across heterogeneous countries. In fact, Robertson and Symons (1992) con-
sider the case of, say, two countries (N 5 2), where the asymptotics depend on T S `. 
Their true model is a simple heterogeneous static regression model with one regressor

 yit 5 bixit 1 nit i 5 1, 2 t 5 1, . . . , T

where nit is independent for i 5 1, 2, and bi varies across i 5 1, 2. However, their esti-
mated model is dynamic and homogeneous with b1 5 b2 5 b and assumes an identity 
covariance matrix for the disturbances:

 yit 5 dyi, t21 1 bxit 1 wit i 5 1, 2

The regressors are assumed to follow a stationary process xit 5 rxi, t21 1 eit with 0r 0 , 1 
but different variances s2

i  for i 5 1, 2. Robertson and Symons (1992) obtain the prob-
ability limits of the resulting d̂ and b̂ as T S `. They find that the coefficient d of yi, t21 is 
overstated, while the mean effect of the regressors (the xit) is underestimated. In case the 
regressors are random walks (r 5 1), then plim d̂ 5 1 and plim b̂ 5 0. Therefore, false 
imposition of parameter homogeneity, and dynamic estimation of a static model when 
the regressors follow a random walk lead to perverse results. Using Monte Carlo experi-
ments they show that the dynamics become misleading even for T  as small as 40, which 
corresponds to the annual post- war data period. Even though these results are derived 
for N 5 2, one regressor and no lagged dependent variable in the true model, Robertson 
and Symons (1992) show that the same phenomenon occurs for an empirical example 
of a real wage equation for a panel of 13 OECD countries observed over the period 
1958–86. Parameter homogeneity across countries is rejected and the true relationship 
appears dynamic. Imposing false equality restriction biases the coefficient of the lagged 
wage upwards and the coefficient of the capital–labor ratio downwards.

Pesaran and Smith (1995) estimate a heterogeneous dynamic panel data model given 
by

 yit 5 liyi, t21 1 bixit 1 uit i 5 1, . . . , N t 5 1, . . . , T
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where li is IID (l,s2
l) and bi is IID (b,s2

b). Further li and bi are independent of yis, xis and 
uis for all s. The objective in this case is to obtain consistent estimates of the mean values 
of li and bi. Pesaran and Smith (1995) present four different estimation procedures:

1. aggregate time- series regressions of group averages;
2. cross- section regressions of averages over time;
3. pooled regressions allowing for fixed or random intercepts, or
4. separate regressions for each group, where coefficients estimates are averaged over 

these groups.

They show that when T  is small (even if N is large), all the procedures yield inconsist-
ent estimators. When both N and T  are large, Pesaran and Smith (1995) show that the 
cross- section regression procedure will yield consistent estimates of the mean values of l 
and b. Intuitively, when T  is large, the individual parameters li and bi can be con sistently 
estimated using T  observations of each country i, say l̂i and b^ i, then averaging these 
individual estimators, gN

i51l̂i/N and gN
i51 b̂i/N, will lead to consistent estimators of the 

mean values of l and b.
Maddala et al. (1997) on the other hand argued that the heterogeneous time series 

estimates yield inaccurate estimates and even wrong signs for the coefficients, while the 
panel data estimates are not valid when one rejects the hypothesis of homogeneity of the 
coefficients. They argued that shrinkage estimators are superior to either heterogene-
ous or homogeneous parameter estimates especially for prediction purposes. In fact, 
Maddala et al. (1997) considered the problem of estimating short- run and long- run elas-
ticities of residential demand for electricity and natural gas for each of 49 states over the 
period 1970–90. They conclude that individual heterogeneous state estimates were hard 
to interpret and had the wrong signs. Pooled data regressions were not valid because the 
hypothesis of homogeneity of the coefficients was rejected. They recommend shrinkage 
estimators if one is interested in obtaining elasticity estimates for each state since these 
give more reliable results.

In the context of dynamic demand for gasoline across N 5 18 OECD countries over 
the period 1960–90 (T 5 31), Baltagi and Griffin (1997) argued for pooling the data as 
the best approach for obtaining reliable price and income elasticities. They also pointed 
out that pure cross- section studies cannot control for unobservable country effects, 
whereas pure time- series studies cannot control for unobservable oil shocks or behavio-
ral changes occurring over time. Baltagi and Griffin (1997) compared the homogeneous 
and heterogeneous estimates in the context of gasoline demand based on the plausibility 
of the price and income elasticities as well as the speed of adjustment path to the long- 
run equilibrium. They found considerable variability in the parameter estimates among 
the heterogeneous estimators, some giving implausible estimates, while the homogene-
ous estimators gave similar plausible short- run estimates that differed only in estimating 
the long- run effects. Baltagi and Griffin (1997) also compared the forecast performance 
of these homogeneous and heterogeneous estimators over a one- , five-  and ten- year 
horizon. Their findings show that the homogeneous estimators outperformed their het-
erogeneous counterparts based on mean squared forecast error.

Attanasio et al. (2000) estimated both homogeneous as well as heterogeneous 
dynamic panel relationships between saving, growth and investment using a panel 
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of N 5 123 countries over the period 1961–94. Even though they find evidence of 
parameter heterogeneity across countries, they conclude that, appropriately taking it 
into account, by applying the Pesaran and Smith (1995) pooled mean group estimator, 
does not modify the general picture obtained using estimators that erroneously impose 
homogeneity.

In another application, Driver et al. (2004) utilize the Confederation of British 
Industry’s (CBI) survey data to measure the impact of uncertainty on UK investment 
authorizations. The panel consists of N 5 48 industries observed over T 5 85 quarters 
1978(Q1) to 1999(Q1). The uncertainty measure is based on the dispersion of beliefs 
across survey respondents about the general business situation in their industry. The 
heterogeneous estimators considered are OLS and 2SLS at the industry level, as well as 
the unrestricted SUR estimation method. Fixed effects, random effects, pooled 2SLS 
and restricted SUR are the homogeneous estimators considered. The panel estimates 
find that uncertainty has a negative, non- negligible effect on investment, while the het-
erogeneous estimates vary considerably across industries. Forecast performance for 12 
out of sample quarters 1996(Q2) to 1999(Q1) are compared. The pooled homogeneous 
estimators outperform their heterogeneous counterparts in terms of RMSE.

Hsiao and Tahmiscioglu (1997) use a panel of N 5 561 US firms over the period 
1971–92 (T 5 12)  to study the influence of financial constraints on company invest-
ment. They find substantial differences across firms in terms of their investment 
behavior. When a homogeneous pooled model is assumed, the impact of liquidity 
on firm investment is seriously underestimated. The authors recommend a mixed 
fixed  and random coefficients framework based on the recursive predictive density 
criteria.

Pesaran et al. (1996) investigated the small sample properties of various estimators of 
the long- run coefficients for a dynamic heterogeneous panel data model using Monte 
Carlo experiments. Their findings indicate that the mean group estimator performs 
reasonably well for large T. However, when T  is small, the mean group estimator could 
be seriously biased, particularly when N is large relative to T. Pesaran and Zhao (1999) 
examine the effectiveness of alternative bias- correction procedures in reducing the small 
sample bias of these estimators using Monte Carlo experiments. An interesting finding 
is that when the coefficient of the lagged dependent variable is greater than or equal to 
0.8, none of the bias correction procedures seem to work. Hsiao et al. (1999) suggest 
a Bayesian approach for estimating the mean parameters of a dynamic heterogeneous 
panel data model. The coefficients are assumed to be normally distributed across cross- 
sectional units and the Bayes estimator is implemented using Markov Chain Monte 
Carlo methods. Hsiao et al. (1999) argue that Bayesian methods can be a viable alterna-
tive in the estimation of mean coefficients in dynamic panel data models even when the 
initial observations are treated as fixed constants. They establish the asymptotic equiva-
lence of this Bayes estimator and the mean group estimator proposed by Pesaran and 
Smith (1995). The asymptotics are carried out for both N and T S ` with "N/T S 0. 
Monte Carlo experiments show that this Bayes estimator has better sampling proper-
ties than other estimators for both small and moderate size T. Hsiao et al. also caution 
against the use of the mean group estimator unless T is sufficiently large relative to N. 
The bias in the mean coefficient of the lagged dependent variable appears to be serious 
when T  is small and the true value of this coefficient is larger than 0.6. Hsiao et al. apply 
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their methods to estimate the q- investment model using a panel of N 5 273 US firms 
over the period 1972–93 (T 5 22).

Holtz- Eakin et al. (1989) formulate a coherent set of procedures for estimating and 
testing vector autoregressions (VAR) with panel data. Tests for parameter stationar-
ity, minimum lag length and causality are performed. They emphasize the importance 
of testing for the appropriate lag length before testing for causality, especially in short 
panels. Otherwise, misleading results on causality can be obtained. They suggest a simple 
method of estimating VAR equations with panel data that has a straightforward GLS 
interpretation. This is based on applying instrumental variables to the quasi- differenced 
autoregressive equations. They demonstrate how inappropriate methods that deal 
with individual effects in a VAR context can yield misleading results. They apply these 
methods to estimating the dynamic relationships between local government revenues and 
expenditures. The data are based on N 5 171 municipal governments over the period 
1972–80 and are drawn from the Annual Survey of Governments between 1973 and 1980 
and the Census of Governments conducted in 1972 and 1977. The main findings include 
the following:

1. Lags of one or two years are sufficient to summarize the dynamic interrelationships 
in local public finance.

2. There are important intertemporal linkages among expenditures, taxes and grants.
3. Results of the stationarity test cast doubt over the stability of parameters over time.
4. Contrary to previous studies, this study finds that past revenues help predict current 

expenditures, but past expenditures do not alter the future path of revenues.

Rapach and Wohar (2004) show that the monetary model of exchange rate deter-
mination performs poorly on a country- by- country basis for US dollar exchange rates 
over the post- Bretton Woods period for N 5 18 industrialized countries for quarterly 
data over the period 1973:1–1997:1. However, they find considerable support for the 
monetary model using panel procedures. They reject tests for the homogeneity assump-
tions inherent in panel procedures. Hence, they are torn between obtaining panel 
cointegrating coefficient estimates that are much more plausible in economic terms 
than country- by- country estimates. Yet these estimates might be spurious since they 
are rejected by formal statistical test for pooling. Rapach and Wohar (2004) perform 
an out- of- sample forecasting exercise using the panel and country- by- country estimates 
employing the RMSE criteria for a 1, 4, 8, 12 and 16 step ahead quarters. For the 1- step 
and 4- step ahead, the RMSEs of the homogeneous and heterogeneous estimates are 
similar. At the 8- step ahead horizon, homogeneous estimates generate better forecasts 
in comparison to five of the six heterogeneous estimates. At the 16- step horizon, the 
homogeneous estimates have RMSE that is smaller than each of the heterogeneous 
estimates. In most cases the RMSE is reduced by 20 per cent. They conclude that 
while there are good reasons to favor the panel estimates over the country- by country 
estimates of the monetary model, there are also good reasons to be suspicious of these 
panel estimates since the homogeneity assumption is rejected. Despite this fact, they 
argue that panel data estimates should not be dismissed based on tests for homogene-
ity alone, because they may eliminate certain biases that plague country- by- country 
estimates. In fact, panel estimates of the monetary model were more reliable and gener-
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ated superior forecasts to those of country- by- country estimates. Rapach and Wohar’s 
(2004) suspicion of panel data estimates comes from Monte Carlo evidence that shows 
that ‘it is not improbable to find evidence in support of the monetary model by relying 
on panel estimates, even when the true data generating process is characterized by a 
heterogeneous structure that is not consistent with the monetary model’. Other papers 
in this vein are Mark and Sul (2003) and Groen (2005). The latter paper utilizes a panel 
of vector error- correction models based on a common long- run relationship to test 
whether the euro exchange rates of Canada, Japan and the United States have a long- 
run link with monetary fundamentals. Out- of- sample forecasts show that this common 
long- run exchange model is superior to both the naive random walk- based forecasts 
and the standard cointegrated VAR model- based forecasts, especially for horizons of 
2 to 4 years.

Gavin and Theodorou (2005) use forecasting criteria to examine the macrodynamic 
behavior of N 5 15 OECD countries observed quarterly over the period 1980 to 1996. 
They utilize a small set of familiar, widely used core economic variables (output, price 
level, interest rates and exchange rates), omitting country- specific shocks. They find 
that this small set of variables and a simple VAR common model strongly support 
the hypothesis that many industrialized nations have similar macroeconomic dynam-
ics. In sample, they often reject the hypothesis that coefficient vectors estimated 
separately for each country are the same. They argue that these rejections may be of 
little  importance if due to idiosyncratic events since macro time series are typically 
too short for standard methods to eliminate the effects of idiosyncratic factors. Panel 
data can be used to exploit the heterogeneous information in cross- country data, 
hence increasing the data and eliminating the idiosyncratic effects. They compare 
the forecast accuracy of the individual country models with the common models in 
a simulated out- of- sample experiment. They calculate four forecasts with increasing 
horizons at each point in time, one quarter ahead and four quarters ahead. For the 
four equations, at every horizon, the panel forecasts are significantly more accurate 
more often than are the individual country model forecasts. The biggest differences 
are for the exchange rate and the interest rate. They conclude that the superior out- of- 
sample forecasting performance of the common model supports their hypothesis that 
market economies tend to have a common macrodynamic pattern related to a small 
number of variables.

7 FURTHER READING

For classic influential papers on dynamic panels, see Baltagi (2002). Recent surveys on 
dynamic panel data models include Harris et al. (2008) and Hsiao (2011). The latter has 
an extensive treatment of the maximum likelihood approach to dynamic panels, the 
importance of initial value assumptions, and multiplicative individual and time- specific 
effects. Space limitations prevent the inclusion of semi- parametric, non- parametric and 
Bayesian methods using dynamic panel data, also, of non- stationary panels (see the 
recent survey by Breitung and Pesaran, 2008). More extensive treatment of dynamic 
panel data models are given in textbooks on the subject by Arellano (2003), Hsiao 
(2003), and Baltagi (2008).
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NOTES

1. This can easily be extended to the case of additional lags of the dependent variable without loss of 
generality.

2. See also Bun and Kiviet (2003) and Everaert and Pozzi (2007), to mention two.
3. Another system estimator is suggested by Arellano and Bover (1995) who stack the forward orthogonaliza-

tion demeaned equation on top of the levels time averaged equation.
4. Note that there are T(T 1 1) /2 distinct elements of S and this has to be much smaller than N. This is 

usually the case for large consumer or labor panels where N is very large and T  is very small, but not neces-
sarily true for macro- panels. It is also worth emphasizing that if T . N, this procedure will fail since Ŝ will 
be singular with rank N. Also, the estimation of an unrestricted P matrix will be difficult with unbalanced 
panels due to missing data. 
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11 Factor models
Jörg Breitung and In Choi

1 INTRODUCTION

Factor models are becoming increasingly popular in economics because they can utilize 
large data sets in an effective manner. Factor models have been used for various purposes. 
First, they have been used to construct economic indicators. Monthly coincident business 
cycle indicators such as the Chicago Fed National Activity index (CFNAI) for the US 
and EuroCOIN for the Euro area (cf. Altissimo et al., 2001) are related examples. Second, 
factor models have widely been used in order to forecast real and nominal economic vari-
ables. They often provide more accurate forecasts than autoregressive and vector autore-
gressive models (see Eickmeier and Ziegler, 2008 and the literature cited therein). Third, 
factor models have been used for monetary policy analysis in combination with a vector 
autoregressive (VAR) system as in Bernanke et al. (2005). In many cases only five to ten 
factors are sufficient to capture more than a half of the total variation within a data set 
of more than three hundred macroeconomic variables. Therefore, adding a few common 
factors to a macroeconomic VAR system is supposed to control for a variety of omitted 
variables within a typical low- dimensional VAR analysis. Fourth, factor models are 
used for instrumental variables estimation. Bai and Ng (2010) assume that endogenous 
regressors are driven by a small number of unobserved, exogenous factors and suggest 
using the estimated factors as instruments. Fifth, factor models have been used in panel 
regressions as a way of modelling cross- sectional correlation. See Bai and Ng (2004), Bai 
(2009), Moon and Perron (2004), Pesaran (2006) and Phillips and Sul (2003).

In this chapter we review classical and more recent results from the (dynamic) factor 
analysis of large macroeconomic panels. As the literature is evolving rapidly, it is not 
possible to give a full account of all current research activities within this field. More 
comprehensive reviews emphasizing different aspects of recent work are provided by 
Breitung and Eickmeier (2006), Deistler and Zinner (2007), Bai and Ng (2008), and 
Stock and Watson (2011).

2 MODEL ASSUMPTIONS

2.1 The Strict Factor Model

Assume that each of the N variables y1t, . . . , yNt with t being a time index can be repre-
sented by the factor model

 yit 5 li1 f1t 1 c1 lir frt 1 uit, (i 5 1, . . . , N; t 5 1,. . . ,T) (11.1)

 5 lri ft 1 uit,
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where ft 5 ( f1t, . . . , frt)r denotes the vector of r factors and li 5 (li1, . . . ,lir)r is the asso-
ciated r 3 1 vector of factor loadings. Furthermore, uit ,

iid
N(0,s2

u), ft ,
iid

N(0,Sf), and 
E( ftuit) 5 0 for all i and t.1 The component cit 5 lri ft is called the common  component 
and uit is the idiosyncratic error. The covariance between the variables is given by

 E(yityjt) 5  lriSf lj , for i 2 j,

that is, any cross- section dependence among the variables is due to the presence 
of common factors. Note that the N(N 2 1) /2 covariances are determined by the 
r # N 1 r(r 1 1) /2 parameters stemming from l1, . . . ,lN and Sf. Thus, the factor model 
implies a substantial number of restrictions if N .. r.

In matrix notation, the model is written as

 yt 5 L ft 1 ut (11.2)

 Y 5 FLr 1 U,  (11.3)

where L 5 (l1, . . . ,lN)r, Y 5 (y1, . . . , yT)r, yt 5 (y1t, . . . , yNt)r, F 5 ( f1, . . . , fT)r and 
U 5 (u1, . . . , uT)r with ut 5 (u1t, . . . , uNt)r.

It is important to note that L and Sf  are not separately identified. An observationally 
equivalent model is obtained by

 yt 5 LQ21Q ft 1 ut

 5 L*f *t 1 ut,

where Q is any non- singular r 3 r matrix. Therefore, r2 restrictions on L and Sf  are 
required to identify the model. In explanatory factor analysis these restrictions are 
not derived from a formal structural identification guided by economic theory but 
are selected just for computational convenience. In particular, it is often assumed that 
Sf 5 Ir (implying r(r 1 1) /2 restrictions) and that LrL is a diagonal matrix (yielding the 
remaining r(r 2 1) /2 restrictions). Although there are good reasons to normalize the 
variance of the factors to unity and assume that the factors are orthogonal, the restric-
tions on the factor loading matrix are less appealing intuitively. Indeed it is possible to 
introduce some ‘rotation matrix’ Q with QrQ 5 Ir such that the rotated factors f *t 5 Q rft 
remain orthonormal. This raises the question of how to choose the rotation matrix. 
The ‘varimax approach’ (Kaiser, 1958) determines the rotation of the factor space with 
maximal variance of the factor loadings. The notion behind this method is to find a clear 
pattern of the factor loadings such that a subset of variables are explained well by some 
particular factors, whereas the factors do not explain some other variables. This some-
times helps to find some interpretation of the associated factors.

2.2 Approximate Factor Models

The ‘strict’ factor model considered so far is overly restrictive in most economic appli-
cations. It sometimes seems unrealistic to assume that both components ft and uit are 
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i.i.d. First, since fjt and uit are time series it is natural to assume that the components 
are generated by dynamic processes that give rise to some forms of serial correlation. 
Second, the idiosyncratic component of unit i may be correlated with the idiosyn-
cratic components of some other unit j( j 2 i). Third, the variances of the common 
and idiosyncratic components may vary across i and t. The approximate factor model 
allow for some ‘mild’ form of cross- sectional and temporal dependence as well as 
heteroscedasticity.

It is important to note that allowing for cross- sectional correlation raises severe 
identification problems. The covariance matrix of the data Wy 5 E(ytytr) entails only 
N(N 1 1) /2 parameters, whereas the factor model with Sf 5 Ir and unrestricted covari-
ance matrix Su 5 E(uturt) involves N(N 1 1) /2 1 rN parameters. Accordingly, different 
specifications of the factor model may result in an identical covariance matrix Wy and, 
thus, in observationally equivalent structures. However, under certain conditions it 
is possible to consistently estimate the factor space even if the covariance parameters 
of the idiosyncratic components are left unidentified. To see this, assume that there 
exist some N 3 r matrix G such that as N S `, N21GrG S YG and N21GrL S Q with 
rank (G) 5 rank (Q) 5 r. Pre- multiplying the factor model (11.2) by Gr yields

 N21Gryt 5 N21GrL ft 1 vt,

where vt 5 N21Grut is Op (N21/2) . As N S ` we obtain N21Gryt S
p

Q ft, and therefore 
N21Gryt is a consistent estimator of the factor space irrespective of the covariance param-
eters of ut (which are in fact not identified). Thus, imposing assumptions that ensure that 
some linear combination of ut tends to zero in probability is sufficient for a consistent 
estimator of the factor space. For example, a sufficient condition is 0 0N21GrSuG 0 0 , ` for 
all N. Chamberlain and Rothschild (1983) assume that all eigenvalues of Su are bounded, 
whereas Stock and Watson (2002) and Bai and Ng (2002) assume

 
1
Na

N

i51
a

N

j51
tij # M , `  for all N,

with tij 5 supt{ 0E(uitujt) 0 }. Note that this condition involves the sum over N 2 upper 
bounds of the covariance parameters which is divided only by the factor N. Hence, this 
condition rules out that all covariances are different from zero. However, we may still 
allow for some ‘spots of local correlation’ (for example some spatial correlation) among 
a finite group of neighbours (cf. Chudik et al., 2011).

2.3 Dynamic Factor Models

A dynamic version of the factor model is given by

 yit 5 l*i (L)rf *t 1 ut, (11.4)

where l*i (L) 5 l0, i 1 l1, iL 1 c1 lqi, iL 
qi is an r 3 1 lag polynomial (for example 

Geweke, 1977 and Stock and Watson, 2002). This model can be reformulated as a static 
factor model by using f

|

t 5 ( f *rt , f *rt21, . . . , f*rt2q|)r and l| i 5 (lr0, i , . . . ,l q|r , i)r such that
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 yit 5 l
|
ri f
|

t 1 uit,

where q| 5 max i(qi) . Although this ‘static representation’ is convenient as it allows 
one to cope with a dynamic factor model by using the usual (static) framework, 
this  representation has a number of drawbacks. First, the static representation may 
severely inflate the number of factors leading to a substantial loss of efficiency when 
estimating the factor space. Second, since the estimated factors are linear combina-
tions of the original factors (also called the dynamic or primitive factors) and their 
lags, the estimated factors are difficult to interpret. Third, if some lags enter only for 
a subset of the variables (example: a few variables have a lag- order qi 5 2 whereas 
all other variables have lag order qi 5 0), then the associated factors are difficult to 
distinguish from the idiosyncratic components. Finally, no static factor model exists 
if l*i (L) is an infinite order lag polynomial. Consider, for instance, the following 
dynamic factor model:

 yit 5 aiyi, t21 1 lri ft 1 eit.

This model may be rewritten in a form like (11.4) with l*i (L) 5 (1 2 aiL)21li and 
uit 5 (1 2 aiL) 21eit. Obviously, this model implies an infinite number of static factors 
and, therefore, the static factor representation does not make sense in this case (see 
Hallin and Liska, 2011 in relation to this).

3 ESTIMATION AND INFERENCE

3.1 Estimators Based on Principal Components

The most popular estimation method is obtained from applying a principal component 
(PC) analysis. This estimator results from applying the least- squares principle. Define 
the (unweighted) sum of squared residuals as

 SSR(L, F) 5 a
N

i51
a

T

t51
u2

it 5 a
T

t51

(yt 2 L ft)r (yt 2 L ft)

 5 tr [(Y 2 FLr)r (Y 2 FLr) ].

The PC estimator is obtained by minimizing SSR with respect to L and F  subject to the 
constraint LrL 5 Ir. Using the OLS estimator F̂ 5 (LrL)21LrY 5 LrY, we can concen-
trate out the parameter L yielding

 SSRc(L, F ) 5 tr(Y rY) 2 tr(LrY rYL).

Accordingly, minimizing SSR is equivalent to maximizing tr(LrY rYL).
For a single- factor model with r 5 1, the PC estimator of the N 3 1 vector L is 

obtained from maximizing
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 LrŴyL 2 m (LrL 2 1),

where Ŵy 5 T21Y rY  and m is the Lagrange multiplier. Since the first order condition is

 (mIN 2 Ŵy)L̂ 5 0,

the desired PC estimator of L, L̂, is the eigenvector corresponding to the largest eigen-
value of Ŵy. Similarly, the PC estimator of L for an r - factor model is the N 3 r matrix 
of r eigenvectors associated with the r largest eigenvalues of Ŵy. The PC estimator of the 
factor matrix is obtained as

 F̂ 5 YL̂ (L̂rL̂) 21 5 YL̂,

which can be seen to be the (system) OLS estimator of F, where L is replaced by L̂ in 
(11.3). Since T21F̂ rF̂ 5 L̂rŴyL̂ is a diagonal matrix with the eigenvalues of Ŵy on the 
diagonal, it follows that the estimated factors are orthogonal with variances identical to 
the respective eigenvalues of Ŵy.

Alternatively, we may put the eigenvectors associated with the r largest eigenvalues of 
the T 3 T  matrix YY r in the matrix V

|

r and define the PC estimator of the factor space as 
F
|

5 "TV
|

r. The PC estimator satisfies the normalization T21F
|
rF
|

5 Ir. The correspond-
ing loading matrix is obtained as L

|
5 T 21Y rF

|
.

If uit is assumed to be heteroscedastic, efficiency gains for the estimation of the factor 
loading space may be expected from minimizing the GLS criterion function

 S
| (L, F,Su) 5  a

N

i51
a

N

t51

1
s2

i

(yit 2 lri ft)2, (11.5)

where it is assumed that Su 5 diag(s2
1, . . .,s2

N) . However, since the system of regression 
equations forms an SUR system with identical regressors, the GLS estimator of L is 
equivalent to the OLS (i.e. PC) estimator (cf. Breitung and Tenhofen, 2011).

Minimizing the GLS criterion function (11.5) improves the efficiency in estimating ft. 
The PC estimator is equivalent to the OLS estimator of ft in the regression

 yit 5 l̂ri ft 1 nit, (i 5 1, . . . , N),

where l̂i is the PC estimator of li. Since the errors of this regression are heteroscedastic, 
a more efficient estimator results from applying the (feasible) GLS principle based on 
the estimated weights 1/ŝi, where ŝ2

i  is the PC- based estimator of the variance of the ith 
variable’s idiosyncratic component. The resulting estimator yields the two- step PC–GLS 
estimator of Breitung and Tenhofen (2011). A related estimator is introduced by Choi 
(2012b) who suggests applying the PC estimator to the transformed data Y

|
5 Y Ŝ21/2

u , 
where Ŝ21/2

u 5 diag(ŝ1, . . . , ŝN) . The resulting estimator can also obtained from the 
eigenvectors of the generalized eigenvalue problem

 0gŜu 2 Ŵy 0 5 0.
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Note that the normalizations of Breitung and Tenhofen’s and Choi’s estimators are 
different. While Breitung and Tenhofen’s PC–GLS estimator is normalized such that 
T 21F

|
r2SF
|

2S Sp Ir, Choi’s generalized PC estimator obeys T 21F
|
rglsŜ

21
u F
|

gls 5 Ir. These estima-
tors can be shown to be asymptotically equivalent to the local maximizer of the Gaussian 
likelihood function that treats f1, . . ., fN as fixed parameters (cf. Breitung and Tenhofen, 
2011).

Further efficiency gains can be achieved if possible (weak) cross- sectional correla-
tion represented by some non- zero off- diagonal elements of Su is exploited as shown 
in  Choi (2012). Such covariance matrix may arise in the spatial model where off- 
diagonal entries of the covariance matrix represent the correlations among regional 
neighbours.

Efficiency gains are also possible for the estimation of the factor loadings. Assume 
that the errors are generated by the autoregressive process ri(L)ut 5 eit, where ri(L)  is a 
polynomial in the lag operator L. A GLS transformation of the model yields

 ri(L)yit 5 [ri(L)ft ]rli 1 eit.

The (two- step) PC–GLS estimator of Breitung and Tenhofen (2011) is obtained from 
replacing ri(L)  and ft by the estimated autoregressive polynomial that uses the PC 
residuals ûit 5 yit 2 l̂ri f̂t and the PC estimator f̂t, respectively. Monte Carlo simulations 
indicate substantial efficiency improvements whenever the dynamic process of uit is 
highly persistent.

3.2 ML- type Estimators

Two different set- ups may be employed to obtain an ML estimator for the strict factor 
model. First, assume that ft is a vector of random variables with ft , N(0, I)  and LrSuL 
is a diagonal matrix (for example Anderson, 1984, p. 557). Under this set- up, Lawley and 
Maxwell (1963) propose a scoring algorithm based on the first and second derivatives of 
the log- likelihood function

 logL(L, F,Su) 5 const 2
T
2

log 0LLr 1 Su 0 2 T
2

tr{(LLr 1 Su)21Ŵy},

where Ŵy is the N 3 N sample covariance matrix of yt. Another possibility is to 
assume that the factors are fixed unknown constants. In this case it is important to 
note that if Su 5 diag(s2

1, . . . ,s2
N), the likelihood function is unbounded. For example, 

we may choose li 5 1 and ft 5 yit resulting in ŝ2
i 5 T 21gT

t51 (yit 2 li ft) 2 5 0 and an 
infinite likelihood function. Breitung and Tenhofen (2011) argue that there is a local 
maximum in the neighbourhood of the true parameter values that can be found by 
initializing the maximization algorithm by some consistent estimators (such as the PC 
estimators).

These ML estimators are based on fairly restrictive assumptions which rule out real-
istic scenarios such as (weakly) serially and cross- sectionally correlated idiosyncratic 
errors, time dependent heteroscedasticity and serially correlated factors. A dynamic 
version of the factor model is typically formulated within a state space framework (for 
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example Kapetanios and Marcellino, 2009). In this framework, the factor model (11.2) 
constitutes the signal equation, whereas (if the factors are assumed to follow a VAR(1) 
process) the transition equation is given by

 ft 5 Fft21 1 ut.

An obvious computational challenge is to deal with the typically high dimension of 
the signal equation. To reduce the computational burden, Kapetanios and Marcellino 
(2009) suggest a subspace algorithm, whereas Doz et al. (2011) use conventional 
algorithms based on the Kalman filter, arguing that ‘the estimator is feasible when 
N is large and easily implementable using the Kalman smoother and the EM algo-
rithm as in traditional factor analysis’. Jungbacker and Koopman (2008) combine 
traditional  techniques based on the Kalman filter and Bayesian methods (MCMC 
techniques).

3.3 Frequency- domain Estimators

Forni et al. (2000, 2004) and Forni and Lippi (2001) consider the generalized factor 
model

 yit 5 bi(L)ret 1 uit,

 5 cit 1 uit (11.6)

or in vector notation

 yt 5 ct 1 ut, (11.7)

where bi(L) 5 (bi1 (L) , . . . , bir(L))r, et 5 (e1t, . . . , ert)r is a vector white noise process, uit 
is a stationary process representing idiosyncratic errors, yt 5 (y1t, . . . , yNt)r and ct and ut 
are defined analogously. The vector et comprises the common shocks of model (11.6), 
and ct 5 (c1t, . . . ,cNt)r denotes the N 3 1 vector of the common components. As before, 
we assume that r is known.

Under the model assumptions, {yt} is a stationary N- dimensional process. Let 
Sy (q) , Sc(q)  and Su (q)  be the spectral density matrices of yt, ct and ut, respectively. 
The jth eigenvalues of the matrices Sy (q) ,Sc(q) and Su (q)  (in descending order) are 
denoted as my

j (q) , mc
j (q)  and mu

j (q). Note that all these spectral density matrices and 
eigenvalues depend on the index N, though we suppress it to simplify the notation. 
In order to identify the common components, Forni et al. (2000, 2004) and Forni 
and Lippi (2001) assume that r eigenvalues of the spectral density matrix Sy (q) are 
O(N)  for all q [ [2p,p ], whereas the remaining N 2 r eigenvalues are bounded for 
all N.

Since it is assumed that the common and idiosyncratic components are independent, 
we have

 Sy (q) 5 Sc(q) 1 Su (q) for any q [ [2p,p ].
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Consider the (complex) eigenvector of the matrix Sy (q) corresponding to the eigenvalue 
my

j (q) , denoted as pj(q)  with

 (i) p*j (q)pj(q) 5 1;

 (ii) p*h (q)pj(q) 5 0 for any j 2 h and any q [ [2p,p ],

where p* denote the conjugate transpose of p.
The inverse Fourier transform of pj(q)  is written as

 pj(q) 5
1

2p a
`

k5 2`

Gjke2 ikq,

where Gjk is the Fourier transform of pj(q) , that is, Gjk 5 ep
2p pj(q)eikqdq. Using {Gjk} we 

can construct a scalar time series {zjt} such that

 zjt 5
1

2p a
`

k5 2`

Gjk yt2k

with spectral density:

 pj(q)Sy (q)p*j (q) 5 my
j (q) .

Thus, {z1t}, . . . ,{zrt} have my
1 (q) , . . . ,my

r (q) as spectral densities and, therefore, these 
components represent the dynamic principal components. Note that if yt is white noise, 
then Sy (q)  is proportional to Wy and, therefore, the eigenvector pj(q) 5 vj is real and 
does  not depend on the frequency q. In this case zjt 5 vrj yt is the ordinary principal 
component.

Forni et al. (2000) suggest an estimator of cit as

 ĉit 5 a
r

j51
p*ji (L)zjt,

where pj(L) 5
1

2pg`

k5 2`GjkL 
k and p*ji (L) is the ith element of p*j (L). This estimator is a 

linear combination of all the past, present and future values of {z1t, . . . , zrt} with weights 
coming from the ith element of {Gjk}. The estimator ĉit is not feasible in practice because 
it assumes that the true spectral density matrix Sy(q) is known and it requires time series 
data with an index running from 2` to `. A feasible version of ĉit is based on a consist-
ent estimator of the spectral density matrix Sy (q)  and a suitable truncation of the infinite 
sums. Due to the leads and lags only {cit} with t belonging to a certain interval can be 
estimated consistently. The feasible version of ĉit is shown to be consistent when both N 
and T  go to infinity.

The two- sided nature of the filter used to construct ĉit prevents this estimator from 
being useful for forecasting. To overcome this difficulty, Forni et al. (2005) propose a 
one- sided estimator of the common component.
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4 DETERMINING THE NUMBER OF FACTORS

So far we have supposed that the number of factors r is known. In empirical prac-
tice, however, the number of factors is unknown and has to be determined from 
data. The characteristic feature of the factor structure (11.1) is that r eigenvalues of 
the variance- covariance matrix of (y1t, . . . , yNt)r are ‘large’ relative to the remaining 
N 2 r eigenvalues. Therefore, it is natural to select the number of factors by assess-
ing the magnitude of the eigenvalues. A somewhat arbitrary but nevertheless popular 
 criterion  (sometimes called the Kaiser–Guttman criterion) is to determine the number 
of factors as the number of eigenvalues of the sample correlation matrix that exceed 
unity (which is the average size of the eigenvalue of the correlation matrix). Since the 
largest r  eigenvalues are Op(N), these eigenvalues eventually exceed the threshold as 
N S `.

Another simple and very popular selection criterion is the ‘scree plot’. Cattell (1966) 
suggests selecting the number of factors from the plot of the ordered  eigenvalues, 
where the smooth decrease of eigenvalues appears to level off to the right of the 
plot  (the ‘elbow’ of the scree plot). Since the rth eigenvalue is O(N)  whereas the 
(r 1 1)th eigenvalue is O(1) , it is expected that the eigenvalues show a sharp drop 
from r to r 1 1. Using this observation, Onatski (2009) suggests selecting the number 
of common factors according to the slope of the eigenvalue function. Let m̂i denote the 
ith ordered eigenvalue of the sample covariance matrix Ŵy. A measure of the slope of 
the scree plot is

 d̂i 5
m̂i 2 m̂i11

m̂i11 2 m̂i12
.

It is not difficult to see that d̂i is Op (N)  for i 5 r but Op (1)  if i . r. To test the null 
hypothesis H0  : r 5 r0 against H1  : r0 , r , rmax, Onatski (2009) introduces the test 
statistic R 5 max(d̂r011, . . . , d̂rmax

) and derives its (rather complex) limiting distribu-
tion. The number of factors can be determined by testing the sequence of hypotheses 
r0 5 rmax, rmax 2 1, . . .. The procedure suggests selecting the number of factors where the 
test rejects the null hypothesis for the first time.

Bai and Ng (2002) propose consistent information criteria for the number of factors in 
approximate factor models. Although the criteria are originally formulated in terms of 
the total sum of squared residuals, it can also be written as a function of the eigenvalues 
m̂i of the sample covariance matrix Ŵy by noting that

 VNT (r*) 5
1

NTa
N

i51
a

T

t51

(yit 2 l̂riF̂t) 2 5
1
N a

N

i5r*11
m̂i,

where r* 5 dim( f̂t) and { f̂t, l̂i} denote the PC estimators (cf. Ahn and Horenstein, 
2013). Bai and Ng (2002) propose two different classes of information criteria:

 PCP(r*) 5 VNT (r*) 1 s2r*g(N, T)

 IC(r*) 5 log[VNT (r*) ] 1 r*g(N, T),
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where s2 5 VNT (rmax) . The estimated number of common factors is obtained from 
minimizing the information criteria PCP(r*) or IC(r*) with respect to r*. The penalty 
function g(N, T) obeys g(N, T) S 0 and min(N, T) # g(N, T) S ` as N and T  tend to 
infinity.

To study the properties of the information criteria, it is instructive to consider the 
difference

 PCP(r* 2 1) 2 PCP(r*) 5  
m̂r*

N
2 s2g(N, T) . (11.8)

We prefer r* to r* 2 1 if this difference is positive, that is, if the r*th eigenvalue is 
larger than Ns 2g(N, T). If the number of factors is equal to (or larger than) r*, then 
the corresponding eigenvalue is O(N)  and, therefore, the eigenvalue eventually exceeds 
the threshold if N is sufficiently large. On the other hand, if the true number of factors 
is smaller than r*, the r*th eigenvalue is bounded and, since the threshold is increasing 
in N, the information criterion tends to select the smaller number of factors. A similar 
reasoning applies to the criterion IC(r*) by invoking the approximation log(1 1 D) < D 
for small D.

Bai and Ng (2008) recommend the penalty function

 g(N, T) 5  
N 1 T

NT
log[min(N, T) ].

In empirical applications these information criteria perform well if N is sufficiently large 
(for example N . 100). For small sample sizes the information criteria overestimate the 
number of factors and tend to select the upper limit rmax. This is not surprising since N 
needs to be large enough to push the largest eigenvalue above the threshold implied by 
(11.8). Another drawback of this approach is that the eigenvalues depend on nuisance 
parameters stemming from the cross- sectional and serial correlations of the idiosyncratic 
errors, which makes it sensitive to the particular features of the data generating process. 
Therefore, Greenaway- McGrevy et al. (2012a) suggest filtering the data before applying 
the Bai–Ng method.

Ahn and Horenstein (2013) suggest a simple and appealing alternative approach to 
selecting the number of factors. They consider maximizing the eigenvalue ratio

 ER(r*) 5
m̂r*

m̂r*11
 (11.9)

or the growth ratio

 GR(r*) 5
log(1 1 m̂r*)

log(1 1 m̂r*11)
. (11.10)

The notion behind this approach is that for the true number of factors r* 5 r these ratios 
are Op (N) , whereas for all other values of r* the ratios are Op (1) . Thus, it follows that 
maximizing the ratios with respect to r* yields a consistent estimator of r as N S `. An 
attractive feature of this approach is that it does not involve any (more or less arbitrary) 
threshold for the eigenvalues. Monte Carlo simulations of the authors suggest that these 
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criteria perform well relative to the alternative approaches proposed by Bai and Ng 
(2002) and Onatski (2010).

All the methods considered so far were developed for the static factor model. In the 
dynamic factor model where the factors enter in the form of distributed lags, these crite-
ria estimate the number of factors in the static representation (see section 2.3). For the 
purpose of illustration, consider the dynamic factor model with a single factor:

 yit 5 l1i f *t 1 l2i f *t21 1 uit. (11.11)

The selection criteria considered so far treat the lagged factor as an additional factor and, 
therefore, tend to indicate the existence of two factors. Bai and Ng (2007), Amengual and 
Watson (2007), Hallin and Liska (2007) and Breitung and Pigorsch (2013) propose selec-
tion procedures for the number of the dynamic (or ‘primitive’) factors. In model (11.11), 
there is only one dynamic factor that can be written as a linear combination of the two 
static factors. To estimate the number of dynamic factors, Amengual and Watson (2007) 
suggest a sequential approach. In the first step, a PC analysis is applied to obtain con-
sistent estimators of the vector of static factors f̂t. In the second step, the lagged factors 
are removed by regressing all variables yit on the lags f̂t21, . . ., f̂t2p. Finally, the number 
of dynamic factors are estimated by applying some consistent selection criterion to 
the residuals of the second step regression. The approaches of Bai and Ng (2007) and 
Breitung and Pigorsch (2009) are based on a VAR of the estimated factors. Since the 
rank of the residual covariance matrix of the VAR is identical to the number of dynamic 
factors, their selection procedure is based on the number of significant eigenvalues. 
Hallin and Liska (2007) develop information criteria for the generalized PC estimator 
considered in section 3.3. Since in a dynamic PC analysis the common shocks are asso-
ciated with unbounded eigenvalues, this approach directly estimates the number of the 
original dynamic factors.

5 ASYMPTOTIC THEORY

As has been argued in section 2.1, the vectors of common factors and factor loadings are 
not separably identified as the transformed vectors f *t 5 Q ft and l*i 5 Q r21li provide 
observationally equivalent representations. Thus, instead of estimating the true factors 
ft, the estimators merely render some particular basis of the factor space. Specifically, the 
PC estimator imposes the normalization T21gT

t51 f̂t f̂ rt 5 Ir and, therefore, the statement 
that f̂t converges in probability to f *t  makes sense only if we choose Q 5 H such that 
T21gT

t51Hft f rt Hr Sp Ir. As shown by Bai and Ng (2002) the matrix

 H 5 TLrLF rF̂(F̂ rYY rF̂)21.

has the desired property.
Let f̂t denote the PC estimator of the vector of factors ft. The estimator of the vector of 

factor loadings li is equivalent to the least- squares estimator of the time series regression

 yit 5 lri f̂t 1 vit, (t 5 1, . . . , T) ,
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where vit 5 lri( ft 2 f̂t) 1 uit. Similarly, the (transformed) factors can be estimated from 
the cross- section regression

 yit 5 ftrl̂i 1 nit, (i 5 1, . . . , N),

with nit 5 f rt (li 2 l̂i) 1 uit. Under some fairly weak conditions it was shown by 
Stock and Watson (2002) and Bai (2003) that the estimation errors lri(Hft 2 f̂t ) and 
f rt (Hr21li 2 l̂i) in these regressions are asymptotically negligible in the sense that the 
PC estimators are asymptotically equivalent to the corresponding regression using the 
(appropriately normalized) true factors and factor loadings. Accordingly, the limiting 
distributions are given by

 "T( l̂i 2 H r21li) Sd N(0,V l
i ) ;

 "N( f̂t 2 Hft) Sd N(0,Vf
t ) .

For example, if it is assumed that uit ,
iid

N(0,s2)  it follows that

 Vl
i 5  lim

 T S ` 
s2a 1

Ta
T

t51
tf^ f^rtb21

 5 s2Ir

 Vf
t 5  lim 

N S `
s2a 1

Na
N

i51
il^ l^ rib21

 5  s2 diag a 1
m*1

, . . . ,
1

m*r
b,

where m*j 5  lim NS`N21mj for j 5 1, . . . , r and mj denotes the jth eigenvalue of 
Wy 5 E(ytyrt ) . If the errors are heteroscedastic and correlated, the asymptotic variance–
covariance matrices have to be estimated by using a Newey–West type HAC estimator 
(cf. Newey and West, 1987). The full set of assumptions required to derive these limiting 
results are provided in Bai (2003). Here we just mention the most important assumptions 
for empirical applications:2

1. The idiosyncratic errors are weakly cross- sectionally correlated in the sense that the 
largest eigenvalue of the error covariance matrix is bounded:

 mu
1 #

1
Na

N

i51
a

N

j51

0sij 0 # M , `

 for all N, where mu
1 is the largest eigenvalue of Su and sij denotes the (i, j)- element of 

Su.
2. The errors are weakly serially correlated in the sense that

 
1
Ta

T

t51
a

T

s51

0E(uituis) 0 # M , `

 for all i, j and T.
3. The errors obey the following central limit theorems:
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1"Na

N

i51
liuit Sd N(0,Vlu, t)

 
1"Ta

T

t51
Ftuit Sd N(0,VFu, i)

 with some positive definite covariance matrices Vlu, t and VFu,i.

Assumption (1) implies that the idiosyncratic errors are weakly cross- section-
ally   dependent in the sense of Chudik et al. (2011). Furthermore, assumptions (2) 
and  (3)  rule  out that the errors are integrated processes (see section 6 for related 
discussions).

It is easy to see that if the errors are heteroscedastic and/or autocorrelated the PC 
estimator fails to be asymptotically efficient. For example, if E(u2

it) 5 s2
i , then a more 

efficient estimator of the factors is obtained by a GLS estimation of the form

 
1
si

yit 5 f rt a 1
si

l̂ib 1
1
si

vi, (11.12)

whereas no gain in efficiency can be achieved when estimating li. Breitung and 
Tenhofen (2011) propose a feasible GLS estimator that employs the variance estimator 
ŝ2

i 5 T 21gT
t51 û2

it, where ûit denotes the PC estimator of the idiosyncratic component. 
Alternatively, the factors may be estimated by applying a PC analysis to the transformed 
data y*it 5 yit/ŝit (cf. Choi, 2011).

In many econometric applications, the model includes observed variables and unob-
served factors. For example, factors may be employed as predictors to improve the fore-
cast of some economic variables as in the predictive regression model (for example Stock 
and Watson, 2002):

 yt1h 5 a0yt 1 c1 apyt2p 1 br0 ft 1 c1 brq ft2q 1 et.

Another related example is the factor- augmented VAR regression (for example Stock 
and Watson, 2005 and Bernanke et al., 2005):

 yt 5 A1yt21 1 c1 Ap yt2p 1 B1 ft21 1 c1 Bq ft2q 1 et.

In the panel data model with interactive effects (cf. Pesaran, 2006 and Bai, 2009), the 
cross- sectional correlation among the errors is represented by the factor augmented 
panel regression

 yit 5 brxit 1 lri ft 1 uit

where xit is a vector of observed regressors.
In those variants of factor- augmented regressions it is natural to replace the unob-

served factor by consistent estimators and apply OLS to the resulting regression equa-
tion. The previous asymptotic properties suggest that replacing the unobserved factors 
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by PC estimators (or some more efficient PC–GLS estimators) does not affect the 
asymptotic properties of the second- stage OLS estimators whenever "T/N S 0, that 
is, if N is large relative to T. Indeed, this finding was established by Bai and Ng (2006) 
for a wide class of factor- augmented regressions. In some cases, however, these findings 
also hold under some less restrictive assumptions such as T/N S 0 (cf. Bai, 2009 and 
Greenaway- McGrevy et al., 2012b).

6 NON- STATIONARY FACTOR MODELS

Bai (2004) studies the non- stationary factor model for which the factors are generated by 
a (multivariate) unit- root process

 ft 5 ft21 1 ht,

where {ht} is an r- dimensional stationary process. For the idiosyncratic components two 
cases are considered: (i) uit is stationary and (ii) uit is I(1) , that is, Duit has a stationary 
and invertible MA representation. The implications of these assumptions for the factor 
model can easily be analysed by assuming that the factors are known. It is well known 
from the literature on non- stationary time series analysis that if uit is stationary the OLS 
estimator of li in the regression model

 yit 5 lri ft 1 uit t 5 1, . . . , T  (11.13)

is T- consistent with a non- standard limiting distribution. On the other hand, if uit is I(1) , 
model (11.13) gives rise to a ‘spurious regression’ and the OLS estimator of li does not 
converge to the true values.

Bai and Ng (2004) propose a robust estimator that is consistent whether the errors are 
stationary or not. Taking first differences of (11.13) yields

 Dyit 5 lriD ft 1 Duit. (11.14)

Since the error Duit is stationary, the PC estimator of Dft is consistent even if the errors 
are ‘over- differenced’. Bai and Ng suggest estimating the original factors by using 
D f2 1 c1 D ft 5 ft 2 f1. Although this approach elegantly sidesteps the problems due 
to possible non- stationary idiosyncratic errors, it may imply a severe loss of efficiency if 
the errors are over- differenced. In empirical practice it is standard to apply unit root test 
to the components of yit in order to find out whether the variables need to be differenced 
or not.

Choi (2011) studies the same model as in Bai (2004), but adopts the assumption that 
E(uturt) 5 Su for all t. With the standardization T 22F rF 5 Ir, his estimator of the factor 
space, denoted as F̂g, is T  times the matrix consisting of the eigenvectors corresponding 
to the r largest eigenvalues of the matrix YS21

u Y r. The matrix of factor loadings L is 
estimated by L̂ 5

1
T 2Y rF̂g. It is shown that the resulting estimator of Ft is more efficient 

than the PC estimator since the generalized PC estimator corresponds to the GLS esti-
mator in the linear regression while the PC estimator corresponds to the OLS estima-
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tor. Regarding the estimation of li, Choi shows that the GLS version of the principal 
components estimator is asymptotically equivalent to the original PC estimator. A set 
of conditions that makes the generalized principal components estimator of Ft and its 
feasible version equivalent in the limit are stated. Choi (2011) also extends his theory to 
the models with an intercept and with an intercept and a linear time.

7 CONCLUSION

In recent years dynamic factor models have become popular for analysing and forecast-
ing large macroeconomic data sets. In this chapter we focused on recent developments in 
the modelling and estimation of (dynamic) factor models. The premise of these models is 
that a few latent factors are able to capture the pervasive co- movement among a large set 
of economic variables. Employing dynamic factor models in empirical practice raises a 
number of important problems: how many factors are required to summarize the cross- 
correlation among the variables? How can we efficiently estimate the latent factors? Is 
it possible to provide the extracted factors with a meaningful economic interpretation? 
How can we perform statistical inference based on estimated factors? In the past decade, 
econometric work provided a variety of statistical methods to address these issues. There 
is no doubt that future research will further complement the econometric toolbox for 
analysing macroeconomic co- movement based on factor models.

NOTES

1. For notational convenience we assume that E( yt) 5 0. In practice, the variable specific means 
yi 5 T 21gT

t51yit are subtracted and in many applications the variables are further divided by their sample 
standard deviations.

2. To simplify the exposition we assume that the errors are stationary with Su 5 E(uturt ) .
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12 Conditional heteroskedasticity in macroeconomics 
data: UK inflation, output growth and their 
uncertainties*
Menelaos Karanasos and Ning Zeng

1 INTRODUCTION

The conditional heteroskedasticity models are widely used in the financial econom-
ics and less frequently so in other fields, including macroeconomics. However, certain 
applications lend themselves naturally to the investigation of possible links between 
macroeconomic variables and their volatilities, and here the conditional heteroskedas-
ticity approach proved to be a powerful tool. The basics of the univariate models with 
conditional heteroskedasticity have been introduced in Chapter 2 in this volume. In this 
chapter, we extend this to a bivariate model and illustrate how this approach can be 
used to investigate the link between UK inflation, growth and their respective uncer-
tainties, using a particular bivariate model with conditional heteroskedasticity.1 For 
recent surveys on multivariate GARCH specifications and their importance in various 
areas such as asset pricing, portfolio selection, and risk management see, for example, 
Bauwens et al. (2006) and Silvennoinen and Teräsvirta (2007).

The ARCH and GARCH models were introduced by Engle (1982) and Bollerslev 
(1986), respectively, and quickly gained currency in the finance literature.2 Consider the 
process yt augmented by a risk premium defined in terms of volatility (ht):

 yt 5 E (yt 0Wt21) 1 kht 1 et, (12.1)

with

 et 5 eth
1
2
t,

where Wt21 is the information set. In addition, {et} are independently and identically 
distributed (i.i.d) random variables with E (et) 5 E (e2

t 2 1) 5 0, while ht denotes the 
conditional variance of yt. In particular, ht is specified as a GARCH(1,1) process:

 ht 5 w 1 ae2
t21 1 bht21, (12.2)

where a and b are the ARCH and GARCH coefficients respectively. ht is positive with 
probability 1 if and only if w, a . 0, and b $ 0. It can also be seen that, if a 1 b , 1, 
the unconditional variance of the errors is given by

 E (ht) 5 E (e2
t ) 5

w

1 2 (a 1 b)

(see Francq and Zakoian, 2010).
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A general bivariate VAR(p) (GARCH- in- mean) model can be written as

 aI 2a
p

i51
FiL 

ib (xt 2 Dht2n) 5 F0 1 et, t[N, (12.3)

with

 Fi 5 c�(i)
pp �(i)

py

�(i)
yp �(i)

yy
d , D 5 cdpp dpy

dyp dyy
d , F0 5 c�p0

�y0
d ,

where I is a 2 3 2 identity matrix, xt and ht are 2 3 1 column vectors given by xt 5 (pt yt)r 
and ht 5 (hpt hyt)r respectively, and n 5 0,. . .,4.

We use a bivariate model to simultaneously estimate the conditional means, 
 variances, and covariances of inflation and output growth. Let pt and yt denote the 
inflation rate and real output growth respectively, and define the residual vector 
et as et 5 (ept eyt)r.3 Regarding et we assume that it is conditionally normal with 
mean vector 0 and covariance matrix Ht where vech (Ht) 5 (hpt hpy,t hyt)r.4 That is 
(et 0Wt21) , N(0,Ht) , where Wt21 is the information set up to time t 2 1. Following 
Conrad and Karanasos (2010, 2012) we impose the extended constant conditional 
 correlation (eccc) GARCH (1,1)- level structure on the conditional covariance matrix 
Ht:

 ht 5 w 1 Ae2
t21 1 Bht21 1 Gxt21, (12.4)

with

 w 5 cwp

wy
d , A 5 capp apy

ayp ayy
d , B 5 cbpp bpy

byp byy
d , G 5 cgpp gpy

gyp gyy
d .

Moreover, hpy,t 5 r"hpt"hyt, (21 # r # 1). We will use the acronym BVAR(p)-
GARCH(1,1)- ML(n,1) to refer to this model.

There are many controversies in the theoretical literature on the relationship between 
the four variables. The debate about the inflation–growth interaction is linked to another 
ongoing dispute, that of the existence or absence of a variance relationship. As Fuhrer 
(1997) puts it,

It is difficult to imagine a policy that embraces targets for the level of inflation or output growth 
without caring about their variability around their target levels. The more concerned the mon-
etary policy is about maintaining the level of an objective as its target, the more it will care 
about the variability of that objective around its target.

Thus, Fuhrer focuses his attention on the trade- off between the volatility of inflation and 
that of output. The extent to which there is an interaction between them is an issue that 
cannot be resolved on merely theoretical grounds. To paraphrase the words of Temple 
(2000):
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When one lists ideas about the influence of macroeconomic performance on uncertainty, it is 
striking that theoretical models are less common than hypotheses or conjectures.5 Not only 
that, the models regarding the opposite link (the impact of uncertainty on performance) that 
do exist are often ambiguous in their predictions. These considerations reinforce a widespread 
awareness of the need for more empirical evidence, but also make clear that a good empirical 
framework is lacking.

The last ten years have seen an outpouring of empirical work intended to explain the 
links among the four variables. Many researchers who have worked on this field over the 
last decade or so have endorsed the GARCH model (see, for example, Grier et al., 2004, 
Shields et al., 2005, Fountas et al., 2006, Fountas and Karanasos, 2007 and Conrad et 
al., 2010). Indeed, this model has been the driving force behind the quest to examine the 
interactions between macroeconomic performance and its uncertainty.6 Despite numer-
ous empirical studies, there still exists controversy over the robustness of these relation-
ships. The GARCH studies by Karanasos et al. (2004), Karanasos and Kim (2005a) 
and Karanasos and Schurer (2005) focus almost exclusively on the empirical linkages 
between any of the following three: (i) inflation and its volatility; (ii) nominal and real 
uncertainty; and (iii) growth and its variability. It makes good sense to treat these issues 
together as answers to one relationship are usually relevant to the other two.

In this chapter we use a bivariate GARCH model to investigate the interactions 
between the four variables. Our work has many distinguishing features. We examine 
in a single empirical framework all the possible causal relationships among inflation, 
output growth, and their respective variabilities that are predicted by economic theory. 
If well estimated, this model can help identify the relative contributions of different 
influences more precisely than previous studies. Rather than selecting one specification 
as pre- eminent, we compare various formulations and investigate the similarities and 
differences between them.

One potentially controversial aspect of nearly all bivariate GARCH processes is the 
way in which the conditional variance–covariance matrix is formulated. The two most 
commonly used models are the constant conditional correlation (ccc) specification and 
the BEKK representation.7 At the one extreme, the former assumes that there is no link 
between the two uncertainties, whereas, near the other extreme, the latter only allows 
for a positive variance relationship. At this point one alternative model suggests itself. 
That is, we construct a formulation of the ccc GARCH- in- mean model which allows for 
a bidirectional feedback between the two volatilities, which can be of either sign, posi-
tive or negative, and so no restriction is imposed. This has the advantage of allowing us 
to derive sufficient conditions for the non- negativity of the two conditional variances.8

The studies by Grier and Perry (2000) and Grier et al. (2004) focus on the impact of 
uncertainty on performance (the so- called in- mean effects). These studies simultaneously 
estimate a system of equations that allows only the current values of the two conditional 
variances to affect inflation and growth (see also Elder, 2004). However, any relationship 
where macroeconomic performance is influenced by its variability takes time to show up 
and cannot be fairly tested in a model that restricts the effect to be contemporaneous. In 
this chapter we estimate a system of equations that allows various lags of the two vari-
ances to affect the conditional means.

Perhaps a more promising approach is to construct a model allowing for effects in 
the opposite direction as well. There exists relatively little empirical work documenting 
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the influence of performance on uncertainty (the so- called level effects). Dotsey and 
Sarte (2000) point out that countries which have managed to live with relatively high 
levels of inflation should exhibit greater variability in their real growth rate. Inflation 
breeds uncertainty in many forms. The fact that higher inflation has implications for 
the volatility of growth has thus far been overlooked in empirical studies. One could 
also imagine that when economic growth decreases, there is some uncertainty gener-
ated about the future path of monetary policy, and consequently, inflation variability 
increases (Brunner, 1993). Although Dotsey and Sarte’s and Brunner’s hypotheses are 
merely suggestive, their conjectures suggest the importance of devoting greater explicit 
attention to the effects of inflation and growth on nominal and real uncertainty. This 
study employs a ueccc model with lagged inflation and growth included in the variance 
specifications. Various lags of the two variables are considered, with the best model 
chosen on the basis of the minimum value of the information criteria. In other words, 
we examine the bidirectional causality between the four variables in contrast with 
the existing literature that focuses almost exclusively on the effect of uncertainty on 
performance.

The above considerations, along with the just mentioned complexity, have led to a 
protracted chicken- or- egg debate about the causal relations between inflation, growth 
and their respective uncertainties. This chapter examines simultaneously all the interac-
tions among the four variables. In doing so we are able to highlight some key behavioral 
features that are present across various bivariate formulations. The following observa-
tions, among other things, are noted about the interlinkages. Of significant importance 
is that in all cases, growth tends to increase inflation, whereas inflation is detrimental to 
growth. This finding is robust to the choice of the model. Another useful piece of evi-
dence is that increased nominal uncertainty leads to higher real variability as predicted 
by Logue and Sweeney (1981).

We also draw attention to one particularly dramatic finding. Some in- mean effects 
are found to be quite robust to the various specifications that were considered. In 
particular, inflation is independent of changes in its volatility whereas real uncertainty 
affects inflation positively, as predicted by Cukierman and Gerlach (2003). Some others 
are found to be ‘fragile’ in the sense that either their statistical significance disappears 
or their sign changes when a different formulation is used. Slight variations in the speci-
fication of the regressions appear to yield substantially different results for the influence 
of the two volatilities on output growth. It is also worth pointing out that robustness 
is not a necessary condition for useful information. We would like to make clear that 
lack of robustness should often spur further investigation into causality and interrela-
tionships. Finding that some results are fragile could in itself be valuable information 
(Temple, 1999).

Moreover, inflation has a positive impact on macroeconomic uncertainty. Whereas 
the link between inflation and its volatility is well documented, not much attention has 
been paid to the effect of inflation on real variability. Theoretically speaking this impact 
is based on the interaction of two effects: a higher inflation will raise its variance and, 
therefore, real uncertainty. The evidence for both these effects confirms the positive 
impact of inflation on output volatility. That is, direct and indirect effects point to the 
same conclusion. Finally, we find some evidence for a positive causal effect from growth 
to the variability of inflation. The indirect impact works through the channel of  inflation. 
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This effect has also been overlooked in the literature. There has been surprisingly little 
work of this kind. When we examine simultaneously the direct and indirect impact of 
growth on the variance of inflation, the former disappears. In doing so, we show that 
accounting for the indirect effect reduces the strength of the direct one.

The remainder of this chapter is organized as follows. Section 2 discusses the economic 
theory concerning the link between macroeconomic performance and uncertainty. In 
section 3 we describe the time series model for the inflation and growth. The empiri-
cal results are reported in section 4. In section 5 we interpret these results and relate 
them to the predictions of economic theory. Section 6 contains summary remarks and 
conclusions.

2 ECONOMIC THEORIES, HYPOTHESES AND CONJECTURES

To motivate the application of the bivariate GARCH approach in the macroeconomic 
context, in this section we provide a discussion of the economic theory concerning the 
relationship between macroeconomic uncertainty and performance.

2.1 The Link Between Inflation (Uncertainty) and Growth (Uncertainty)

Mean inflation and output growth are interrelated. Temple (2000) presents a critical 
review of the emerging literature which tends to discuss how inflation affects growth. 
Gillman and Kejak (2005) bring together for comparison several main approaches to 
modeling the inflation–growth effect by nesting them within a general monetary endog-
enous growth model with both human and physical capital. Their summary of the find-
ings across the different formulations clearly establishes a robust significant negative 
effect. Other researchers also find evidence that inflation negatively Granger causes real 
growth (see Gillman and Kejak, 2005, and the references therein).

Briault (1995) argues that there is a positive relationship between growth and infla-
tion, at least over the short run, with the direction of causation running from higher 
growth (at least in relation to productive potential) to higher inflation. For simplicity, 
in what follows we will refer to this positive influence as the Briault conjecture. A study 
by Fountas et al. (2006), involving the G7, finds that growth has a significant positive 
impact on inflation.

The inflation–output variability relationship
There are some reasons to suspect a relationship between nominal uncertainty and the 
volatility of real growth. For example, models with a stable inflation–unemployment 
trade- off imply a positive relationship between the two variabilities (see Logue and 
Sweeney, 1981, for details). Moreover, the discretionary equilibrium of Devereux’s 
(1989) model predicts a close relationship between the mean rate of inflation, its volatil-
ity and the variance of output. Although in his model there is no direct causal link what-
ever from real to nominal uncertainty, for simplicity, in what follows we will refer to this 
positive effect as the ‘Devereux’ hypothesis.

In contrast to the positive relationship, Fuhrer (1997) explores the nature of the long- 
run variance trade- off. The short- run trade- off between inflation and output that exists 
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in the models he explores implies a long- run trade- off in the volatilities. Karanasos and 
Kim (2005a, 2005b) discuss a number of arguments, advanced over the last 30 years, that 
predict a positive association between the two variables.

2.2 The Impact of Macroeconomic Uncertainty on Performance

Macroeconomists have placed considerable emphasis on the impact of economic 
uncertainty on the state of the macroeconomy. The profession seems to agree that the 
objectives of monetary policy are inflation and output stabilization around some target 
levels.

Variability about future inflation affects the average rate of inflation. However, 
the direction of the effect is ambiguous from a theoretical point of view. One possible 
reason for greater nominal variability to precede lower inflation is that an increase in 
uncertainty is viewed by policymakers as costly, inducing them to reduce inflation in the 
future (Holland, 1995). We will refer to this negative effect as the Holland conjecture. 
Cukierman and Meltzer’s (1986) model, on the other hand, explains the positive associa-
tion between the two variables. In the words of Holland (1995):

The policy maker chooses monetary control procedures that are less precise, so that uncertainty 
about inflation is higher. The reason is that greater ambiguity about the conduct of monetary 
policy makes it easier for the government to create the monetary surprises that increase output. 
This causes the rate of inflation to be higher on average.

The impact of nominal uncertainty on output growth has received considerable 
attention in the literature. However, there is no consensus among macroeconomists 
on the direction of this effect. Theoretically speaking, the influence is ambiguous. In 
his Nobel address, Friedman (1977) explains a possible positive correlation between 
inflation and unemployment by arguing that high inflation produces more uncer-
tainty about future inflation. This uncertainty then lowers economic efficiency and 
temporarily reduces output and increases unemployment. In sharp contrast, Dotsey 
and Sarte (2000) employ a model where money is introduced via a cash- in- advance 
constraint and find that variability increases average growth through a precautionary 
savings motive.

Next, real variability may affect the rate of inflation. Cukierman and Gerlach (2003), 
using an expectations- augmented Phillips curve, demonstrate that in the presence of a 
precautionary demand for expansions and uncertainty about the state of the economy 
there is an inflation bias even if policymakers target the potential level of output. Their 
bias- producing mechanism implies that countries with more volatile shocks to output 
should have, on average, higher rates of inflation. Their approach implies a positive 
relationship between inflation and the variance of growth where causality runs from the 
latter to the former.

Finally, of particular interest has been the relationship between growth and its vari-
ance with different analyses reaching different conclusions depending on what type of 
model is employed, what values for parameters are assumed and what types of distur-
bance are considered (see Blackburn and Pelloni, 2005, and the references therein). 
Pindyck (1991), among others, proposes a theory for which the negative impact of vola-
tility on growth relies on uncertainty through the link of investment (see Martin and 
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Rogers, 2000, and the references therein). In another class of models the relationship 
between short- term variance and long- term growth is positive (see Blackburn, 1999, 
and the references therein). Blackburn (1999) presents a model of imperfect competi-
tion with nominal rigidities and ‘learning- by- doing’ technology. He argues that it is 
possible that the additional learning during expansions more than compensates for the 
loss of learning during recessions so that, on average, the rate of technological progress 
increases when there is an increase in volatility. Under such circumstances, there is a 
positive relationship between growth and uncertainty. A positive correlation between 
the two variables does not imply a causal link. However, in our analysis a positive 
effect from real variability to growth implies a positive correlation between the two 
variables. Thus, in what follows we will refer to a positive influence as the ‘Blackburn’ 
theory.

2.3 The Influence of Macroeconomic Performance on Uncertainty

The positive relationship between inflation and its uncertainty has often been noted. 
According to Holland (1993) if regime changes cause unpredictable changes in the 
 persistence of inflation, then lagged inflation squared is positively related to volatil-
ity.  In addition, Ungar and Zilberfarb (1993) provide a theoretical framework in 
order  to specify the necessary conditions for the existence of a positive or negative 
impact.

A number of theories have been put forward to examine the impact of inflation on 
real uncertainty. In a nutshell, the sign of such an effect is ambiguous. Dotsey and Sarte 
(2000) present a model which suggests that as average money growth rises, nominal vari-
ability increases and real growth rates become more volatile. The models developed by 
Ball et al. (1988) assume menu costs and imply that the slope of the short- run Phillips 
curve should be steeper when average inflation is higher. In their New Keynesian model, 
nominal shocks have real effects because nominal prices change infrequently. Higher 
average inflation reduces the real effects of nominal disturbances and hence also lowers 
the variance of output.

The sign of the impact of output growth on macroeconomic volatility is also ambigu-
ous. Consider first the influence on nominal uncertainty. As Brunner (1993) puts it: 
‘While Friedman’s hypothesis is plausible, one could also imagine that when economic 
activity falls off, there is some uncertainty generated about the future path of monetary 
policy, and consequently, about the future path of inflation.’ We will use the term 
‘Brunner conjecture’ as a shorthand for this negative effect. In sharp contrast, a higher 
growth rate will raise inflation according to the Briault conjecture, and therefore this 
raises/lowers its variability, as predicted by the Ungar–Zilberfarb theory. We will term 
this positive/negative impact the Karanasos conjecture (I).

Finally, consider now the effect of growth on its variability. An increase in growth, 
given that the Briault conjecture and Dotsey–Sarte conjecture hold, pushes its 
 variance  upward. However, if the impact of inflation on real uncertainty is negative 
(the Ball–Mankiw–Romer theory), the opposite conclusion applies. We will refer to this 
causal effect as the Karanasos conjecture (II).

The causal relationships and the associated theories presented in section 2 are sum-
marized in Table 12.1.
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3 EMPIRICAL STRATEGY

Regarding the model, we follow Zellner’s (1998) ‘KISS’ approach. That is, we ‘keep it 
sophisticatedly simple’. It is important to notice that, despite the fact that it is simple and 
convenient, the model remains very general in its scope.9 It is worth reiterating in just a 
few sentences what we see to be the main benefits of our model. Its greatest advantage 
is that it does not require us to make the dubious assumption that there is a positive link 
between the two uncertainties. That is, the coefficients that capture the  variance- relationship 
(bpy, byp) are allowed to be negative.10 It has the convenience of allowing us to derive suf-
ficient conditions for the non- negativity of the two conditional variances. These conditions 
can be seen as analogous to those derived by Nelson and Cao (1992) and Tsai and Chan 
(2008) for the univariate GARCH model (see Conrad and Karanasos 2010, 2012).

Another advantage is that several lags of the conditional variances are added as regres-
sors in the mean equation. Further, distinguishing empirically between the in- mean and 
level effects found in theoretical models is extremely difficult in practice so it makes sense 

Table 12.1 Theories- hypotheses- conjectures

Macroeconomic performance
 Inflation Granger causes growth 
 Gillman–Kejak theory: −
 Growth Granger causes inflation
 Briault conjecture: 1 
Macroeconomic uncertainty 
 Inflation uncertainty Granger causes growth uncertainty
 Logue–Sweeney theory: 1; Fuhrer theory: −
 Growth uncertainty Granger causes inflation uncertainty
 ‘Devereux’ hypothesis: 1; Fuhrer theory: −
In- Mean effects
 Inflation uncertainty Granger causes inflation 
 Cukierman–Meltzer theory: 1; Holland conjecture: −
 Inflation uncertainty Granger causes growth 
 Dotsey–Sarte theory: 1; Friedman hypothesis: −
 Growth uncertainty Granger causes inflation
 Cukierman–Gerlach theory: 1 
 Growth uncertainty Granger causes growth 
 Pindyck (Blackburn) theory: − (1)
Level effects
 Inflation Granger causes inflation uncertainty
 Ungar–Zilberfarb theory: 6 
 Inflation Granger causes growth uncertainty
 Dotsey–Sarte conjecture: 1; Ball–Mankiw–Romer theory: −
 Growth Granger causes inflation uncertainty 
 Karanasos conjecture (I): 6; Brunner conjecture: −
 Growth Granger causes growth uncertainty
 Karanasos conjecture (II): 6
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to emphasize that both are relevant. Our approach is promising because we construct 
a model allowing for effects in both directions. However, there are great difficulties in 
drawing conclusions for the interlinkages, because the relationships between the four 
variables are not well understood, and theoretical models can only be used to illustrate a 
range of possibilities. Our methodology is interesting because it tests the various theories 
in a variety of ways and it emphasizes that the empirical evidence is not clear cut. The 
causality links and the relevant coefficients are summarized in Table 12.2.

3.1 Notation

In order to make our analysis easier to understand we will introduce the following matrix 
notation. The subscripts d and f  will denote diagonal and full matrices respectively, 
whereas the subscripts c and u (l) will denote cross- diagonal and upper (lower) triangular 
matrices respectively. For example, Fid is a diagonal matrix: diag{�(i)

pp,�(i)
yy}, whereas Bd 

and Gd are diagonal matrices with bpy, byp 5 0 and gpy, gyp 5 0 respectively. In addition, 
Fif, Bf, and Gf  are full matrices (see Table 12.3).

To distinguish between four alternative models, we will refer to the specifications 
with D, G 5 0 and D, G 2 0 as the simple and the in- mean- level models respectively. 
Similarly, we will refer to the formulations with D 2 0, G 5 0 and D 5 0, G 2 0 as the 
in- mean and level models respectively. For typographical convenience we will use the 
letters S, M, L and ML for reference to the simple, in- mean, level and in- mean- level 
models respectively (see Table 12.4).

In order to simplify the description of the various models we will introduce the fol-
lowing notation as shorthand. S(Fd, Bf ) denotes the simple model with the F matrix 
diagonal and the B matrix full. Further, M

n50
(Fd, Bd) describes the in- mean model with the 

F and the B matrices diagonal and the current value of the macroeconomic uncertainty 

Table 12.2 Causality effects

Twelve Links Coefficients

Macroeconomic performance Matrix F
 Inflation Granger causes output growth �yp 2 0
 Output growth Granger causes inflation �py 2 0
Macroeconomic uncertainty Matrix B
 Inflation uncertainty Granger causes output growth uncertainty byp 2 0
 Output growth uncertainty Granger causes inflation uncertainty bpy 2 0
In- Mean effects Matrix D
 Inflation uncertainty Granger causes inflation dpp 2 0
 Inflation uncertainty Granger causes output growth dyp 2 0
 Output growth uncertainty Granger causes inflation dpy 2 0
 Output growth uncertainty Granger causes output growth dyy 2 0
Level effects Matrix G
 Inflation Granger causes inflation uncertainty gpp 2 0
 Inflation Granger causes output growth uncertainty gyp 2 0
 Output growth Granger causes inflation uncertainty gpy 2 0
 Output growth Granger causes output growth uncertainty gyy 2 0
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to affect performance. Moreover, L(Ff, Bd, Gd) stands for the level process with the F 
matrix full and the B and G matrices diagonal (see Table 12.4).

Before analysing our results, in order to make our analysis more concise, we will 
discuss some specific models. For example, in the S(Ff, Bf ) model four out of the twelve 
effects are present. In particular,there is a bidirectional feedback between inflation 
(uncertainty) and growth (uncertainty). Moreover, in the M

n50
(Ff, Bf , D f ) model eight 

influences are present. Specifically, in addition to the four impacts above, the four in- 
mean effects are also present. Further, in the L(Ff, Bd, Gf ) model six effects are present. 
Namely, the four level effects are present and there is also a bidirectional feedback 
between inflation and growth.

4 DATA AND EMPIRICAL SPECIFICATIONS

4.1 Data and Estimation Results

Monthly data, obtained from the OECD Statistical Compendium, are used to provide 
a reasonable number of observations. The inflation and output growth series are 
 calculated as the monthly difference in the natural logarithm of the Consumer Price 

Table 12.3 Matrix notation

Matrices Diagonal Cross- Diagonal Upper Triangular Lower Triangular Full

F Fid
(�(i)

py, �
(i)
y p50)

– Fiu
(�(i)

yp50)
– Fif

(�(i)
py, �

(i)
yp20)

B Bd(bpy, byp50)
– – Bl(bpy50)

Bf(bpy, byp20)

G Gd
(gpy, gyp50)

Gc
(gpp, gyy50)

– – Gf
(gpy, gyp20)

Notes:
Fid, Bd, and Gd denote diagonal matrices. Fif, Bf, and Gf  denote full matrices.
Fiu (Bl), and Gc denote upper, lower triangular and cross- diagonal matrices respectively.

Table 12.4 Models notation

Models Simple In- Mean Level In- Mean- Level

Matrices D 5 0, G 5 0 D 2 0, G 5 0, D 5 0, G 2 0 D 2 0, G 2 0
Notation
x (k) 5 d,u (l ), f; z 5 d, f

S(Fx, Bk) M
n50

(Fx, Bk) L(Fx, Bk, Gz) ML
n50

(Fx, Bk, Gz)

Notes:
S and ML refer to the simple and the in- mean- level models respectively.
M and L refer to the in- mean and level models respectively.
The d, u (l ) and f  subscripts denote diagonal, upper (lower) triangular and full matrices respectively. n is the 
lag order of the in- mean effect.
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Index and Industrial Production Index respectively. The data range from 1962:01 to 
2004:01. Allowing for differencing this implies 504 usable observations.11

Within the BVAR–GARCH–ML framework we will analyze the dynamic adjust-
ments of both the conditional means and the conditional variances of UK inflation 
and output growth, as well as the implications of these dynamics for the direction of 
causality between the two variables and their respective uncertainties. The estimates 
of the various formulations were obtained by maximum likelihood estimation (MLE) 
as implemented by James Davidson (2006) in time series modeling (TSM) software. 
To check for the robustness of our estimates we used a range of starting values and hence 
ensured that the estimation procedure converged to a global maximum. The best model 
is chosen on the basis of Likelihood Ratio (LR) tests and three alternative informa-
tion criteria. For the conditional means [variances] of inflation and growth, we choose 
AR(14) [GARCH(1, 1)] and AR(2) [ARCH(1)] models respectively.12

To select our best S model we estimate specifications with the F(B) matrix either 
diagonal or upper (lower) triangular or full. To test for the presence of an inflation–
growth link we examine the LR statistic for the linear constraints �py 5 �yp 5 0. To test 
for the existence of a variance relationship we employ the LR test for the constraints 
bpy 5 byp 5 0. The LR tests (not reported) clearly reject the S(Ff,Bd) and S(Fd,Bf ) null 
hypotheses against the S(Ff,Bf ) model. In accordance with this result, the Akaike and 
Hannan–Quinn Information Criteria (AIC and HQIC respectively) choose the S(Ff, Bf ) 
specification,13 that is the formulation with the simultaneous feedback between inflation 
(uncertainty) and growth (uncertainty).

Further, for the L, M and ML models the estimation routine did not converge when 
the Bf  matrix was used. In accordance with the results for the S models, the three cri-
teria (not reported) favor the L(Ff,Bd,Gf ) specification while the L(Ff,Bl,Gf ) process is 
ranked second. When the Ff  and either the Bd or the Bl matrices are used, all criteria 
favor the level model over the simple one. According to the three information criteria 
the optimal ML formulation is the ML

n50
(Ff,Bd,Gf)  while the second ranked model is the 

ML
n50

(Ff,Bl,Gf) . Finally, it is worth noting that for the specification with the Ff, and either 
the Bd or the Bl matrices the criteria favor the ML model over both the M and S ones. 
Thus, purely from the perspective of searching for a model that best describes the link 
between macroeconomic performance and uncertainty, the ML model appears to be the 
most satisfactory representation.

4.2 Interconnections Among the Four Variables

In this section we analyze the results from the various specifications and examine the sign 
and the significance of the estimated coefficients to provide some statistical evidence on 
the nature of the relationship between the four variables.

4.2.1 Inflation–growth link
There is strong evidence supporting the Gillman–Kejak theory and the Briault conjec-
ture. That is, there is strong bidirectional feedback between inflation and output growth. 
In particular, inflation affects growth negatively, whereas growth has a positive effect on 
inflation (see Table 12.5). This causal relationship is not qualitatively altered by changes 
in the specification of the model (results not reported).
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4.2.2 Variance relationship
There is evidence that nominal uncertainty has a positive impact on real volatility as pre-
dicted by Logue and Sweeney (1981). The influence is invariant to the formulation of the 
F matrix. In particular, in all three S(Fx,Bf) , x5 d, u, f  models the effect is significant 
at the 1 per cent level (see Table 12.6). When we tried to estimate M, L and ML models, 
with the B matrix full, the estimation routine did not converge. In all specifications with 
the B matrix lower triangular (not reported) the influence disappears.

4.2.3 In- mean effects
Our objective in the following analysis is to consider several changes in the specification 
of the model and to discuss how these changes affect the in- mean effects. In some cases 
we find that by making very small changes in the formulation of the model the estimated 
effects vary considerably.

First, when the current values (n 5 0) of the conditional variances are included in 
the mean equations we find some very weak evidence for the Friedman hypothesis. 
This result is invariant to changes in the B matrix. For example, in the M

n50
(Fd,Bd)  

and M
n50

(Fd,Bl)  models the effect is significant at the 18 per cent and 20 per cent levels 
respectively (see Table 12.7). However, when we control for the impact of inflation on 
growth, that is when the Ff  matrix is used, the effect disappears (result not reported). 
On the other hand, the negative influence of nominal uncertainty on growth becomes 
stronger when we account for level effects. More specifically, in the ML

n50
(Fd, Bd,Gd)  and 

ML
n50

(Fu,Bd,Gd)  models the in- mean coefficient becomes more significant, at the 13 per 
cent and 10 per cent levels respectively (see Table 12.7).

In sharp contrast, Dotsey and Sarte (2000) argue that as inflation rises, the growth 

Table 12.5 Inflation–growth link

The effect of growth on inflation The impact of inflation on growth

Models �py, 5 �py, 7 �yp, 7 �yp, 11

ML
n50

(Ff, Bl 0Bd, Gf)* 0.04
[0.01]

0.04
[0.01]

* 0.03
[0.01]

0.03
[0.01]

20.20
[0.02]

20.20
[0.02]

0.13
[0.10]

0.13
[0.09]

Notes:
* The two numbers refer to the models with the Bl and Bd matrices respectively.
The numbers in bold indicate significant effects. The numbers in brackets are p- values.

Table 12.6 Variance relationship

Models bpy byp

S (Ff 0Fu 0Fd, Bf)* 0.01
[0.26]

0.00
[0.85]

0.01
[0.35]

* 2.96
[0.00]

2.96
[0.00]

2.95
[0.00]

Notes:
* The three numbers refer to the models with the Ff, Fu and Fd matrices respectively. The numbers in bold 
indicate significant effects.
The numbers in brackets are p- values. For the L, M and ML models the estimation routine did not converge 
when the Bf  matrix was used.
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begins to fall. However, as inflation continues to rise, the positive effects of higher 
nominal uncertainty begin to dominate and growth starts to increase. The mitigating 
effect of inflation variability may help partially to explain why inflation might seem 
unrelated to growth. However, in our work weak (significant at the 14 per cent level) 
evidence (not reported) for the Dotsey–Sarte theory appears in the model with the third 
lags of the in- mean effects and a bidirectional feedback between inflation and growth 
( M

n53
(Ff,Bd)).

Second, we find evidence supporting the Cukierman–Gerlach theory when either 
the current values (n 5 0) or the fourth lags (n 5 4) of the conditional variances are 
allowed to affect inflation and growth. When the current values are used the impact 
of real uncertainty on inflation is stronger (see Table 12.8) and is not qualitatively 
altered by using different versions (diagonal or upper triangular) of the F matrix 
(results not reported). However, at lag 4 the effect disappears when the Fd matrix is 
used. Moreover, when the current values are used the impact is robust to the inclusion 
or exclusion of level effects and to whether the B matrix is diagonal or lower trian-
gular and the G matrix is diagonal or full. For example, when the ML

n50
(Ff,Bl,Gd)  and 

M
n50

(Ff, Bl)  models are estimated the effect is significant at the 4 per cent and 7 per cent 
levels respectively. However, at lag 4, the impact becomes weaker in the presence of 
level effects (see Table 12.8).

Third, there is weak evidence (significant at the 16 per cent level) for the ‘Blackburn’ 
theory when the F matrix is full and the first lags of the two uncertainties are allowed 
to affect their means. This result is invariant to the formulation of the B matrix. When 
adding level effects, the impact becomes stronger. In particular, in the model with the Bl 
matrix, when the Gd matrix is used it is significant at the 11 per cent level while when the 
full G matrix is employed it is significant at the 9 per cent level (see Table 12.9).

Table 12.7 Friedman hypothesis: estimated dyp coefficients

Fd, n 5 0 Fu, n 5 0

M
(Bd)

ML
(Bd ,Gd)

M
(Bl)

M
(Bd)

ML
(Bd, Gd)

M
(Bl)

20.67
[0.18]

20.78
[0.13]

20.62
[0.20]

20.68
[0.19]

20.77
[0.10]

20.59
[0.20]

Notes: p- values are reported in brackets. For the ML
n50

( Fß
ß5d,u

, Bd, Gf)  and ML
n50

( Fß
ß5d,u

, Bl, Gz
z5d, f

)  the estimation 
routine did not converge.

Table 12.8  Cukierman–Gerlach theory: estimated dpy coefficients

Ff , n 5 0 Ff , n 5 4

M
(Bd)

ML
(Bd , Gd)

ML
(Bd, Gf)

M
(Bl)

ML
(Bl, Gd)

ML
(Bl, Gf )

M
(Bd)

ML
(Bd ,Gd)

ML
(Bd, Gf )

M
(Bl)

ML
(Bl, Gd)

ML
(Bl, Gf )

0.02
[0.08]

0.02
[0.08]

0.02
[0.09]

0.02
[0.07]

0.02
[0.04]

0.02
[0.09]

0.02
[0.08]

0.01
[0.15]

0.02
[0.12]

0.02
[0.08]

0.01
[0.15]

0.02
[0.12]

Notes: p- values are reported in brackets. The estimation routine did not converge when the Bf  matrix was 
used.
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On the other hand, there is evidence for the Pindyck theory when we allow the 
third lags of the macroeconomic uncertainty to affect performance. However, the 
significance of the effect varies substantially with changes in the specification of 
the model. For example, in the M

n53
(Fd,Bl)  (not reported) and M

n53
(Ff,Bl)  models the 

effect is significant at the 19 per cent and 12 per cent levels respectively, whereas in 
the M

n53
(Ff,Bd)  it  disappears. That is, when we account for the bi(uni)- directional 

 feedback  between  inflation (uncertainty) and growth (uncertainty) the impact is 
stronger. When we include all four level effects the impact becomes weaker. In par-
ticular, for the ML

n53
(Ff,Bl,Gf)  model the effect is significant at the 15 per cent level (see 

Table 12.9).

4.2.4 Level effects
There is strong evidence in favor of the Ungar–Zilberfarb theory and the Dotsey–Sarte 
conjecture that higher inflation has a positive impact on nominal and real uncertainty 
respectively (see Table 12.10, columns 2 and 3). We also demonstrate the invariance 
of these findings to changes in the specification of the model (results not reported). 
Moreover, some evidence (see the last row of Table 12.10) for the Karanasos conjec-
ture (I) regarding the positive effect of growth on inflation variability appears in the 
ML model with the first lags of the two conditional variances in the mean equations, 
the F and the B matrices diagonal, and the G matrix cross- diagonal (ML

n51
(Fd,Bd,Gc) ). 

Finally, there is a lack (negative and insignificant) of a direct link from growth to its 
volatility.

Table 12.9  ‘Blackburn’/Pindyck theories: estimated dyy coefficients

‘Blackburn’ theory; Ff, n 5 1 Pindyck theory; Ff, n 5 3

M
(Bd)

ML
(Bd, Gd)

ML
(Bd , Gf)

M
(Bl)

ML
(Bl, Gd)

ML
(Bl, Gf)

M
(Bd)

ML
(Bd , Gf)

M
(Bl)

ML
(Bl, Gf )

0.04
[0.16]

0.04
[0.10]

0.04
[0.09]

0.04
[0.14]

0.04
[0.11]

0.04
[0.09]

0.03
[0.58]

20.04
[0.14]

20.03
[0.12]

20.04
[0.15]

Notes: p- values are reported in brackets. For the ML
n53

(Ff , Bk
k5d, l

,Gd) the estimation routine did not converge.

Table 12.10 Level effects

ML Models gpp gyp gpy gyy

ML
n50

(Ff , Bl 0Bd, Gf)* 0.07
[0.02]

0.07
[0.02]

* 0.53
[0.00]

0.53
[0.00]

0.00
[0.84]

0.00
[0.83]

20.10
[0.57]

20.10
[0.57]

ML
n51

(Fd, Bd, Gc) – 0.48
[0.00]

0.01
[0.03]

–

Notes: * The two numbers refer to the models with the Bl and Bd matrices respectively. The numbers in bold 
indicate significant effects. The numbers in brackets are p- values. For the ML models the estimation routine 
did not converge when the Bf  matrix was used.
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5 DISCUSSION

5.1 Summary

In general, there are three bidirectional feedbacks. There is a positive one, between 
inflation and real uncertainty, and two mixed ones. That is, growth has a positive direct 
impact on inflation and an indirect one on nominal uncertainty, whereas it is affected 
negatively by the two variables (see Tables 12.11 and 12.12). Moreover, there are two 
positive unidirectional feedbacks. That is, causality runs only from nominal to real 
uncertainty, and from inflation to its variability. Finally, there is a third unidirectional 
feedback. Causality runs only from real uncertainty to growth. However, the sign of 
the influence is altered by changes in the choice of the lag of the in- mean effect. More 
specifically, at lag 1 the effect is positive whereas at lag 3 it switches to negative. In sharp 
contrast, when the current values or the second lags or the fourth lags of the conditional 
variances are included as regressors in the mean equations, growth and its uncertainty 
are independent of each other.

5.2 Sensitivity of the In- mean Effects

Choice of the lag
When the current values of the in- mean effects are used there is evidence supporting the 
Friedman hypothesis and the Cukierman–Gerlach theory, whereas at lag 1 there is evi-
dence that real uncertainty affects growth positively as predicted by Blackburn (1999). 
Moreover, when the third lags of the conditional variances are allowed to affect their 
means there is evidence in support of the Dotsey–Sarte and Pindyck theories, whereas at 
lag 4 there is evidence that the variability of growth has a positive impact on inflation, 
which squares with the Cukierman–Gerlach theory (see Table 12.12).

Level effects
We examined how changes in the specification of the model affect the in- mean effects. 
First, we checked their sensitivity to the inclusion or exclusion of level effects. When 

Table 12.11 Relatively robust effects

p S2 y y S1 p hp S1 hy hy  hp hp  p p S1 hp p S1 hy y  hy

Notes: ( ) S  (does not) Granger causes. A 1 (2) indicates that the effect is positive (negative).

Table 12.12 In- mean effects sensitive to the choice of the lag

Lags: 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

hp S y – 0 0 1 0 hy S p 1 0 0 0 1 hy S y 0 1 0 – 0

Notes: S : Granger causes. A 1 (2) indicates that the effect is positive (negative).
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we account for level effects, the evidence for the Cukierman–Gerlach theory, at lag 4, 
becomes weaker whereas, at lag 0, it remains the same (see Table 12.8). Moreover, the 
evidence in support of the Friedman hypothesis and the ‘Blackburn’ theory becomes 
stronger in the presence of level effects (see Tables 12.7 and 12.9). Further, if we 
assume that the two variances are independent of each other, then when we exclude 
the level effects the negative impact of real uncertainty on growth disappears. In sharp 
contrast, if we assume that the volatility of inflation affects real variability, then the 
evidence for the Pindyck theory becomes weaker when we include the level effects (see 
Table 12.9).

Inflation–growth link
We also investigate the invariance of the results to the inflation–growth link. The (lack 
of) evidence for the (Holland conjecture) Cukierman–Gerlach theory is not qualita-
tively altered by the presence or absence of an inflation–growth link. However, when 
we assume that either there is no inflation–growth link or that growth is independent of 
changes in inflation, the evidence for the Blackburn/Pindyck theory disappears/becomes 
weaker (results not reported).

An empirically important issue is that it is difficult to separate the nominal uncertainty 
from inflation as the source of the possible negative impact of the latter on growth. As a 
policy matter this distinction is important. As Judson and Orphanides (1999) point out:

If inflation volatility is the sole culprit, a high but predictably stable level of inflation achieved 
through indexation may be preferable to a lower, but more volatile, inflation resulting from an 
activist disinflation strategy. If on the other hand, the level of inflation per se negatively affects 
growth, an activist disinflation strategy may be the only sensible choice.

In our analysis, we find that when we control for the impact of inflation on growth, that 
is when the Ff  matrix is used, the effect of uncertainty on growth disappears (result not 
reported).

Variance relationship
The Friedman hypothesis and the Cukierman–Gerlach and ‘Blackburn’ theories are 
invariant to the choice of the matrix B (see Tables 12.7, 12.8 and 12.9). Moreover, in 
the absence of level effects, when there is unidirectional feedback between nominal and 
real uncertainty there is mild evidence for the Pindyck theory, whereas when there is no 
variance relationship the evidence disappears (see Table 12.9). That is, the evidence for 
the Pindyck theory is qualitatively altered by the inclusion or exclusion of a variance 
relationship.

5.3 Direct and Indirect Events

In- mean effects
For our purposes it helped to distinguish between direct and indirect impacts. Our analy-
sis has highlighted reciprocal interactions in which two or more variables influence each 
other, either directly or indirectly. As we have already seen, these kinds of interactions 
can be very important. Panel A of Figure 12.1 presents the direct and indirect impacts 
for the in- mean effects. It is noteworthy that the indirect effect of nominal uncertainty 
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on inflation that works via the growth is opposite to the one that works through growth 
 variability. In particular, the former impact is negative whereas the latter influence 
is positive. One possible implication of this finding is that inflation is independent of 
changes in its uncertainty. In essence, the offsetting indirect effects provide a partial 
rationale for the lack of evidence for either the Cukierman–Meltzer theory or the 
Holland conjecture.

Regarding the other three in- mean effects, direct and indirect influences point to the 
same conclusion. First, the indirect negative influence of inflation variability on growth 
through its impact on the uncertainty about growth tells essentially the same story, with 
the direct evidence supporting the Friedman hypothesis. Second, the indirect evidence 
(via the inflation channel) regarding the negative impact of real uncertainty on growth 
agrees well with the direct evidence supporting the Pindyck theory. Finally, both types 
of evidence point unequivocally to a positive effect of real uncertainty on inflation. That 
is, the evidence supporting the Cukierman–Gerlach theory is in line with the evidence for 
the ‘Blackburn’ theory and the Briault conjecture.

Level effects
Panel B of Figure 12.1 presents the direct and indirect impacts for the level effects. Both 
types of evidence point unequivocally to a positive effect of inflation on its uncertainty. 
That is, the evidence supporting the Friedman hypothesis is in line with the evidence 
for the Gillman–Kejak theory and Brunner conjecture (when we include the second 
lag of growth as a regressor in the two variances; see the next section). In addition, the 
indirect effect (via the channel of nominal uncertainty) regarding the positive impact of 
inflation on the variability of growth agrees well with the direct evidence supporting the 
Dotsey–Sarte conjecture.

Moreover, the indirect positive influence of growth on its uncertainty through its (first 
lag) impact on the inflation variability (see the last row of Table 12.10) tells essentially 
the same story, with the indirect evidence supporting the Briault and Dotsey–Sarte con-
jectures. In sharp contrast, there is a lack of a direct effect. On the other hand, when we 
include the second lag of growth as a regressor in the two variances, direct and indirect 
(via the channel of nominal uncertainty) evidence points to a negative impact (see the 
next section and Panel B of Figure 12.1).

Finally, we hypothesize that the effects of growth on inflation variability could work 
through changes in inflation. Theoretically speaking the impact is based on the interac-
tion of two effects. A higher growth will raise inflation and, therefore, nominal uncer-
tainty. The evidence for both these influences confirms the positive direct effect. The 
four variables are connected by a rich network of relationships, which may be causal 
(direct effects), or reflect shared causal pathways (indirect effects). Direct and indirect 
effects often occur together. Co- occurrence depends on the strength and number of these 
relationships. However, in order to understand the mechanisms that are responsible for 
these effects sometimes it is necessary to consider them in isolation. For example, as we 
have just mentioned, the indirect impact of growth on volatility works via the channel 
of inflation. It is worth noting that the direct relationship is qualitatively altered by the 
presence of the indirect effects. That is, when we include in the model the influence of 
growth on inflation and of inflation on its uncertainty, the direct impact disappears (see 
Table 12.10).
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5.4 Level Effects: Second Lags and Squared Terms

In this section we check the sensitivity of our results (regarding the level effects) to the 
linear form and the choice of the lag. We consider the ccc GARCH(1,1)- level structure 
eq. (12.4) with the xt21 replaced by (i) x| t21, and (ii) xt21,2 where x| t21 and xt21,2 are 2 3 1 
column vectors given by x| t215 [(pt21 2 p ) 2 (yt21 2 y)2 ]r (with p, y the two sample 
means) and xt21,2 5 (pt21 yt22)r respectively. The estimated level parameters are reported 
in Table 12.13.

According to Holland (1993) if regime changes cause unpredictable changes in the 
persistence of inflation, then lagged inflation squared is positively related to inflation 
uncertainty. Uncertainty about inflation regimes is a source of inflation uncertainty. As 
seen from Panel A of Table 12.13, inflation variability is independent from changes in 
(pt21 2 pt21) 2. In other words, over against the Holland conjecture there is a lack of a 
causal impact from squared inflation to the variance of inflation. Regarding the other 
three level effects, the results from the linear causality tests and those obtained by the 
non- linear procedure are basically identical.

When we include the second lag of growth as a regressor in the two variances the 
results change dramatically. That is, the impact of growth on nominal uncertainty 
is negative as predicted by Brunner (1993). This result is invariant to the formula-
tion of the B matrix (see the fourth column of Panel B) and the F matrix (results not 
reported). Recall, however, that the effect disappears with the first lag (see Table 12.10). 
Moreover, in the L model with the second lag of growth and the F matrix, upper 
triangular growth affects its volatility negatively, thus supporting the Karanasos (II) 
conjecture (see the last column of panel B). Recall that, theoretically speaking, the 
negative indirect impact is based on the interaction of the Brunner conjecture and the 
Logue–Sweeney theory. The evidence for these two effects confirms the direct negative 
influence of growth on its uncertainty, that is, direct and indirect effects point to the 
same conclusion. However, when we control for the impact of inflation on growth, that 
is when the Ff  matrix is used, the negative influence of growth on its variance disap-
pears (result not reported).

Table 12.13 Level effects

L Models gpp gyp gpy gyy

Panel A. Models with x|t21 5 [ (pt21 2 pt21)2 (yt21 2 yt21)2 ]r

L
|

(Ff, Bl 0Bd, Gf)* 0.06
[0.22]

0.06
[0.22]

* 0.36
[0.00]

0.16
[0.05]

0.00
[0.87]

0.00
[0.87]

20.16
[0.69]

20.19
[0.64]

Panel B. Models with xt21, 2 5 (pt21 yt22)r

L2(Fu, Bl 0Bd, Gf) 0.08
[0.03]

0.08
[0.03]

0.55
[0.00]

0.49
[0.00]

20.01
[0.01]

20.01
[0.01]

20.11
[0.11]

20.11
[0.11]

Notes:
* The two numbers refer to the models with the Bl and Bd matrices respectively.
The numbers in bold indicate significant effects.
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6 CONCLUSIONS

In this chapter we showed how a bivariate version of the conditional heteroskedastic-
ity model can be applied to macroeconomic data. Specifically, we have investigated 
the link between UK inflation, growth and their respective uncertainties. The variables 
under consideration are inextricably linked. Informal stories are common and there are 
few theoretical models that come to grips with the main relationships. Partly as a result 
of this, and partly as a result of many econometric difficulties, much of the empirical 
evidence is dubious. We know from the previous literature how hard it is to arrive at 
definitive conclusions on this topic. One of the objectives of our analysis was to consider 
several changes in the specification of the bivariate model and discuss how these changes 
would affect the twelve interlinkages among the four variables.

Most of the empirical studies which have been carried out in this area concentrate on 
the impact of uncertainty on performance and do not examine the effects in the opposite 
direction. The ‘one- sidedness’ of these methodologies is an important caveat and any 
such attempts to analyze the link between the four variables are doomed to imperfec-
tion. In our analysis, we have shown that not only does volatility affect performance 
but the latter influences the former as well. Another advantage of our approach was 
that several lags of the conditional variances were used as regressors in the mean equa-
tions. Finally, our methodology allowed for either a positive or a negative bidirectional 
feedback between the two volatilities, and so no restriction was imposed in the variance 
relationship.

The core findings that are quite robust to changes in the specification of the model 
are: (i) growth tends to increase inflation, whereas inflation is detrimental to growth, 
which are in line with the Briault conjecture and the Gillman–Kejak theory respectively; 
(ii)  inflation, under linearity, has a positive impact on macroeconomic uncertainty 
thus supporting the Ungar–Zilberfarb theory and the Dotsey–Sarte conjecture; and 
(iii) nominal variability, when we allow for both cross- effects, affects real volatility posi-
tively as argued by Logue and Sweeney (1981). In addition, of significant importance is 
that in all specifications inflation is independent of changes in its variance, and real uncer-
tainty does not affect inflation variability and is unaffected by the first lag of growth.

The significance and even the sign of the in- mean effects vary with the choice of 
the lag. Thus our analysis suggests that the behavior of macroeconomic performance 
depends upon its uncertainty, but also that the nature of this dependence varies with 
time. In particular, at lag 1, the impact of real variability on growth is positive, as pre-
dicted by Blackburn (1999), but at lag 3, it turns negative. At lags 1 to 3 there is no causal 
effect from real volatility to inflation, whereas at lags 0 and 4 a positive impact appears, 
offering support for the Cukierman–Gerlach theory. We also show that accounting for 
the level effects reduces the strength of the impact of real uncertainty on inflation. In 
sharp contrast, the evidence in support of the Friedman hypothesis and the ‘Blackburn’ 
theory becomes stronger in the presence of level effects.

In contrast, note that the lack of an effect from nominal uncertainty to inflation 
exhibits much less sensitivity. That is, we have been unable to verify, for the UK, the 
more conventional view that greater volatility in the inflation either lowers or increases 
inflation. This astonishing result cries out for explanation. It is worth noting that the 
indirect effect that works via the real variability is opposite to the one that works via 
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output growth. That is, on the one hand, nominal uncertainty has a positive impact on 
real volatility, which in turn affects inflation positively. On the other hand, it has a nega-
tive effect on growth, which in turn affects inflation positively. In essence, the offsetting 
indirect effects of nominal uncertainty on inflation might provide a rationale for the lack 
of a direct impact. The account we have just given has been fairly speculative – it is more 
an agenda for further research than a polished theory. In addition, when we control for 
the impact of inflation on growth, the evidence for the Friedman hypothesis disappears. 
The interlinkage between levels of the two variables may, therefore, be an important 
element masking the negative effects of nominal volatility on growth.

The possibly causal effect of growth, on uncertainty has hardly been investigated, 
perhaps because most researchers have decided to reject this possibility from the outset. 
Nonetheless, we found some evidence that growth predicts future nominal variability. 
We hypothesize that the effects of growth on macroeconomic volatility could work 
through changes in inflation. In particular, when the positive impacts of growth on infla-
tion and of the latter on uncertainty are combined, the net effect is to create a positive 
influence of growth on either nominal or real volatility.

The attendant danger is that one might see technical sophistication as an end in itself, 
and lose sight of the reasons for interest in the various relationships. Be that as it may, 
one of the contributions of our work was to clarify the kinds of mechanisms that may 
be at play. Some of the conclusions we have reached in this chapter are fairly specula-
tive. In these circumstances we focus on the general principles that we are attempting 
to explain rather than the details, which may have to be amended as more evidence 
becomes available. However, our ideas about the mechanism linking performance to 
uncertainty at least offer plenty of opportunities for further research. It seems likely that 
many more of these kinds of relationships between the four variables will be uncovered 
by researchers.

NOTES

 * We are grateful to J. Davidson, C. Conrad and M. Karanassou for their valuable suggestions.
 1. We will use the terms variance, variability, uncertainty and volatility interchangeably in the remainder of 

the text.
 2. For example, Campos et al. (2012) use this process to model output growth and financial development in 

Argentina.
 3. Throughout the chapter we will adhere to the following convention: in order to distinguish matrices 

(vectors) from scalars, the former are denoted by upper(lower)- case boldface symbols.
 4. vech is the operator that stacks the lower triangle of an N 3 N matrix as an N(N 1 1) /2 3 1 vector.
 5. We tend to use the term macroeconomic performance (uncertainty) as a shorthand for inflation (uncer-

tainty) and output growth (uncertainty).
 6. Of course, the GARCH process is not the only possible model of the performance–uncertainty link.
 7. The ccc and BEKK GARCH models were introduced by Bollerslev (1990) and Engle and Kroner (1995) 

respectively.
 8. In a recent paper Conrad and Karanasos (2010) consider a formulation of the extended ccc (eccc) 

GARCH model that allows for volatility feedback of either positive or negative sign. This model was 
termed unrestricted eccc (ueccc) GARCH. They show that the positive definiteness of the conditional 
covariance matrix can be guaranteed even if some of the parameters are negative. Thus, they extended 
the results of Nelson and Cao (1992) and Tsai and Chan (2008) to a multivariate setting. Conrad and 
Karanasos (2012) employed an augmented version of the ueccc GARCH specification which allows for 
lagged in- mean effects, level effects (see below) as well as asymmetries in the conditional variances. They 
applied this model to US inflation and output.
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 9. And it is well known that Einstein advised in connection with theorizing in the natural sciences, ‘Make it 
as simple as possible but no simpler’ (Zellner, 1998).

10. Of course the conditional correlation (hpy,t/"hpt"hyt,) is constant (r). This is the price that we have to 
pay for allowing for a negative relationship between nominal and real uncertainty. The model that we 
have estimated has some more limitations. However, it is easy to see how the model might be modified to 
overcome some of its limitations, and we will leave this task for future research (see also the ‘robustness’ 
section below).

11. For our inflation series, based on the Phillips–Perron (PP) unit root test (not reported), we are able to 
reject the unit root hypothesis. The results from the two Elliot–Rothenberg–Stock (ERS) unit root tests 
(the point optimal test and the ERS version of the Dickey–Fuller test) concur with the PP results.

12. The GARCH coefficient is significant only in the conditional variance of inflation. For our bivari-
ate process the estimation shows a significant improvement in the likelihood value of the ARCH 
growth  specification over the GARCH model. Due to space limitations, we have not reported the 
estimated equations for the conditional means and variances. They are available upon request from 
the authors.

13. In particular, the seventh and eleventh lags of inflation have a joint significant negative impact on growth 
while the fifth and seventh lags of growth affect inflation positively (see Table 12.5).
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13 Temporal aggregation in macroeconomics
Michael A. Thornton and Marcus J. Chambers

1 INTRODUCTION

1.1 Variables and Observations of Variables

When trying to draw inferences about economic behaviour from a set of data it is 
important to disentangle the process driving the economic variables of interest from 
extraneous effects generated by the process of data collection itself. Such considerations 
are familiar to microeconometricians, who must contend with the effects of sampling, 
measurement error, mis- reporting, truncation and other causes of bias, but they have not 
received the same level of attention in macroeconomics. This chapter examines one such 
feature that has, however, received considerable attention: the frequency of data collec-
tion. Very often the data of interest to the macroeconomist are based on observations 
taken quarterly, possibly monthly or annually, but in a modern economy the activity to 
which they relate is ongoing. These macroeconomic data stand in stark contrast to some 
financial data, which are available in real time. For example, one can find the market 
price of an asset for any given moment when the market is open, but there is no measure 
of inflation or gross domestic product for that moment, only one relating to the month 
or quarter in which the moment falls. Having such gaps between observations is a limi-
tation in the data, especially when underlying events are fast moving and the economic 
relationships are dynamic.

One can credibly imagine the economy as a system in which information flows round 
to agents, leading them to re- evaluate their behaviour, more frequently than information 
about the state of the economy becomes available to researchers. The effects of temporal 
aggregation have been considered in relation to a wide range of macroeconomic topics; 
see, for example, Rossanna and Seater (1995), who examine a range of macroeconomic 
variables including real GDP, investment, real wages and money stock, or Marcellino 
(1999) for an overview. Here we pick out two strands: consumption, and large- scale 
macroeconomic modelling, these two examples being used to emphasize key concepts 
throughout the chapter:

Example 1 (the permanent income hypothesis) Since Hall’s (1978) ground- breaking 
paper, there has been considerable interest in whether and at what level consumption 
is a martingale, that is to say whether current information can be used to predict future 
changes in consumption. A number of empirical studies, following Flavin (1981), have 
provided evidence that aggregate consumption is not martingale: shocks to aggregate 
consumption appear to persist beyond one period.

The consumer’s problem is to choose a path for consumption, {ct}`
t50, adjusted for 

deterministic tastes, to maximize the present expected value of the sum of time separable 
felicity functions, U(.) , discounted at rate d,
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 E0a
`

t50

U(ct)
(1 1 d) t ,

subject to a resource constraint. This problem has the familiar solution that future 
changes to consumption must be orthogonal to previous income shocks – the well- 
known martingale hypothesis. In Hall’s corollary 3, which features quadratic utility, 
after setting the discount rate equal to the interest rate the path for consumption follows 
a random walk without drift,

 Ct 2 Ct21 5 et, (13.1)

where et is a white noise process. u

Example 2 (models of complete economies) There is a long tradition of modelling mac-
roeconomies in continuous time, starting with Bergstrom and Wymer’s (1976) model of 
the UK; see section 1.5 of Bergstrom and Nowman (2007) for an overview of, and refer-
ences for, work on other countries. The most recent work, Bergstrom and Nowman’s 
(2007) model of the UK economy, involves 15 endogenous variables (a mixture of stocks 
and flows), 12 exogenous variables and three unobservable stochastic trends. The model 
consists of mixed first and second order stochastic differential equations, examples of 
which shall be provided later at appropriate points. u

So how should the economist proceed in the face of such data limitations? One 
approach is simply to ignore them, which would be the natural and correct thing to do 
if the economy lurched from one state to another every three months, with no activity 
in between. This is patently not the case, but all modelling uses acceptable approxima-
tions to draw out important relationships from complicated systems, and turning a blind 
eye to some features of data collection is often only one of many well- intended sins. 
The consequences of ignoring temporal aggregation for estimation and inference will 
be discussed throughout this chapter. In reality, an economy evolves and mutates more 
subtly and almost constantly. The main focus of this chapter is how to build models that 
incorporate this feature explicitly: that is to say how to take a model that operates on a 
finer time scale than can be observed through the available data. We begin with some key 
concepts and a little terminology.

1.2 Time and Data: Continuous and Discrete; Stocks and Flows

Let {yt}, t 5 0,1,2,3, . . . ,T, denote our observed variable or vector of variables, which 
is only available at discrete points in time, denoted t. We accept that the process generat-
ing the yt values operates more frequently than we obtain the observations. Since we are 
interested in the workings of the economy, rather than the workings of the data, our aim 
is to model that underlying process. We start by being explicit about how time operates 
on this underlying process. We could imagine that the underlying process operates at 
discrete points in time, which are more frequent. We denote this underlying process as y[t] 
(with brackets around the time subscript), where t 5 0,1, . . .,m,m 1 1,. . .,2m,. . .,mT, 
where m . 1. If this process is observed every m period then time for our observations is 
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t 5 t/m. This is illustrated in Figure 13.1, where the central line denotes the time scale, t, 
in which the underlying process operates. As m gets larger, that is the number of process- 
time units per observation interval increases, this discrete time model approaches a con-
tinuous time model, in which our time parameter takes real values. We denote a process 
that operates continuously through time as y(t) , 0 # t # T, putting the time parameter 
in parentheses.

Then consider what our observed value yt is telling us. For something like a price 
index, an exchange rate or an interest rate, it might be telling us the value of the variable 
at that moment in time, so yt 5 y[mt] in discrete time or yt 5 y(t)  in continuous time, 
shown as vertical arrows in Figure 13.1. This type of variable is known as a stock and the 
limitation in the data is often referred to as ‘systematic sampling’, because we do observe 
the underlying variable, but miss some of its values. For example, the published data on 
consumer prices is typically available monthly, but it seems likely that prices continue to 
change during each month.

For variables like gross domestic product, industrial production and investment, 
on the other hand, what we observe is the aggregate of the underlying variable since 
the previous observation, yt21, ended. In discrete time yt 5 gmt

t5m(t21)11y[t] is the sum of 
m realizations of the underlying y variable, shown as horizontal arrows in Figure 13.1. 
In continuous time yt 5 et

s5t21y(s)ds becomes an integral of the underlying process. 
This type of variable is known as a flow and the limitation in the data is often referred 
to as ‘time aggregation’, because we never observe the underlying variable directly, 
only an aggregate over time. In this chapter we use the term ‘temporal aggregation’ 
as a catch- all, making clear in each case whether the data are composed of stocks or 
flows or both. Systematic sampling and time aggregation have different impacts on 
the observed series. To get a better idea of the impact we present a simple example.

1.3 Temporal Aggregation of a Unit Root Process

The unit root process is widely used in modelling macroeconomic variables following the 
work of Nelson and Plosser (1982), who found evidence of unit roots across a range of 
US data including employment, GNP and prices. The following example, based on an 
influential article by Working (1960), illustrates the effect that temporal aggregation has 
on a flow variable, such as GDP or consumption, with a unit root. To keep things simple, 
we postpone consideration of short- run dynamics to the next section and imagine that 

m

1t = 0

t = 0

Observed data flows

Observed data stocks

1 2 3 4 T – 1 T

Process time
t = 0 2m

2

3m

3

4m

4

m (T – 1)

T – 1

mT

T

Figure 13.1 Tem poral aggregation of discrete time processes
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the underlying process y[t], t 5 0,1,2,3, . . .,mT, is a discrete time scalar random walk, 
that is

 y[t] 2 y[t21] 5 e[t],

where e[t] is a white noise process with zero mean and constant variance s2
e. Suppose also 

that the observed series, yt, is time aggregated over m periods, so that yt 5 gm21
j50 y[t2 j]. 

In terms of observational time, t 5 mt and so we can also write yt 5 gm21
j50 y[mt2 j]. An 

example of this type of aggregation would be using quarterly data for household con-
sumption when the process operates monthly.

How does this aggregation impact on the properties of the observed series, yt? The 
most notable impact is that yt is no longer a random walk. To see why, note that now

 yt 2 yt21 5 a
m21

j50

(y[mt2 j] 2 y[m(t21) 2 j]) .

But for each j the m- period differences in the above summation can be written in terms 
of the sum of the intra- period differences as follows:

 y[mt2 j] 2 y[m(t21) 2 j] 5 y[mt2 j] 2 y[mt2 j21] 1 y[mt2 j21] 2 y[mt2 j22]

 1 . . . 1 y[m(t21) 2 j11] 2 y[m(t21) 2 j]

 5 a
m21

k50

(y[mt2 j2k] 2 y[mt2 j2k21])

 5 a
m21

k50
e[mt2 j2k].

Hence we find that the first difference of the observed series satisfies

 yt 2 yt21 5 a
m21

j50
a

m21

k50
e[mt2 j2k] ; ut ,

in which the driving process, ut, features lags of e[t] going back 2m 2 2 periods. That 
means for m . 2 it aggregates realizations e[t2m],. . .,e[t22m12] that also contribute to ut21. 
It follows that E{utut21} 2 0 and, hence, the time aggregation means that the observed 
yt is no longer a pure random walk, even though the underlying series y[t] is. In fact, it is 
possible to show that

 E{u2
t } 5 s2

e em(2m2 1 1)
3

f , E{utut21} 5 s2
e em(m2 2 1)

6
f ;

see Working (1960) (although note that Working normalizes yt by 1/m). It follows that 
the correlation between ut and ut21 is then

 Corr{utut21} 5
m2 2 1

2(2m2 1 1) ,

which approaches 0.25 as m S `.
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This simple example offers some specific insights for the applied researcher working 
with flow variables. First, when testing for a unit root the researcher needs to take the 
correlation present in ut into account or the test will be biased. Secondly, that temporal 
aggregation destroys the martingale property that future changes in the data cannot be 
predicted from past changes. This is of interest as the martingale hypothesis has a close 
association with rational expectations and the efficient operation of markets. This effect, 
commonly known as time aggregation bias, would push the researcher to reject the mar-
tingale hypothesis when it is actually true.

Example 1 (continued) Suppose the above version of the martingale hypothesis holds 
for consumption, so that equation (13.1) is the correct model for disaggregated data. 
Given that household consumption is a flow variable, measured over a month, quarter 
or year, suppose that observations are of the form Ct 5 gm21

j50 C[mt2 j]. Then the above 
analysis suggests that Ct 2 Ct21 will not be white noise but an MA(1) process, meaning 
that the observed series is not martingale. A test based on the ability of information 
available at time t 2 1 to predict observed consumption at time t would incorrectly reject 
the martingale hypothesis. u

There has been a great deal of interest in whether the features outlined in the above 
analysis could cause one of the well known implications of the permanent income 
hypothesis to be rejected incorrectly. Ermini (1989) notes that the first order correlation 
between the differenced consumption series is negative for monthly data but positive for 
quarterly data and that this is consistent with the permanent income hypothesis if deci-
sions are taken at intervals somewhere between monthly and quarterly. Ermini (1993), 
working in a discrete time framework, shows that US monthly consumption data are 
consistent with the permanent income hypothesis when transitory consumption and 
temporal aggregation effects are both incorporated into the modelling.

Christiano et al. (1991) investigate a variety of reasons why lagged consumption and 
output help predict the change in measured aggregate quarterly US consumption. Using 
an atheoretical econometric model, which is estimated by the generalized method of 
moments (see Chapter 14), they find much less evidence that the martingale hypothesis 
fails to hold in (unobservable) continuous time. They then build a continuous time 
dynamic stochastic general equilibrium model (see Chapter 18), which is estimated by 
frequency domain likelihood techniques, nesting the continuous time martingale hypoth-
esis as a special case. They fail to find overwhelming evidence against this special case.

Although we have not yet considered estimation of the underlying model, the above 
example hints at a general point: that, in most cases, the effect of using data observed 
at a lower frequency than the underlying process is to induce autocorrelation in the 
error term. If ignored this is a source of bias; but handled correctly it is a source of 
information.

1.4 Advantages of Modelling Temporal Aggregation

The advantages of modelling a series in a way that takes account of temporal aggrega-
tion are elegantly set out in the introduction to Bergstrom (1990) and Bergstrom and 
Nowman (2007). Perhaps the major advantage is that, as we discuss in the following two 
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sections, doing so is the most efficient, in terms of making the best use of information, 
way of estimating the underlying model. Another advantage is that a priori restrictions 
or hypotheses from economic theory can be imposed easily and accurately on the param-
eters of the underlying model. Where these restrictions are correct they will improve the 
efficiency of our estimates and where, as is likely, they restrict some parameters to take 
on zero values they also improve the efficiency of computation. A further advantage 
is that it becomes possible to ‘forecast’ the underlying economic variable, rather than 
the data series. One could use such a model to interpolate a measure of gross domestic 
product over any range consistent with the underlying model; or one could decompose a 
forecast for the next observation into the underlying component forecasts. The method 
also ensures that stock and flow data receive appropriately different treatments.

Given these clear advantages, many econometricians working in the field wonder 
why temporal aggregation is not taken into account in every macroeconomic model. 
There are two main reasons for this. One is that conceding that the data employed are 
aggregated over time makes the use of common non- linear transforms slightly dubious. 
For example, suppose we have in mind a model that uses the natural logarithm of y[t]. 
Can this be estimated on an observed flow variable, yt 5 gmt

t5m(t21)11y[t]? Only if we can 
observe gmt

t5m(t21)11ln(y[t]) , which we cannot when m $ 2. We must work instead with 
ln (gmt

t5m(t21)11y[t]), in effect using an arithmetic mean in place of a geometric mean. 
This is a general feature of all aggregation problems, cross- section as well as time, and its 
effects are known as Theil’s entropy.

The second reason is the technical sophistication involved in the efficient estimation 
of such models, which is the main subject of this chapter. As will be discussed in more 
detail later, the estimation of a simple reduced form vector autoregression is transformed 
from an application of least squares to a sophisticated non- linear optimization problem. 
While ongoing developments in computing power make such considerations far less 
relevant than once they were, the econometrician is usually dependent on statistical 
software that is either directly programmable, such as GAUSS or Matlab, or capable of 
implementing a bespoke Kalman iteration. Even before computation can begin, there is 
often the extra intellectual effort needed to translate the underlying model into a model 
consistent with the observable data.

Aggregation in discrete time and continuous time have evolved as largely separate 
strands within the empirical macroeconomics literature and here they are separated into 
sections 2 and 3 respectively. The two are almost never seen side by side as rivals to be 
applied to the same data. This chapter, nevertheless, covers both because many of the 
key estimation techniques, covered in section 4, are equally applicable. Moreover, it is 
hoped that appreciation of one will help with understanding of the other. We begin with 
the (possibly) more intuitive modelling of temporal aggregation in discrete time.

2 TEMPORAL AGGREGATION IN DISCRETE TIME

2.1 A First Order Model

Consider the n 3 1 vector y[t] 5 [y[1,t], y[2,t], . . ., y[n,t] ]r, which follows a first order auto-
regressive process
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 y[t] 5 Ay[t21] 1 e[t], (13.2)

where A is an n 3 n matrix of parameters. The error process e[t] is an n 3 1 vector that, 
for now, we specify to be vector white noise with covariance matrix E{e[t]e r[t]}5S. Now 
suppose we observe y[t] as a vector of stock variables every m periods. How are the 
dynamics of the observed process yt governed? Lagging equation (13.2) and substituting 
in m times produces

 yt 5 Amyt21 1 ut, (13.3)

where, in this case,

 ut 5 a
m21

j50
Ajet2 j.

If the error e[t] driving the underlying process is white noise then ut, which drives the 
observed process, is as well. Ordinary least squares would provide a consistent estima-
tor of Am, from which an estimator of A can be derived, subject to the effects of aliasing, 
discussed below.

The use of summation notation rapidly becomes cumbersome for sophisticated 
models. Equation (13.2) can be written equivalently as

 (I 2 AL)y[t] 5 e[t],

where L is the lag operator defined as Lx[t] 5 x[t21] and I  is an n 3 n identity matrix. 
The observable equation (13.3) is then the underlying equation (13.2) multiplied by 
[1 2 AmL 

m ] [1 2 AL ]21 5gm21
k50 AkL 

k.
Suppose instead that the observed variables are flows,1 that is

 yt 5 a
m21

j50
y[t2 j] 5 a

m21

j50
L 

jy[t] 5 (1 2 L 
m) (1 2 L)21y[t].

This change does not affect the autoregressive structure; the equivalent proce-
dures of repeated lagging and substitution and of multiplying by the polynomial 
[I 2 AmL 

m ] [I 2 AL ]21 apply as they do for a stock. The nature of the error process, 
ut, has, however, changed dramatically and can provide useful insights into the issues 
involved in temporal aggregation; we now have

ut 5 [I 2 AmL 
m ] [I 2 AL ]21 [I 2 IL 

m ] [I 2 IL ]21e[t]

 5 a
m21

i50
a

m21

j50
Aje[t2 i2 j]

 5 Ie[t] 1 [I 1 A ]e[t21] 1 [I 1 A 1 A2 ]e[t22] 1 . . . 1 [I 1 A 1 . . . 1 Am21 ]e[t2m11]

 1 [A 1 . . . 1 Am21 ]e[t2m] 1 [A2 1 . . . 1 Am21 ]e[t2m21] 1 . . . 1 Ame[t22m12],
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recognizing the coefficients on the et2k terms as geometric progressions. Purely for ease 
of algebra we now assume that the n 3 n matrix [I 2 A ] is full rank so that the above 
expression can be simplified to

 ut 5 [I 2 A ]21 eam21

k50

[I 2 Ak11 ]e[t2k] 1 [Ak11 2 Am ]a
m21

k50
e[t2m2k] f .

The first summation in the final expression contains shocks which occur between period 
t and t 2 1, while the second summation contains shocks occurring at or before period 
t 2 1, that is to say shocks which will also have featured in ut21. Note that the coefficient 
on e[t22m11] is zero, making the two expressions above for ut equivalent. Two main insights 
may be gleaned from these expressions. The first is that, in this case, ut has a first order 
moving average structure and so least squares estimation of equation (13.3) based on 
the observed series yt will not produce consistent estimates of Am. The second is that the 
covariance structure of ut is itself a function of the matrix of parameters A. It follows that

 E{utu rt}5 [I 2 A ]21 eam21

k50

[I 2 Ak11 ]S [I 2 Ak11 ]r f [I 2Ar ]21

 1 [I 2A ]21eam21

k50

[Ak11 2 Am ]S [Ak11 2 Am ]rf [I 2 Ar ]21,

 E{utu rt21}5 [I 2 A ]21 eam21

k50

[I 2 Ak11 ]S [Ak11 2 Am ]rf [I 2 Ar]21,

 E{utu rt2s}5 0, 4 0s 0 . 1. (13.4)

The first order moving average error is then more than the usual nuisance to be over-
come in estimation. It is itself a source of information that an efficient estimator of the 
parameter matrix A will exploit.

2.2 Aliasing

The phenomenon of aliasing arises because it is impossible to discern cycles in a series that 
operate at higher frequencies than one observes, as discussed in Chapter 4 of Priestley 
(1981). In macroeconomics, this basic lack of information manifests itself in the problem 
of identifying the matrix A uniquely given the matrix Am. Using the spectral decomposi-
tion theorem, it is possible to show that the eigenvalues of Am are the eigenvalues of A 
raised to the mth power, while their (normalized) eigenvectors are the same. For any 
given scalar, x, it is a property of the exponential function that xm 5 [x exp(2pij/m) ]m, 
where i 5 "21, for any real integer j. In general, any eigenvalue of Am could be the mth 
power of a range of values, each varying by a multiple of exp(2pi/m) , so Am could be the 
exponent of a range of matrices.

2.3 More General Models

We have seen that when our underlying model was an AR(1), the observed model for 
stock variables was also an AR(1) while for flow variables it became an ARMA(1,1). 
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We now consider the effects of including a moving average error in the underly-
ing model. It is straightforward to show that making e[t] into an MA(q) process, 
e[t] 5 e[t] 1 q1e[t21] 1 . . . 1 qqe[t2q], means that when ut is decomposed into terms in 
e[t] there are q additional lags. In discrete time aggregation, this may or may not have 
an impact on the orders of the observed models. For example, in the flow case, having 
e[t] follow an MA(1) adds a term corresponding to 2m 2 1 lags of e[t] to ut, meaning 
that ut remains an MA(1) process; whereas in the stock case the added term is of m lags, 
meaning that ut becomes an MA(1) process. Results for the orders of processes are sum-
marized in Table 1 of Brewer (1973). In order to provide a quick guide, note following 
the above example that each autoregressive root in the underlying model, including 
unit roots, translates to one autoregressive root in the observed model and it also adds 
m 2 1 (unobservable) lags to the error term, as does observing a flow. By this reasoning 
if the underlying model is an ARMA(p,q) , then the autoregressive order in the observed 
series is p, while the moving average order is Int{ [p(m 2 1) 1 q ] /m} in the stock case 
and Int{ [ (p 1 1) (m 2 1) 1 q ] /m} in the flow case, where Int{x} denotes the integer 
part of a non- negative number x. For example, if the variables are stocks  then  the 
observed series  is an ARMA(p, p 2 1) when q 1 m . p . q and an ARMA(p, p) 
when m 1 p . q $ p; if they are flows then the observed series is an ARMA(p,p) if 
q 1 m . p 1 1 . q and an ARMA(p,p 1 1) when m 1 p 1 1 . q $ p 1 1. It is an 
important feature of these models that the orders of the moving average error in the 
observable process are largely determined by the orders of the autoregressive elements 
in the underlying process.

Understanding the orders of the processes is not itself enough to achieve efficient esti-
mation. For that we need to know how the parameters of the underlying model relate 
to the parameters fitting the observed data. While it is possible to repeat the procedure 
outlined above for each root of the autoregressive process when the observed data are 
scalars, this quickly becomes tedious and it cannot usually be generalized to vector proc-
esses. Results for scalar processes are set out in Weiss (1984). Marcellino (1999) proposed 
an elegant general method to generate parameter matrices recursively as part of a system 
where the coefficients on time periods between the observable periods are set to zero. It is 
of course entirely possible to treat the order of temporal aggregation, m, as a parameter 
to be estimated itself.

2.4 Unit Roots and Cointegration

We saw in the previous section that an autoregressive unit root is preserved after time 
aggregation. In general, since the eigenvalues of the matrix of autoregressive parameters 
for the observed series, Am, are simply those of the underlying series raised to the power 
m, the stationarity of the observed variables is the same as the underlying variables. If, 
for example, the underlying process is non- stationary because one or more of the eigen-
values, li, of the matrix A lie on the unit circle, then the corresponding eigenvalues of Am, 
lm

i , also lie on the unit circle and the observed process is also non- stationary. If all of the 
eigenvalues of A lie inside the unit circle, then so do all of the eigenvalues of Am.

Cointegration between certain elements of y[t] occurs if those elements individually 
are non- stationary (unit root) but certain linear combinations of them are stationary. 
Suppose, for example, that all of the elements of y[t] are unit root processes and that there 
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are r such linearly independent relationships so that there exists an n 3 r matrix, b, with 
1 # r , n, such that bry[t] is stationary. It is shown in Granger (1990) that these linear 
combinations remain stationary after temporal aggregation. For further discussion of 
the impact on the loadings of the error correction terms see Marcellino (1999).

3 TEMPORAL AGGREGATION IN CONTINUOUS TIME

As in the previous section, we first consider a simple first order model, using it to discuss 
the appropriateness of standard estimation techniques and the treatment of exogenous 
variables and the phenomenon of aliasing, which are also relevant in discrete time 
models.

3.1 A First Order Model

For the researcher accustomed to economic models in discrete time, continuous time 
models have some novel features. The most obvious is that continuous time models are 
expressed as stochastic differential equations rather than stochastic difference equations. 
Consider the n 3 1 vector y(t) 5 [y1 (t) ,y2 (t) , . . . ,yn (t) ]r. A first order system of stochas-
tic differential equations takes the form

 dy(t) 5 [Ay(t) 1 a ]dt 1 z(dt) , (13.5)

where A is an n 3 n matrix, a is an n 3 1 vector of constants and z(dt)  is a random dis-
turbance. As with a fully deterministic system, the solution of equation (13.5) involves 
integration. Perhaps the greatest technical difference is the difficulty in defining, with 
any rigour, a continuous time white noise process that can be integrated, as opposed to 
a discrete time one that can be summed. Heuristically, while it is possible to imagine a 
series of completely unrelated dots at discrete intervals it is not possible to draw a con-
tinuous line that is sufficiently smooth to be integrable but where the position of each 
point is unrelated to the points in its near vicinity. This issue is discussed in more detail 
in Bergstrom (1984). Bergstrom’s solution, which has been widely adopted, is to define 
the process z(dt)  as an n 3 1 vector of random measures. These are stochastic processes 
defined over subsets of (rather than points on) the real line; see the technical appendix 
accompanying this chapter for details. Denoting an arbitrary subset (or interval) by D, 
such processes maintain a finite variance, E [z(D)z(D)r ] 5 S 0D 0 , where S is a symmetric, 
positive definite matrix of order n and 0D 0  denotes the length of the interval, and are 
integrable over the intervals between observations, while remaining uncorrelated over 
disjoint intervals.

A further complication is that a process, y(t) , satisfying (13.5) is not mean square dif-
ferentiable (see the technical appendix for a definition of mean square differentiability). 
The process y(t)  is then interpreted as satisfying (for t1 , t)

 y(t) 2y(t1) 5 A3
t

t1

y(r)dr 1 3
t

t1

a dr 1 3
t

t1

z(dr) , (13.6)
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where e t
t1
z(dr)5 z((t1,t ]) , e t

t1
adr 5 a(t 2 t1)  and et

t1
y(r)dr is a wide sense integral (see the 

technical appendix for a definition).
Estimation of the system involves finding values for the matrices A and the covariance 

matrix of the error term, S, as well as the vector a. In line with the solution to determin-
istic systems, the solution to equation (13.5), given initial conditions y(0) , is

 y(t) 5 3
t

0
eA(t2r)z(dr) 1 3

t

0
eA(t2r)adr 1 eAty(0) , (t . 0), (13.7)

where eAs is the matrix exponential defined by

 eAs 5 I 1 As 1
1
2! 

(As) 2 1
1
3! 

(As) 3 1 . . . 5 a
`

j50

1
j! 

(As) j.

Note that the matrix exponential is not formed simply by taking the scalar exponential 
of each element.

The compensation for mastering these features is that the resulting models are usually 
more straightforward to solve than discrete time temporally aggregated models. The 
solution in equation (13.7) contains the integral of a function of the parameters through 
time with respect to a random measure, which is defined more carefully in the techni-
cal appendix. The time series properties of the observed data yt depend on whether the 
individual series [y1,t,y2,t, . . .,yn,t ]r are stocks or flows. If yt is composed entirely of stock 
variables, that is yt 5 y(t) , then it satisfies

 yt 5 Fyt21 1 a 1 ht, (t 5 1, . . . , T) ,

where F 5 eA, ht 5 et
t21eA(t2s)z(ds)  and the vector a can be written2

 a 5 3
t

t21
eA(t2s)ads 5 a

`

j50

1
( j 1 1)!

Aja.

For yt to be stationarity, the eigenvalues of the matrix F must lie inside the unit 
circle, which happens if and only if the eigenvalues of the matrix A have negative real 
parts.

In this case the discrete process ht is vector white noise since it is drawn as an integral 
only over (t 2 1, t ], so that E{hthrt2s}50, 4s 5 61, 62,. . . and yt is therefore a first 
order vector autoregressive (VAR) process.

If, on the other hand, yt contains flow variables, the process yt 5 e t

t21
y(s)ds satisfies

 yt 5 Fyt21 1 a 1 ut, (t 5 1,. . .,T) .

where the disturbance ut 5 et
t21 es

s21eA(s2r)z(dr)ds is a vector MA(1) process. To see 
this, it is possible, as, for example, in McCrorie and Chambers (2006), to express the 
double integral as the sum of two single non- overlapping integrals of the form

 ut 5 3
t

t21
3

t

r
eA(s2r)dsz(dr) 1 3

t21

t22
3

r11

t21
eA(s2r)dsz(dr)
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 5 A213
t

t21
[1 2 eA(t2r) ]z(dr) 1 A213

t21

t22
[eA 2 eA(t212r) ]z(dr) .

The autocovariance structure of ut, analogously to equation (13.4), is

 E{utu rt} 5 3
1

0
{A21 [1 2 eAs ]S [1 2 eAs ]rAr21

 1 A21 [eA 2eAs ]S [eA 2 eAs ]rAr21}ds

 E{utu rt21}53
1

0
A21 [1 2 eAs ]S [eA 2 eAs ]rAr21ds

 E{utu rt2s} 5 0, 4s 562,. . ..

In this case the observed process yt does not follow a simple VAR(1), even though the 
underlying process does, but a vector autoregressive moving average – VARMA(1, 1) – 
process. A standard VAR would not provide consistent estimates of F. Note also that 
the covariance structure is a function of the autoregressive matrix A and is, as in the 
discrete case, not merely a nuisance, but a source of information that can be used to 
improve the efficiency of estimates.

Very often a macroeconomic model will contain both stock and flow variables. We 
partition the vector y(t) 5 [ys(t)r, yf(t)r]r, where ys(t)  is an ns 3 1 vector of stock vari-
ables and yf(t)  is an n f 3 1 vector of flow variables with ns 1 nf 5 n. In this case the 
observed vector is of the form

 yt 5 cys
t

yf
t
d 5 £ ys(t) 2 ys(t 2 1)

e t

t21
yf(r)dr

§ , t 5 1,. . ., T;

(see Bergstrom, 1986). Similar arguments can be used to show that yt is a vector 
ARMA(1,1) process.

Example 2 (continued) The Bergstrom and Nowman (2007) macroeconomic model 
contains both first and second order stochastic differential equations. An example of the 
former is the equation for real private consumption, C, given by

 D logC 5 l1 1 l2 1 g1log cb1e2{b2(r2Dlogp) 1b3Dlog p} (Q 1 P)
T1C

d ,
where l1 and l2 are the growth rates of productivity and labour supply trends, 
respectively, r denotes the interest rate, p denotes the price level, Q and P are real net 
output  and real profits, interest and dividends from abroad, respectively, T1 is a 
 taxation policy variable, and g1 is the speed of adjustment of the logarithm of con-
sumption to its partial equilibrium level. As it stands, the equation is neither sto-
chastic nor linear, but all the equations in the model are linearized around the steady 
state  solution before a white noise random measure is introduced, prior to estimation. 
u
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In the main, this chapter concentrates on the dynamics of the underlying model and 
the observed data, but we pause to consider the treatment of exogenous variables and the 
phenomenon of aliasing.

3.2 Exogenous Variables

The above example is a closed system, one containing all relevant variables. Although 
this is an elegant approach to any system, there may be times where an open model, con-
taining exogenous variables, is needed. Open systems allow models to take account of the 
movement of additional variables without having to incorporate them into the y vector, 
saving the additional computation that a larger dimension A matrix implies. Suppose 
a further q exogenous variables, contained in the vector z(t)  are added to the right- 
hand side of equation (13.5) in the form Bz(t) , with B an n 3 q matrix of parameters. 
The solution to the model would then contain et

t21eA(t2s)Bz(s)ds. The problem is that 
we are unlikely to be able to observe z(s)  continuously through time and are forced to 
make assumptions interpolating its path between discrete observations. This is discussed 
further in Bergstrom (1986) and McCrorie (2001).

3.3 Aliasing

As in discrete time models, continuous time models are subject to the phenomenon of 
aliasing, which manifests itself in the problem of identifying the matrix A uniquely given 
the matrix F. Again using the spectral decomposition theorem, it is possible to show that 
the eigenvalues of F are the exponents of the eigenvalues of A, while their (normalized) 
eigenvectors are the same. For any given scalar, x, it is a property of the exponential 
function that exp(x) 5 exp(x 1 2pij) , where i 5 "21, for any real integer j. It follows 
that any eigenvalue of F could be the exponent of a range of values, each varying by a 
multiple of 2pi and so F could be the exponent of a range of matrices.

3.4 Higher Order and ARMA Models

In many applications, a first order model fails to deliver sufficiently rich dynamics to fit 
the data. Fortunately, higher order models can be translated into state- space form and 
then treated as first order processes, such as in Bergstrom (1983), and it is also possible 
to include MA disturbances in the system. The continuous time ARMA(p, q) model for 
the n 3 1 vector y(t)  is given by

 Dpy(t) 5 a0 1Ap21Dp21y(t)1. . . 1 A0y(t)1u(t)1 Q1Du(t) 1 . . .1QqDqu(t) ,t . 0,
 (13.8)

where D denotes the mean square differential operator (see the technical appendix for 
details), A0, . . .,Ap21 and Q1, . . .,Qq are n 3 n matrices of unknown coefficients, a0 is 
an n 3 1 vector of unknown constants, and u(t)  is an n 3 1 continuous time white 
noise vector with variance matrix S. The condition that q , p must be imposed so that 
y(t)  itself has finite variance. This type of process is considered by Zadrozny (1988), 
Brockwell (2004) and Chambers and Thornton (2012), the latter authors demonstrating 
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that the presence of MA disturbances in a continuous time model can have empirical 
content by capturing additional serial correlation that pure AR processes are unable to 
capture.

Example 2 (continued) Second order differential equations appear in the Bergstrom 
and Nowman (2007) macroeconomic model, an example being the equation for employ-
ment, L, which is given by

 D2logL 5 g2 (l2 2 D logL) 1 g3log cb4e2m1{Q2b6 2 b5K2b6}21/b6

L
d ,

where g2 and g3 are speed of adjustment parameters, m1 is the productivity trend variable, 
K  is private non- residential fixed capital, and Q and l2 were defined earlier. As with the 
equation for consumption, defined earlier, this equation is first linearized around the 
model’s steady state solution before a random disturbance is appended prior to estima-
tion. u

3.5 Zero Roots and Cointegration

Zero roots in a stochastic differential equation manifest themselves as unit roots in the 
discrete time difference equation. That this is so is most easily seen by considering the 
equation dy(t) 5 ay(t)dt 1 z(dt) , where y(t)  is a scalar random process. The char-
acteristic equation is (z 2 a) 5 0 and the root is clearly equal to a; negative values 
of a are required for stationarity. Clearly, if a 5 0 there will exist a unit root in the 
continuous time model. In this case, dy(t) 5 z(dt)  and it follows that (by integrating 
once) y(t) 2 y(t 2 1) 5 et

t21z(dr) , thereby yielding a unit root in the first- differenced 
discrete time process.

Cointegration between a set of non- stationary (zero root) processes occurs when one 
or more linear combinations of them is stationary. For example, if y1 (t) , . . ., yn (t)  have 
zero roots in continuous time then if the linear combinations represented by b ry(t)dt 
are stationary, where b is n 3 r with 1 # r , n, there will exist r cointegrating relations 
between these variables. It is possible to define a continuous time error correction model 
in the form

 dy(t) 5 abry(t)dt 1 z(dt) ,

where a is an n 3 r matrix of adjustment coefficients. For further details of cointegrated 
continuous time processes see, for example, Phillips (1991) and Chambers (2009).

4 ESTIMATION TECHNIQUES

We describe two popular time domain methods for the estimation of temporally aggre-
gated models based on a Gaussian likelihood function: one is based on the exact discrete 
model while the other employs Kalman Filtering of the state space form. A third set of 
techniques is based in the frequency domain; details of Fourier estimation methods as 
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well as frequency domain- based likelihood methods can be found in Robinson (1976, 
1993).

4.1 Estimation Based on Exact Discrete Models

Gaussian estimation based on the exact discrete model was proposed by Bergstrom 
(1983) and developed further by him in a sequence of subsequent papers. It is a quasi- 
likelihood method in which the parameters of the underlying model are translated 
into the coefficients of a VARMA process that describes the observed data, known as 
the exact discrete model. This is then used to evaluate a likelihood function under the 
assumption that the process generating the errors is Gaussian. The exact discrete rep-
resentation of a continuous time model was proposed by Bergstrom (1983) following 
work by Phillips (1972) which showed that an exact model could be used to obtain esti-
mates that were not only consistent and asymptotically efficient but also, Monte Carlo 
evidence suggested, performed better in finite samples than the approximate methods 
then in use. The technique has since been extended to cope with higher order models, 
stochastic trends and exogenous regressors; see for example Bergstrom (1983, 1986, 
1997) and Chambers (1999, 2009). Given the similarities between the effects of temporal 
aggregation in discrete and continuous time, it is natural to extend the approach beyond 
continuous time modelling. The essential algorithm involves the computationally effi-
cient evaluation of the likelihood function for an observed sample of n variables over T  
periods, which is defined as

 logL 5 2
nT
2

log(2p) 2
1
2

log 0W 0 2 1
2

u rW21u, (13.9)

where u5 [u r1, u r2, . . ., u rT ]r and ut is the n by 1 vector of residuals from each observation. 
Note that, in general, the nT 3 nT  covariance matrix W ; E{uu r} will not be block 
diagonal because temporal aggregation induces MA correlation in the error terms. 
However, the finite order MA structure ensures that W has a block Toeplitz form, the 
n 3 n non- zero blocks being known functions of the parameters of interest. This can be 
exploited to ease computation. Since W is positive definite and symmetric we can find 
a lower triangular matrix, M with i, jth element mi, j, such that MM r 5 W. A straight-
forward recursive procedure then produces a vector m such that Mm 5 u. Finally, equa-
tion (13.9) can be evaluated as

 logL 5 2
nT
2

log(2p) 2
1
2a

nT

i51

(m2
i 1 2log(mi,i)) . (13.10)

Bergstrom (1990) uses this transformed vector of errors, m, which should be uncorrelated 
standard normal variables if the model is correctly specified, in a portmanteau- type 
 statistic looking for correlation over the first l lags; it is defined by

 Sl 5
1

T 2 l a
l

r51
a aT

t5 l11
mtmt2rb2

. (13.11)
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Under the null hypothesis that the model is correctly specified the statistic Sl will have 
an approximate chi- square distribution with l degrees of freedom for sufficiently large l 
and T 2 l.

Example 2 (continued) Bergstrom and Nowman (2007) use the Gaussian estimation 
algorithm to estimate their macroeconomic model which includes deeply embedded 
stochastic trends. This approach treats the stochastic trends as random forcing functions 
that help to generate the solution to the model, whereas the earlier approach of Harvey 
and Stock (1988), which exploits Kalman filtering techniques (see below), adds the sto-
chastic trends after the model has been solved. u

4.2 Kalman Filtering

A different approach to evaluating the likelihood function is based around the Kalman–
Bucy filter discussed in Chapter 15; see Harvey and Stock (1985, 1988, 1989) and 
Zadrozny (1988) for applications to continuous time models. It has the advantages 
of coping with irregular observations, missing observations and measurement error 
through the observation equation, but comes with some computational cost. As an 
example of this approach consider the system in equation (13.8) without moving average 
error and no intercept vector, that is with a0 5 0 and Q1 5 Q2 5 . . . 5 Qq 5 0. Such a 
system has a representation in the form of the following continuous time state equation:

 
d
dt

x(t) 5 A|x(t) 1z(t) , (13.12)

where x(t)  is an np 3 1 vector containing y(t)  and its first (p 2 1) derivatives, A| is an 
np 3 np transition matrix containing the parameter matrices A0, . . ., Ap, and z(t)  is an 
np 3 1 vector containing the n 3 1 disturbance vector u(t) . Assuming that y(t)  contains 
stock variables, the solution to (13.12) yields the discrete time state equation

 x(t) 5 eA|x(t 2 1) 1 zt,

where the transition matrix is now eA|. The set- up is completed with the observation 
equation

 yt 5 Zx(t) , (13.13)

where the n 3 np selection matrix Z picks out yt 5 y(t)  from x(t)  and could be allowed 
to vary over time if there are missing observations; an observation error vector could also 
be added to (13.13). In the absence of missing observations, the rows of Z are made up of 
the rows of an n 3 n identity matrix and an n 3 np null matrix, so as to select the observ-
able elements of yt (see Harvey and Stock, 1985). It is possible to incorporate a moving 
average error into the model either through the observation equation, as in Brockwell 
(2004), or by adopting a slightly different form of state equation, as in Zadrozny (1988). 
Extensions to handle flow variables, and mixtures of stocks and flows, can also be incor-
porated in this approach.
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5 CONCLUDING COMMENTS

This chapter has considered the treatment of temporal aggregation in empirical macro-
economics. We have discussed the implications of using standard techniques to test some 
well known macroeconomic theories on aggregated data and shown how the explicit 
treatment of temporal aggregation makes efficient use of the available information. The 
chapter has featured models where the aggregation is over discrete time periods and over 
real time. Although the languages of the two systems are quite different, they share many 
common features and are largely amenable to the same estimation techniques. Although 
the computations underlying those techniques are often more intensive than standard 
methods, advances in computing power make this a diminishing concern.

It is inevitable that any overview chapter must leave many areas uncovered. Temporal 
aggregation has implications for many analyses presented in the Handbook, of which 
we have highlighted relatively few. Theoretical research into the implications for testing 
non- stationary and other areas is ongoing. At the same time, the use of techniques 
covered in this chapter in modelling macroeconomic and financial data, as highlighted in 
Bergstrom and Nowman (2007), continues to expand.

NOTES

1. Similar results to this can be derived when the vector contains a mixture of stocks and flows.
2. For algebraic simplicity the form A21 [eA 2 I ]a is sometimes used if A is non- singular  .

REFERENCES

Bergstrom, A.R. (1983), ‘Gaussian estimation of structural parameters in higher order continuous time 
dynamic models’, Econometrica, 51, 117–52.

Bergstrom, A.R. (1984), ‘Continuous time stochastic models and issues of aggregation over time’, in 
Z. Griliches and M.D. Intriligator (eds), Handbook of Econometrics, Vol. 2, Amsterdam: North- Holland, 
pp. 1145–212.

Bergstrom, A.R. (1986), ‘The estimation of open higher- order continuous time dynamic models with mixed 
stock and flow data’, Econometric Theory, 2, 350–73.

Bergstrom, A.R. (1990), Continuous Time Econometric Modelling, Oxford: Oxford University Press.
Bergstrom, A.R. (1997), ‘Gaussian estimation of mixed- order continuous- time dynamic models with unobserv-

able stochastic trends from mixed stock and flow data’, Econometric Theory, 13, 467–505.
Bergstrom, A.R. and K.B. Nowman (2007), A Continuous Time Econometric Model of the United Kingdom with 

Stochastic Trends, New York: Cambridge University Press.
Berstrom, A.R. and C.R. Wymer (1976), ‘A model of disequilibrium neoclassical growth and its application to 

the United Kingdom’, in A.R. Bergstrom (ed.), Statistical Inference in Continuous Time Economic Models, 
Amsterdam: North Holland.

Brewer, K.R.W. (1973), ‘Some consequences of temporal aggregation and systematic sampling for ARMA and 
ARMAX models’, Journal of Econometrics, 1, 133–54.

Brockwell, P.A. (2004), ‘Representations of continuous- time ARMA processes’, Journal of Applied Probability, 
41A, 375–82.

Chambers, M.J. (1999), ‘Discrete time representation of stationary and nonstationary continuous time 
systems’, Journal of Economic Dynamics and Control, 23, 619–39.

Chambers, M.J. (2009), ‘Discrete time representation of cointegrated continuous time models with mixed 
sample data’, Econometric Theory, 25, 1030–49.

Chambers, M.J. and M.A. Thornton (2012), ‘Discrete time representation of continuous time ARMA 
 processes’, Econometric Theory, 28, 219–38.

HASHIMZADE 9780857931016 CHS. 6-13 (M3110).indd   305HASHIMZADE 9780857931016 CHS. 6-13 (M3110).indd   305 01/07/2013   09:5901/07/2013   09:59



306  Handbook of research methods and applications in empirical macroeconomics

Christiano, L.J., M. Eichenbaum and D.A. Marshall (1991), ‘The permanent income hypothesis revisited’, 
Econometrica, 59, 397–423.

Ermini, L. (1989), ‘Some new evidence on the timing of consumption decision and on their generating process’, 
The Review of Economics and Statistics, 71, 643–50.

Ermini, L. (1993), ‘Effects of transitory consumption and temporal aggregation on the permanent income 
hypothesis’, The Review of Economics and Statistics, 75, 736–40.

Flavin, M. (1981), ‘The adjustment of consumption to changing expectations about future income’, Journal of 
Political Economy, 89, 974–1009.

Granger, C.W.J. (1990), ‘Aggregation of time series variables: a survey’, in T. Barker and M.H. Peseran (eds), 
Disaggregation in Econometric Modelling, London: Routledge, pp. 17–34.

Hall, R.E. (1978), ‘Stochastic implications of the life cycle – permanent income hypothesis: theory and evi-
dence’, Journal of Political Economy, 86, 971–87.

Harvey, A.C. and J.H. Stock (1985), ‘The estimation of higher- order continuous time autoregressive models’, 
Econometric Theory, 1, 97–117.

Harvey, A.C. and J.H. Stock (1988), ‘Continuous time autoregressive models with common stochastic trends’, 
Journal of Economic Dynamics and Control, 42, 319–36.

Harvey, A.C. and J.H. Stock (1989), ‘Estimating integrated higher- order continuous time autoregressions with 
an application to money–income causality’, Journal of Econometrics, 12, 365–84.

Marcellino, M. (1999), ‘Some consequences of temporal aggregation in empirical analysis’, Journal of Business 
& Economic Statistics, 17, 129–36.

McCrorie, J.R. (2001), ‘Interpolating exogenous variables in continuous time dynamic models’, Journal of 
Economic Dynamics & Control, 25, 1399–427.

McCrorie, J.R. and M.J. Chambers (2006), ‘Granger causality and the sampling of economic processes’, 
Journal of Econometrics, 132, 311–36.

Nelson, C.R. and C.R. Plosser (1982), ‘Trends and random walks in macroeconomic time series: some evidence 
and implications’, Journal of Monetary Economics, 10, 139–62.

Phillips, P.C.B. (1972), ‘The structural estimation of a stochastic differential equation system’, Econometrica, 
40, 1021–41.

Phillips, P.C.B. (1991), ‘Error correction and long- run equilibrium in continuous time’, Econometrica, 59, 
967–80.

Priestley, M.B (1981), Spectral Analysis and Time Series, London: Academic Press.
Robinson, P.M. (1976), ‘Fourier estimation of continuous time model’, in A.R. Bergstrom (ed.), Statistical 

Inference in Continuous Time Economic Models, Amsterdam: North- Holland, pp. 215–66.
Robinson, P.M. (1993), ‘Continuous- time models in econometrics: closed and open systems, stock and 

flows’, in P.C.B. Phillips (ed.), Models, Methods, and Applications of Econometrics: Essays in Honor of A.R. 
Bergstrom, Oxford: Blackwell, pp. 71–90.

Rossana, R.J. and J.J. Seater (1995), ‘Temporal aggregation and economic time series’, Journal of Business & 
Economic Statistics, 13, 441–51.

Weiss, A.A. (1984), ‘Systematic sampling and temporal aggregation in time series models’, Journal of 
Econometrics, 26, 271–81.

Working, H. (1960), ‘Note on the correlation of first difference of averages in a random chain’, Econometrica, 
28, 916–18.

Zadrozny, P. (1988), ‘Gaussian likelihood of continuous- time ARMAX models when data are stocks and flows 
at different frequencies’, Econometric Theory, 4, 108–24.

HASHIMZADE 9780857931016 CHS. 6-13 (M3110).indd   306HASHIMZADE 9780857931016 CHS. 6-13 (M3110).indd   306 01/07/2013   09:5901/07/2013   09:59



Temporal aggregation in macroeconomics   307

TECHNICAL APPENDIX ON STOCHASTIC CALCULUS AND 
RANDOM MEASURE

The following material is a more formal account of the processes and operations 
 underpinning continuous time econometrics. It is intended to supplement the  intuitive 
explanations given in the chapter.

A1 Mean Square Differentiation

The mean square differential operator D is defined as operating on a stochastic process, 
x(t)  such that Dx(t) 5 x(t)  implies the process x(t)  has the property that

  lim 
hS0

E e x(t 1 h) 2 x(t)
h

2 x(t) f 2

5 0.

A2 Random Measure

Let z be a random set function which associates with any set D on the real line a random 
variable z(D)  with the properties:

1. E [z(D) ] 5 0;
2. E [z(D) 2 ] 5 F(D) ;
3. if D1 and D2 are disjoint the E [z(D1)z(D2) ] 5 0;
4. if D1 and D2 are disjoint the z(D1<D2) 5 z(D1) 1 z(D2) .

Properties 1 to 3 define a random measure, while properties 1 to 4 define a s- additive 
random measure.

A3 Integration with Respect to a Random Measure

To define integration with respect to a random measure, some further concepts are 
required. A function f(t)  is said to be simple on the interval [c,d ] if it assumes a finite or 
countable set of values fk (k 5 1, 2,. . .)  on disjoint sets Dk whose union is [c,d ]. A simple 
function f(t)  is integrable with respect to z on [c,d ] if the series ak

fkz(Dk)  converges in 
mean square. The integral of f(t)  with respect to z over [c,d ] is then the limit in mean 
square (l.i.m.) to which this sum converges. That is

 3
d

c
f(x)z(dx) 5 l.i.m.a

n

k51
fkz(Dk)  as  n S `,

which is to say

  lim 
nS`

E can

k51
fk z(Dk) 2 3

d

c
f(x)z(dx) d 2

5 0,

where the function f(t)  has been assumed to be simple.
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An arbitrary (measurable) function f(x)  is integrable with respect to z on [c, d ] if there 
exists a sequence fn (x)  (n 5 1, 2, . . .)  of simple integrable functions that converges in 
mean square to f(x)  on [c, d ], that is

  lim 
nS`

3
d

c
[ f(x) 2 fn (x) ]2F(dx) 5 0.

In this case the integral of f(x)  with respect to z on [c, d ] is

 3
d

c
f(x)z(dx) 5 l.i.m.3

d

c
fn (x)z(dx)  as  n S `. (13.14)

A necessary and sufficient condition for the integral in (13.14) to exist is

 3
d

c
0f(x) 0 2F(dx)  ,  `. (13.15)

This, in turn, implies that

 E 3
d

c
f(x)z(dx) 2

5 3
d

c
0 f(x) 0 2F(dx) .

Furthermore, if f(x)  and g(x)  both satisfy the property defined by (13.15), then

 E c3d

c
f(x)z(dx)3

d

c
g(x)z(dx) d 5 3

d

c
f(x)g(x)F(dx) . (13.16)

Another important property that is an implication of property 3 of random measures is 
that, if a , b # c , d, then

 E c3b

a
f(x)z(dx)3

d

c
f(x)z(dx) d 5 0. (13.17)

These properties of stochastic integrals are useful when the random measure is used to 
characterize the disturbance term in a stochastic differential equation.

A4 Integration of Arbitrary Random Processes

A random process x(t)  is simple on [c,d ] if there exists a finite or countable family 
of sets Dk (k 5 1, 2, . . .)  whose union is [c, d ], and corresponding random variables 
xk (k 5 1, 2, . . .) , such that x(t) 5 xk (t [ Dk) . If 0Dk 0  denotes the Lebesgue measure of 
Dk (that is the length of the interval), then x(t)  is integrable in the wide sense on [c, d ] if 
the series gkxk 0Dk 0  converges in mean square. The wide sense integral of x(t)  is then

 3
d

c
x(r)dr 5 l.i.m.a

n

k51
xk 0Dk 0  as n S `.
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An arbitrary random process x(t)  is integrable in the wide sense if there exists a sequence 
xn (t)  of simple integrable processes which converges uniformly on [c, d ] to x(t) , that is if

 E [x(t) 2 xn (t) ]2 S 0,

as n S ` uniformly in t. Then the wide sense integral of x(t)  over [c,d ] is

 3
d

c
x(r)dr 5 l.i.m.3

d

c
xn (r)dr as  n S `.
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ESTIMATION AND 
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IN MACROECONOMICS
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14 Generalized Method of Moments*
Alastair R. Hall

1 INTRODUCTION

Generalized Method of Moments (GMM) estimation provides a computationally con-
venient way of estimating parameters of economic models. It can be applied equally in 
linear or non- linear models, in single equations or systems of equations, and to models 
involving cross- section, panel or time series data. This convenience and generality has 
led to the application of GMM in many areas of empirical economics, and the method is 
used frequently in macroeconomics. In fact, the emergence of GMM can be argued to be 
one of the most important developments in the econometric analysis of macroeconomic 
models over the last 35 years.1

The method was first introduced in a seminal paper by Lars Hansen published in 
Econometrica in 1982. While GMM had its origins in work on financial economics,2 it 
was also soon recognized that the method offered a relatively simple method for estimat-
ing the parameters of rational expectations models in macroeconomics. Early applica-
tions involved models for: business cycles (Singleton, 1988), consumption (Miron, 1986), 
interest rates (Dunn and Singleton, 1986), inventory holding (Miron and Zeldes, 1988) 
and labour demand (Pindyck and Rotemberg, 1983).3

Whatever the application, the cornerstone of GMM estimation is a quantity known as 
the population moment condition:

Definition 1 Population Moment Condition Let q0 be a p 3 1 vector of unknown 
parameters which are to be estimated, vt be a vector of random variables and f (.) a q 3 1 
vector of functions, then a population moment condition takes the form

 E [ f (vt,q0) ] 5 0 (14.1)

for all t.
In other words, a population moment is a statement that some function of the data and 

parameters has expectation equal to zero when evaluated at the true parameter value.
Estimation based on population moment conditions has a long tradition in statistics 

going back at least to the Method of Moments (MM) principle introduced by Pearson 
in the late nineteenth century.4 The MM principle can be applied in cases where q 5 p 
and involves estimating q by q̂T, the value that solves the analogous sample moment 
condition, gT (q̂T) 5 0, where gT (q) 5 T21gT

t51 f(vt,q)  and T  is the sample size. However, 
in by far the majority of cases in macroeconomics, the underlying model implies more 
moment conditions than there are parameters to be estimated, that is, q . p. In such 
cases, as we show below, the MM principle does not work, but Generalized Method of 
Moments does.

The popularity of GMM can be understood by comparing the requirements for the 
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method to those for Maximum Likelihood (ML). While ML is the best available estima-
tor within the Classical statistics paradigm, its optimality stems from its basis on the joint 
probability distribution of the data. However, in many scenarios of interest in macro-
economics, this dependence on the probability distribution can become a weakness. The 
reason is that the underlying theoretical model places restrictions on the distribution of 
the data but does not completely specify its form, with the result that ML is infeasible 
unless the researcher imposes an arbitrary assumption about the distribution. The latter 
is an unattractive strategy because if the assumed distribution is incorrect then the opti-
mality of ML is lost, and the resulting estimator may even be inconsistent, for example in 
non- linear Euler equation models (see Hansen and Singleton, 1982). It turns out that in 
many cases where the macroeconomic model does not specify the complete distribution, 
it does specify population moment conditions. Therefore, in these settings, GMM can be 
preferred to ML because it offers a way to estimate the parameters based solely on the 
information deduced from the underlying macroeconomic model.

In this chapter, we provide an introduction to GMM estimation in macroeconomic 
models, focusing on the main aspects of its associated inference framework and various 
practical matters that arise in its implementation. Since most applications in macro-
economics involve time series, we concentrate on this case. An outline of the chapter is 
as follows. In section 2 we provide an illustration of how population moment conditions 
arise in macroeconomic models. Section 3 defines the GMM estimator and discusses 
certain issues relating to its calculation. In section 4 we summarize the large sample 
properties of the GMM estimator and discuss the construction of the so- called two- step 
(or iterated) GMM estimator. This section also presents various methods for inference 
about the parameter. Section 5 contains a discussion of methods for assessing whether 
the underlying model is correctly specified. In section 6 we comment briefly on the finite 
sample behaviour of the GMM estimator and examine reasons why it may not be well 
approximated by the large sample theory in certain cases. The latter leads to a discussion 
of a variant of GMM known as the Continuous Updating GMM estimator. Section 7 
discusses the behaviour of the GMM estimator in the case of so- called weak identifica-
tion, and section 8 concludes with a discussion of some recent developments involving 
estimation based on moment inequalities.

In keeping with the tone of this volume, the discussion is aimed at practitioners. 
Readers interested in the statistical arguments are referred to the articles cited below or 
to Hall (2005) for a formal statement of the underlying regularity conditions and proofs 
of the main statistical results.

2 EXAMPLE: NEW KEYNESIAN MODEL

To ilustrate the use of GMM in macroeconomics, we consider the problem of estimating 
the parameters of a New Keynesian (NK) macroeconomic model. At the heart of this 
model are an aggregate supply equation (or Phillips curve), an aggregate demand equa-
tion (or IS curve), and a monetary policy rule (or Taylor rule). There are a number of 
variants of this model and our discussion focuses on the version presented in Bekaert, 
Cho and Moreno (2010) (BCM hereafter).

In presenting the model, we adopt the following conventions and notations: p# t denotes 
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inflation at time t, yt denotes detrended log output at time t, it denotes the short- term 
(nominal) interest rate at time t, yn

t  is the natural rate of detrended log output that would 
arise with perfectly flexible prices, e..,t denotes an error term in which ‘..’ is replaced by 
an acronym to denote the equation in which it occurs, It denotes the information set at 
time t, Et [  

#
 ] denotes expectations conditional on It, and Greek letters denote unknown 

parameters of the model that need to be estimated.
The aggregate supply equation relates inflation today to expected future inflation, past 

inflation and the output gap, yt  2  yn
t , as follows:5

 p# t 5  d0Et [p
#

t11] 1  (1  2  d0)p# t21  1  k0 (yt  2  yn
t )  1  eAS,t. (14.2)

The aggregate demand equation relates output to expected future output, past output 
and the real interest rate, it 2 Et [p

#
t11 ] that is:

 yt 5 m0Et [yt11 ]1(1 2 m0)yt21 2 �0 (it2Et [p
#

t11 ])1eAD,t. (14.3)

The monetary policy rule relates the interest rate to its past values, the expected deviation 
of future inflation from its desired level, p# *t , and the output gap via

 it5r0it211(1 2 r0) {b0 (Et [p
#

t11 ] 2 p# *t )1g0 (yt 2 yn
t )}1eMP,t. (14.4)

Estimation of the parameters of this model raises a number of issues that can be 
resolved in a variety of ways. Given that our purpose here is to illustrate the use of 
GMM, we focus on the construction of the types of population moment conditions that 
have been used as a basis for GMM estimation of part or all of this model. We consider 
two specific studies: Zhang et al. (2008), who estimate the parameters of the aggregate 
supply equation, and BCM, who estimate the parameters of all three equations simulta-
neously. Taken together, these two examples illustrate the wide applicability of GMM as 
they cover both linear and non- linear models and parameters from both single equations 
and systems of equations.

Estimation of the Aggregate Supply Equation

An immediate problem is that the right- hand side of (14.2) involves the unobservable 
variables Et [p

#
t11 ] and yn

t . To implement their GMM estimation, Zhang et al. (2008) 
replace these variables by proxy variables: for Et [p

#
t11 ], they use actual forecasts of infla-

tion based on survey data, denoted here by p# f
t11,t; for yn

t , they use estimates of real poten-
tial GDP, denoted yp

t .6 To present the population moment condition used in their GMM 
estimation,7 it is convenient to define

 eAS,t(�) 5 p# t 2 dp# f
t11,t 2 hp# t21 2 k (yt 2 yp

t ) , (14.5)

where �5 (d,h,k)r. Note that to begin we treat the coefficient on p# t21 as unrestricted and 
ignore restriction in (14.2) that h5 12 d. The theory underlying the NK model implies 
that Et21 [eAS,t(�0)] 5 0 and this conditional moment restriction can be translated into a 
set of population moment conditions because we have, for any wt−1 [ It−1,8
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 E [eAS,t(�0)wt21 ] 5 E [Et21 [eAS,t(�0)wt21 ] ] 5 E [Et21 [eAS,t(�0) ]wt21 ] 5 0.

This population moment condition fits within our generic structure by writing 
f(vt,q) 5 eAS,t(�)wt21 with v rt 5 (p# t, p# f

t11,t, p# t21,yt 2 yp
t ,w rt21)  and q 5 �. It can be rec-

ognized that E [eAS,t(�0)wt21 ] 5 0 is the statement that the error of the aggregate supply 
equation is uncorrelated with the variables in wt21. Since eAS,t(�)  is linear in both the data 
variables and parameters, it follows that GMM estimation based on E [eAS,t(�0)wt21 ] 5 0 
exploits the same information as IV estimation of the supply equation using wt21 as 
instruments.9

In line with the original specification, it may be desired to impose the restriction 
h 5 (1 2 d)  in which case, we can use similar arguments as above to deduce the popula-
tion moment condition E [ e|AS,t(y0)wt21 ] 5 0 where the parameter vector, y, now only 
consists of two elements, y 5 (d,k) , and e|AS,t(y)  is defined as eAS,t(�)  in (14.5) except 
that h is replaced by 1 2 d. In this case, the GMM estimation exploits the same informa-
tion as restricted IV estimation of (14.2) subject to the (linear) restriction h 5 (1 2 d)  
using wt21 as instruments.

The population moment conditions discussed in this example both involve the state-
ment that the expectation of some function of the data and unknown parameters times a 
vector of variables is zero. This generic structure occurs in many macroeconomic models, 
and moment conditions of this form are referred to as orthogonality conditions.  e

Estimation of All Model Parameters Simultaneously

BCM estimate all the parameters of the model simultaneously using GMM. To do so, 
they adopt a model- based solution to the presence of unobservable variables on the 
right- hand side. They specify equations for yn

t  and p# *t  that combined with (14.2)–(14.4) 
yield a macroeconomic model of the generic form

 Bxt 5 a 1 AEt [xt11 ] 1 Cxt21 1 Det (14.6)

where xt 5 (p# t,yt, it,yn
t ,p
# *t)r, et is a vector of errors, and A, B, C and D are matrices whose 

elements are functions of the parameters of the model. Equation (14.6) implies that the 
rational expectations equilibrium solution path for xt follows a VAR(1), the parameters 
of which are functions of the parameters of the underlying model. While the latter repre-
sentation is a relatively simple structure, it is not convenient for estimation as xt includes 
two unobservables.10 However, BCM demonstrate that by including an equation for the 
term structure of interest rates it is possible to obtain the following

 zt 5 a (q0) 1 W (q0)zt21 1 G(q0)ut (14.7)

where zt 5 (p# t,yt, it,sn1,t,sn2,t
) , snj,t is the spread between the nj- period bond yield and it; 

q0 is the true value of q, the vector of the parameters of the model, and a (q) , W (q)  
and G(q)  vectors/matrices whose elements are functions of q; and ut is an innovation 
process. The key advantage of (14.7) is that all the elements of zt are observable. If we put 
ut(q) 5G(q)21 (zt 2 a (q) 2 W (q)zt21)  then BCM show that the innovation process satis-
fies Et21 [ut(q0) ] 5 0 and E [ut(q0)ut(q0)r ] 5 I5, the identity matrix of dimension 5. The 
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first of these conditions implies the innovations have zero mean given It21; the second 
set implies that the innovations all have unit variance and are contemporaneously uncor-
related. It therefore follows that within this model we have

 E [f(vt,q0) ] 5 0 (14.8)

where

 f(vt,q) 5 c  

    ut(q) # zt21

vech{ut(q)ut(q)r 2 I5}  d ,
vt 5 (z rt, z rt21)r and vech( # )  denotes the operator that stacks the lower diagonal elements 
of a matrix into a vector. Notice that some elements of f(vt,q)  are non- linear functions 
of q; also that the model leads naturally to a case in which the number of population 
moment conditions (q 5 40, here) exceeds the number of parameters (p 5 15)  e

3  THE GMM ESTIMATOR AND THE FIRST ORDER 
CONDITIONS

In this section, we present the GMM estimator and discuss certain issues pertaining to 
its computation. It is noted in the introduction that the strength of GMM comes from its 
flexibility in that it works for a wide variety of choices of f(.) . While this is true, the f(.)  
must satisfy certain restrictions and it is useful to discuss these briefly before defining the 
estimator itself.

The population moment condition states that E [f(vt,q) ] equals zero when evaluated 
at q0. For the GMM estimation to be successful in a sense defined below, this must 
be a unique property of q0, that is E [f(vt,q) ] is not equal to zero when evaluated at 
any other value of q. If that holds, then q0 is said to be identified by E [f(vt,q0) ] 5 0. A 
first order condition for identification (often referred to as a ‘local condition’) is that 
rank{G(q0)}5 p, where G(q) 5 E [0f(vt,q) /0qr ], and this condition plays a crucial role in 
standard asymptotic distribution theory for GMM. By definition the moment condition 
involves q pieces of information about p unknowns, therefore identification can only 
hold if q $ p. For reasons that emerge below it is convenient to split this scenario into 
two parts: q 5 p, in which case q0 is said to be just- identified, and q. p, in which case q0 
is said to be over- identified.

Recalling that gT (q)  denotes the analogous sample moment to E [ f(vt,q)], the GMM 
estimator is then as follows.

Definition 2 Generalized Method of Moments Estimator The Generalized Method of 
Moments estimator based on (14.1) is q̂T, the value of q which minimizes:

 QT (q) 5 gT (q)rWT gT (q)  (14.9)

where WT is known as the weighting matrix and is restricted to be a positive semi- definite 
matrix that converges in probability to W, some positive definite matrix of constants.
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To understand the intuition behind GMM, it is useful to first consider what happens 
in the just- identified case. If q 5 p then there is in general a value of q that sets the sample 
moment equal to zero. By definition, this value also sets QT (q)  to zero and so will be the 
GMM estimator. Thus in the just- identified case, the GMM estimator is the value of 
q that satisfies the analogous sample moment condition, namely, gT (q̂T) 5 0. Now if q0 
is over- identified then there is typically no solution for q to the sample moment condi-
tion, gT (q) 5 0, and QT (q)  is a measure of how far gT (q)  is from zero. Since the GMM 
estimator minimizes QT (q) , it is the value of q that sets gT (q)  as close as possible to zero 
or – put another way – the GMM estimator is the value of q that is closest to solving the 
sample moment condition. The restrictions on WT are required to ensure that QT (q)  is a 
meaningful measure of the distance the sample moment is from zero at different values 
of q. Clearly QT (q) 5 0 for gT (q) 5 0, and the positive semi- definiteness of WT ensures 
QT (q) $ 0. However, semi- definiteness leaves open the possibility that QT (q) 5 0 
without gT (q) 5 0. Positive definiteness ensures QT (q) 5 0 if and only if gT (q) 5 0, 
but, since all our statistical analysis is based on asymptotic theory, positive definiteness 
is only required in the limit. The choice of weighting matrix is discussed further below.

In some cases, it is possible to solve analytically for the GMM estimator; an example 
is the case of estimation of the parameters of the aggregate supply equation based on 
E [eAS,t(�0)wt21 ] 5 0.11 However, in most cases, it is not possible to obtain a closed 
form solution for q̂T, and so the estimator must be found via numerical optimization. 
These routines involve an algorithm that performs an ‘informed’ iterative search over 
the parameter space to find the value that minimizes QT (q) . Many computer packages 
now contain specific commands for the implementation of GMM that produce both the 
estimates and associated statistics of interest such as standard errors and model diag-
nostics. Examples are the GMM option in Eviews and proc model in SAS.12 However, 
in both these cases, the moment conditions must take the form of orthogonality condi-
tions.13 Kostas Kyriakoulis has provided a user- friendly MATLAB toolbox for GMM 
estimation that provides a wide variety of GMM statistics irrespective of the form of the 
moment condition.14

Various numerical optimization routines lie behind these procedures. While we do 
not review the generic structure of such algorithms here, it is worth highlighting two fea-
tures common to most: the starting values and convergence criterion, both of which can 
impact on the estimates. In many programs, the user must specify starting values for the 
parameters which represent the point in the parameter space at which the search for the 
minimum begins. It is good practice to initiate the numerical optimization multiple times 
with different starting values on each. This offers protection against the twin possibilities 
that either the algorithm converges to a local but not global minimum or it has stalled in 
an area of the parameter space in which QT (q)  is relatively flat as a function of q. In most 
cases, the user also has control of the convergence criterion which is the rule by which the 
numerical optimization routine decides if the minimum has been found. An example of 
such a rule is as follows: letting q̂ (k)  denote the value of q after k iterations of the routine, 
the routine is judged to have converged if i q̂ (k) 2 q̂ (k 2 1)i , e, where e is some small 
positive number. In other words, if the numerical optimization routine returns essentially 
the same value for q from two consecutive iterations then the minimum is judged to have 
been found. This decision is clearly sensitive to the chosen value of e, and the choice of 
e can have more impact than might be imagined; see Hall (2005, Chapter 3.2) for an 
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example. Convergence can also be assessed by evaluation of the derivatives of QT (q)  
at q̂ (k) , and this may yield different conclusions about whether the minimum has been 
reached. It is therefore good practice to assess convergence using multiple criteria.15

In many cases of interest, the GMM estimator can be characterized equivalently as the 
solution to the first order conditions for this minimization, that is,

 GT (q̂T)rWTgT (q̂T) 5 0, (14.10)

where GT (q) 5T21gT
t510f(vt,q) /0qr, a matrix often referred to as the ‘Jacobian’ in our 

context here. The structure of these conditions reveals some interesting insights into 
GMM estimation. Since GT (q)  is q 3 p, it follows that (14.10) involves calculating q̂T as 
the value of q that sets the p linear combinations of gT (.)  to zero. Therefore, if p 5 q, and 
GT (q̂T)rWT is non- singular, then q̂T satisfies the analogous sample moment condition to 
(14.1), gT (q̂T) 5 0, and is, thus, the Method of Moments estimator based on the original 
moment condition. However, if q . p then the first order conditions are not equivalent 
to solving the sample moment condition. Instead, q̂T is equivalent to the Method of 
Moments estimator based on

 G(q0)rWE [ f(vt,q0) ] 5 0, (14.11)

where G(q) 5 E [GT (q) ]. Although (14.1) implies (14.11), the reverse does not hold 
because q . p; therefore, in this case, the estimation is actually based on only part 
of the original information. As a result, if q . p then GMM can be viewed as decom-
posing the original moment condition into two parts, the identifying restrictions, which 
contain the information actually used in the estimation, and the overidentifying restric-
tions, which represent a remainder. Furthermore, GMM estimation produces two fun-
damental statistics and each is associated with a particular component: the estimator q̂T 
is a function of the information in the identifying restrictions, and the estimated sample 
moment, gT (q̂T) , is a function of the information in the overidentifying restrictions. 
While unused in estimation, the overidentifying restrictions play a crucial role in infer-
ence about the validity of the model as is discussed below.

In some circumstances, it may be desired to impose restrictions on the parameter 
vector as part of the estimation. Suppose the restrictions take the form: r(q0) 5 0, where 
r(q)  is an s 3 1 vector of continuous, differentiable functions. These restrictions must 
form a coherent set of equations, and so satisfy rank{R(q0) }5 s where R(q)5 0r(q) /0qr. 
This can be handled straightforwardly by using the so- called restricted GMM estimation.

Definition 3 The Restricted GMM Estimator Suppose the underlying economic model 
implies both the population moment condition in (14.1) and also the (non)linear restric-
tions on q0, r(q0) 5 0, then the restricted GMM estimator is defined to be q|T, the value 
of q that minimizes QT (q)  subject to r(q) 5 0, where QT (q)  is defined in Definition 2. q̂r,T 
is referred to as the restricted GMM estimator.

In practice, the restricted GMM estimator is calculated on the computer by using a 
constrained optimization routine that directly imposes the restrictions specified by the 
user.
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4  LARGE SAMPLE PROPERTIES, THE CHOICE OF WT AND 
INFERENCE ABOUT q0

In this section we summarize the (so- called) first order asymptotic theory for q̂T that forms 
the basis for the standard inference framework associated with GMM. Implementation 
of this framework raises a number of practical issues that are also addressed. Chief 
among them are the issue of covariance matrix estimation and the choice of weighting 
matrix, the latter of which leads to the so- called two- step or iterated GMM estimators. 
Since our focus here is on practical issues, our discussion only highlights certain key 
assumptions and we present neither a complete accounting of the necessary regular-
ity conditions underlying the statistical results nor any proofs; the interested reader is 
referred to Hall (2005, Chapter 3.4).

This first order asymptotic theory is obtained using statistical theorems, such as the 
Law of Large Numbers and Central Limit Theorem, that involve statements about the 
behaviour of sample moments as T S `. Such theory is therefore only strictly valid for 
infinite samples and is used as an approximation to finite sample behaviour. In section 
6, we briefly discuss the evidence on the accuracy of this approximation in practical 
circumstances.

We begin with an important assumption about the data.

Assumption 1 Time series properties of vt The (r 3 1) random vectors {vt;2` , t , `} 
form a strictly stationary ergodic process with sample space V # Rr.

The stationarity assumption implies that the moment of functions of vt are inde-
pendent of time. Ergodicity places restriction on the memory of time vt. Taken 
together, stationarity and ergodicity essentially place sufficient restrictions on vt to 
permit the development of the limit theorems that underlie the large sample theory 
discussed here. While this assumption applies to many of the time series that occur in 
macroeconomic models, it does exclude some important cases such as processes with 
deterministic trends or unit root processes. However, in cases where the population 
moment condition derives from a conditional moment restriction, it is sometimes 
possible to find a transformation that delivers a population moment condition that 
involves stationary ergodic variables even if the original conditional moment in 
question did not. To illustrate, suppose the model implies the conditional moment 
restriction Et21 [ut(q0) ] 5 0 where ut(q)  depends on unit root processes; then it may 
be possible to find ht−1(q0) [ It−1 such that kt(q0) 5 ht21 (q0)ut(q0)  is a function of 
stationary ergodic variables. Notice that, given the properties of ut(q0)  and ht21 (q0) , 
Et21 [kt(q0) ] 5 0 and this conditional moment restriction can form the basis of popula-
tion moment conditions in the way discussed in section 2. This type of transformation 
is often used (implicitly) in Euler equation models in which the first order condition 
for the representative agent’s optimization involves levels of macroeconomic vari-
ables but it is manipulated to create an equation involving growth rates of the same 
variables.16

To emphasize their importance in the theory, we also state the population moment 
and identification conditions as an assumption. Note that for what follows, it is impor-
tant that the first order identification condition holds.17
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Assumption 2 Population moment condition and identification condition

(i) E [f(vt, q0) ] 5 0; (ii) E [f(vt, q) ] 2 0 for all q [ Q such that q 2 q0; (iii) 
rank{G(q0) } 5 p.

The large sample properties of the GMM estimator are summarized in the following 
proposition.18

Proposition 1 Large sample behaviour of q̂T Let Assumptions 1, 2, and certain other 
regularity conditions hold then: (i) q̂T

h
p
q0; (ii) T1/2 (q̂T 2 q0) h

d N(0,V)  where

 V 5[G(q0)rWG(q0) ]21G(q0)rWS(q0)WG(q0) [G(q0)rWG(q0) ]21

and S(q) 5  lim TS`Var [T1/2gT (q) ].

Proposition 1 states that the GMM is both consistent and T1/2 (q̂T 2 q0)  converges to 
a normal distribution. The latter result forms the basis of inference procedures about q0, 
but before discussing these, we consider the implications of Proposition 1 for the choice 
of weighting matrix.

In the discussion of the first order conditions above, it is noted that if p 5 q then the 
GMM estimator can be found by solving gT (q̂T) . As a result, the estimator does not 
depend on WT. The asymptotic properties must also be invariant to WT and it can be 
shown that V  reduces to {G(q0)rS(q0)21G(q0)}21 in this case. However, if q . p then the 
first order conditions depend on WT and therefore so does q̂T in general. This depend-
ence is unattractive because it raises the possibility that subsequent inferences can be 
affected by the choice of weighting matrix. However, in terms of asymptotic proper-
ties, Proposition 1 reveals that the choice of weighting matrix only manifests itself in V, 
the asymptotic variance of the estimator. Since this is the case, it is natural to choose 
WT such that V  is minimized in a matrix sense. Hansen (1982) shows that this can be 
achieved by setting WT 5 Ŝ21

T  where ŜT is a consistent estimator of S(q0) . The resulting 
asymptotic variance is V 5V0 5{G(q0)rS(q0)21G(q0)}21; Chamberlain (1987) shows V 0 
represents the asymptotic efficiency bound – that is, the smallest asymptotic variance 
possible – for an estimator of q0 based on (14.1).

In practical terms, two issues arise in the implementation of GMM with this choice of 
weighting matrix: (i) how to construct ŜT so that it is a consistent estimator of S(q0) ; (ii) 
how to handle the dependence of ŜT on q̂T. We treat each in turn.

Estimation of S(q0)

Under stationarity and ergodicity and certain other technical restrictions, it can be shown 
that S(q0) 5 G0 (q0) 1g`

i51{Gi(q0)1Gi(q0)r} where Gi(q0) 5 Cov [ f(vt,q0) , f(vt2 i,q0) ] is 
known as the i- lag autocovariance matrix of f(vt,q0) ; see Andrews (1991). In some cases, 
the structure of the model implies Gi(q0) 5 0 for all i . k for some k, and this simplifies 
the estimation problem; see Hall (2005, Chapter 3.5). In the absence of such a restriction 
on the autocovariance matrices, the long- run variance can be estimated by a member of 
the class of heteroscedasticity autocorrelation covariance (HAC) estimators defined as
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 ŜHAC 5 Ĝ0 1 a
T21

i51
w (i;bT) (Ĝi 1 Ĝri) , (14.12)

where Ĝj 5 T21gT
t5 j11 f̂t f̂ rt2 j, f̂t 5 f (vt, q̂T) , w (.)  is known as the kernel, and bT is known as 

the bandwidth. The kernel and bandwidth must satisfy certain restrictions to ensure ŜHAC 
is both consistent and positive semi- definite. As an illustration, Newey and West (1987b) 
propose the use of the kernel w (i, bT) 5 {1 2 i/ (bT 1 1)}I{i # bT} where I{i # bT} is an 
indicator variable that takes the value of 1 if i # bT and zero otherwise. This choice is an 
example of a truncated kernel estimator because the number of included autocovariances 
is determined by bT. For consistency, we require bT S ` with T S ` but at a slower rate 
than T1/2. Various choices of kernel have been proposed and their properties analysed: 
while theoretical rankings are possible, the evidence suggests that the choice of bT is a far 
more important determinant of finite sample performance. Andrews (1991) and Newey 
and West (1994) propose data- based methods for the selection of bT. Simulation evidence 
suggests that the properties of HAC estimators are sensitive to the time series proper-
ties of f(vt,q0)  and are adversely affected if f(vt, q0)  contains a strong autoregressive 
component. Since this feature is common to many macroeconomic series, Andrews and 
Monahan (1992) propose the use of the so- called prewhitening and recolouring method 
for covariance matrix estimation in which the autoregressive component is filtered out of 
f(vt, q̂T)  – the ‘prewhitening’ – and then an HAC matrix is used to estimate the long- run 
variance of the filtered series; the estimator S(q0)  is then constructed from the properties 
of the filter and the HAC of the filtered series – the ‘recolouring’. To illustrate, suppose 
the filter is a Vector Autoregressive (VAR) model of order 1, in this case ŜT is calcu-
lated in three steps: Step 1, regress f(vt, q̂T)  on f(vt21, q̂T)  to obtain estimated co efficient 
matrix Â and residuals dt 5 f(vt, q̂T) 2 Âf(vt21, q̂T) ; Step 2, construct D̂, an HAC esti-
mator of the long- run variance of dt; Step 3, ŜT 5 (I 2 Â)21D̂{(I 2 Â)21}r. Newey and 
West (1994) argue that the use of a VAR(1) filter suffices to substantially improve the 
properties of the long- run covariance matrix estimator in most cases encountered in 
macroeconomics.19  e

Dependence of ŜT on q̂T

As is apparent from the above discussion, the calculation of a consistent estimator 
for S(q0)  requires knowledge of a (consistent) estimator of q0. Therefore, in order to 
calculate a GMM estimator that attains the efficiency bound, a multi- step procedure 
is used. On the first step, GMM is performed with an arbitrary weighting matrix; this 
preliminary estimator is then used in the calculation of ŜT. On the second step, GMM 
estimation is performed with WT 5 Ŝ21

T . For obvious reasons, the resulting estimator 
is commonly referred to as the two- step GMM estimator. Instead of stopping after 
just two steps, the procedure can be continued so that on the ith step the GMM esti-
mation is performed using WT 5 Ŝ21

T , where ŜT is based on the estimator from the 
(i 2 1)th step. This yields the so- called iterated GMM estimator. While two steps are 
sufficient to attain the efficiency bound, simulation evidence suggests that there are 
often considerable gains to iteration in the sense of improvements in the quality of 
asymptotic theory as an approximation to finite sample behaviour; see Hall (2005, 
Chapter 6).  e
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The distributional result in Proposition 1 can be used as a basis for inference proce-
dures about q0. Two types of inference are commonly of interest: confidence intervals 
for elements of q0, and statistics for testing the hypothesis that the parameters satisfy a 
set of (non)linear restrictions. We consider each in turn; since such inferences are typi-
cally performed using the two- step or iterated estimator, we confine attention to this 
case.

Confidence Interval for a Parameter

Proposition 1(ii) implies that an approximate 100(1 2 a)  per cent confidence interval 
for q0,i, the ith element of q0, is given by

 q̂T,i 6 za/2"V̂T,ii/T, (14.13)

where V̂T,ii is the i 2 ith element of V̂T 5 [GT (q̂T)rŜ21
T GT (q̂T) ]21, ŜT is a consistent 

estimator of S(q0)  and za/2 is the 100(1 2 a/2)th percentile of the standard normal 
distribution.  e

Testing Hypotheses about the Parameters

Newey and West (1987a) propose Wald, Lagrange Multiplier (LM) and Difference (D) 
statistics for testing the null hypothesis that q0 satisfies a set of s non- linear restrictions 
r(q0) 5 0, where r(q)  satisfies the conditions imposed in section 3. For brevity, we con-
sider only the Wald test statistic,

 WT 5Tr (q̂T)r [  R(q̂T)V̂T R(q̂T)r ]21r(q̂T) . (14.14)

and, as a reminder, R(q) 5 0r(q) /0qr 0 q5q. Newey and West (1987a) establish that the 
large sample distribution of WT is as follows.

Proposition 2 Large sample behaviour of WT Let Assumptions 1, 2, and certain other 
regularity conditions hold. If r(q0) 5 0 then WT Sd c2

s. where c2
s denotes the c2 distribu-

tion with s degrees of freedom.

Thus, an approximate 100a per cent significance level test of H0  :   r(q0) 5 0 versus 
H1  :   r(q0) 2 0 can be performed using the decision rule: reject H0 if WT . cs(a) , where 
cs(a)  is the 100(1 2 a)th percentile of the c2

s distribution.
To illustrate, suppose the aggregate supply equation is estimated based on 

E [eAS,t(�0)wt21 ] – in other words ignoring the restriction on the coefficients implied 
by (2) – and it is then desired to test if this restriction, h 5 1 2 d, holds. For con-
sistency with our discussion here, we set this model in our generic notation so that 
f(vt,q) 5 eAS,t(�0)wt21 and q 5 �, implying that p 5 3 and the individual elements of q 
are q1 5 d, q2 5 h and q3 5 k. Using this generic notation, the restriction of interest can 
be written as r(q) 5 0 where r(q) 5 12 q1 2 q2. It follows that R(q)  is the 1 3 3 vector 
(21,21, 0) .  e
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We conclude this section by summarizing the properties of the restricted GMM esti-
mator defined in Definition 2.20

Proposition 3 Large sample behaviour of q|T Let Assumptions 1, 2, and certain other 
regularity conditions hold. (i) If r(q0) 5 0 then q|T Sp q0, but if r(q0) 2 0 then q|T S

p
/ q0; 

(ii) If r(q0) 5 0 then T1/2 (q̂T 2 q0) Sd N(0, VR)  where V 2 VR is a positive semi- definite 
matrix, and V  is defined in Proposition 1.

Proposition 3(i) states that the restricted GMM estimator is only consistent for q0 if 
the restrictions imposed are valid information about q0. Proposition 3(ii) states that if 
we impose valid restrictions, then T1/2 (q|T 2 q0)  converges to a normal distribution, the 
variance of which is either smaller than or equal to the variance T1/2 (q̂T 2 q0) . The latter 
implies the restricted estimator is at least as efficient in large samples as its unrestricted 
counterpart. Taken together, the results in Proposition 3 indicate we are never worse off 
in large samples from imposing restrictions on the parameters – provided they are correct.

5 TESTING THE MODEL SPECIFICATION

The large sample theory in the previous section is predicated on the assumption that the 
model is correctly specified in the sense that E [ f(vt,q0) ]5 0. If this assumption is false 
then the arguments behind Proposition 1 break down, and it is no longer possible to 
establish the consistency of the estimator. Since the validity of the population moment 
condition is central to GMM, it is desirable to assess whether the data appear consist-
ent with the restriction implied by the population moment condition. As noted above, if 
p 5 q then the first order conditions force gT (q̂T) 5 0 irrespective of whether or not (14.1) 
holds and so the latter cannot be tested directly using the estimated sample moment, 
gT (q̂T) . However, if q . p then gT (q̂T) 2 0 because GMM estimation only imposes the 
identifying restrictions and ignores the overidentifying restrictions. The latter represent 
q 2 p restrictions which are true if (14.1) is itself true and can be used as a basis for a 
test of the model specification. To motivate the most commonly applied test statistic, it 
is useful to recall two aspects of our discussion above: (a) the GMM minimand measures 
the distance of gT (q)  from zero; (b) the estimated sample moment contains information 
about overidentifying restrictions. Combining (a) and (b), it can be shown that GMM 
minimand evaluated at q̂T is a measure of how far the sample is from satisfying the over-
identifying restrictions. This leads to overidentifying restrictions test statistic,

 JT 5 TgT (q̂T)rŜ21
T gT (q̂T) ,

where q̂T is the two- step (or iterated) GMM estimator and, once again, ŜT denotes a con-
sistent estimator of S(q0) . The choice of notation reflects a tendency in some articles to 
refer to this quantity as the ‘J- statistic’. Hansen (1982) establishes that the large sample 
behaviour of JT is as follows.

Proposition 4 Let Assumptions 1, 2, and certain other regularity conditions hold then 
JT Sd c2

q2p.
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Thus, an approximate 100a per cent significance level test of H0  :   E [f(vt,q0) ] 50 versus 
H1  :   E [f(vt,q0) ] 2 0 can be performed using the decision rule: reject H0 if JT . cq2p (a) ; 
where ca (b)  is defined following Proposition 2.

Notice that JT is conveniently calculated as the sample size times the two- step (or 
iterated) GMM minimand evaluated at the associated estimator. The overidentifying 
restrictions test is the standard model diagnostic within the GMM framework and is 
routinely reported in applications. Nevertheless, JT is not able to detect all possible mis-
specifications of the model. In particular, Ghysels and Hall (1990) show that JT can be 
insensitive to misspecification due to neglected parameter variation. This ‘blind spot’ 
may be a particular concern in macroeconomic models with time series data as param-
eter variation is a natural source of potential misspecification, and so it is prudent to 
complement the overidentifying restrictions test with tests of structural stability; see 
Chapter 9 in this volume for further discussion of this issue and structural stability 
testing in macroeconometric models.

6  FINITE SAMPLE PERFORMANCE AND THE CONTINUOUS 
UPDATING GMM ESTIMATOR

The foregoing discussion has rested upon asymptotic theory. In finite samples, such 
theory can only provide an approximation. It is therefore important to assess the quality 
of this approximation in the types of model and sample sizes that are encountered in 
economics. Intuition suggests that the quality is going to vary from case to case depend-
ing on the form of the non- linearity and the dynamic structure. A number of simula-
tion studies have examined this question; see inter alia Tauchen (1986), Kocherlakota 
(1990) and the seven papers included in the July 1996 issue of Journal of Business and 
Statistics. It is beyond the scope of this chapter to provide a comprehensive review of 
these studies.21 However, it should be noted that in certain circumstances of interest the 
quality of the approximation is poor.

There are two possible explanations for the failure of this first order asymptotic theory 
to provide a good approximation to the behaviour of the estimator in a particular model 
with a particular data set. First, the key assumptions behind the distribution theory may 
be valid but the sample may simply not be large enough for the first order asymptotic 
theory to be a good guide. Second, the key assumptions behind the distribution theory 
may be inappropriate for the case in hand. Both can occur in macroeconomic models. In 
the remainder of this section, we focus on an aspect of the structure of estimation that 
may retard convergence in models where the key assumptions behind GMM are valid. 
This discussion leads us to a modified version of the estimator known as the Continuous 
Updating GMM (CUGMM) estimator. In the next section, we discuss a scenario in 
which the poor approximation may be due to the near failure of the key assumptions 
behind GMM.

So for the rest of this section, we suppose that the population moment condition is 
valid and q0 is first order identified (that is Assumption 2 holds). We also focus on the 
two- step estimator and so set WT 5 Ŝ21

T  and W 5 S21. To understand why the first 
asymptotic theory in Proposition 1 may not provide a good approximation in some set-
tings, it is instructive to re- examine the structure of the first order conditions of GMM 
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estimation. Recall from our earlier discussion that GMM can be considered an MM esti-
mator based on the information in (14.11) that is, the information that a certain linear 
combination of the population moment condition is zero. As seen above, the weights 
of this linear combination, G r0W, involve unknown matrices that are replaced by their 
sample analogs in GMM estimation.

However, for the purposes of our discussion here, suppose those weights were actually 
known and thus that one could obtain an estimator of q0 by solving the equations

 G r0WgT (q̂*T) 5 0

for q̂*T. Newey and Smith (2004) show that q̂*T  has the same first order asymptotic distri-
bution as q̂T but has better finite sample bias properties; for the purposes of exposition, it 
is useful to have a name for q̂*T  and we refer to this as the ‘ideal’ GMM estimator. Further 
Newey and Smith (2004) trace the source of this comparative advantage to the equations 
solved for q̂*T  and q̂T as we now describe.

From Assumption 2(i) and G r0W  constant (by definition), it follows that q̂*T is obtained 
by solving a set of equations that has the property that

 E [G(q0)rWgT (q0) ]5 0 for any T.

Thus, the ‘ideal’ GMM estimator can be seen to be based on valid information about 
q0 in the sense that q̂*T  solves a set of equations that when evaluated at q0 are satisfied in 
expectation for any T.

In contrast, GMM estimation is based on solving the equations hT (q) 5 0 where 
hT (q)5GT (q)rWT gT (q) . Since GT (q0)rWT are functions of the data, it no longer follows 
automatically from Assumption 2(i) that E [hT (q0) ] 50: in fact, if GT (q0)rWT is correlated 
with gT (q0)  then E [hT (q0)]20. In such cases, GMM is based on a set of equations that 
represent invalid information about q0 for finite T  and it thus may be anticipated that 
the GMM estimator is more biased than its ‘ideal’ counterpart. However, since both 
the Jacobian and sample moment involve averages, they are converging to constants as 
T S ` and this combined with our assumptions about the limit of WT ensure that

 E [GT (q0)rWTgT (q0) ] S 0 as  T S `

In other words, GMM is based on a set of equations that represent valid information 
about q0 in the limit as T S `.

It should be noted that there are cases in which E [hT (q0)] 5 0 and so GMM estimation 
is based on information that is valid for any T: a leading example is estimation of linear 
models via instrumental variables with conditionally homoscedastic and symmetrically 
distributed errors.22 But such a scenario is the exception rather than the rule. Thus in 
general, GMM can be viewed as being based on information that is only valid in large 
samples, and as a result the first order asymptotic theory can be anticipated only to 
provide a good approximation in large samples.

This aspect of GMM estimation has stimulated research into alternative estimators 
based on information in the population moment condition. We focus on just one here, 
the Continuous Updating GMM (CUGMM) estimator proposed by Hansen et al. 
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(1996), because it is both the most closely related to GMM and also relatively straight-
forward to apply to time series data. To motivate the form of the CUGMM estima-
tor, we recall that the optimal weighting matrix has been shown to be S(q0)21. It was 
remarked earlier that this optimal choice is in most cases dependent on q0 and that one 
way to resolve this dependence is to use a multi- step procedure in which WT 5 Ŝ21

T  with 
ŜT based on the estimator of q0 from the previous step. An alternative way to handle this 
dependence is estimate q0 by minimizing

 Qcu
T (q)5 gT (q)rST (q)21gT (q) ,

where ST (q)  is a (matrix) function of q such that ST (q0) Sp S(q0) . Hansen et al. (1996) 
refer to the resulting estimator as CUGMM and show it has the same limiting distribu-
tion as the iterated GMM estimator. However, Newey and Smith (2004) and Anatolyev 
(2005) demonstrate analytically that the continuous- updating estimator can be expected 
to exhibit lower finite sample bias than its two- step counterpart. Interestingly, this com-
parative advantage can be linked back to the first order equations of CUGMM. Donald 
and Newey (2000) show that the first order conditions of CUGMM take the form

 G|T (q)rST (q)21gT (q) 5 0,

where G|T (q)rST (q)21 can be thought of as estimating the weights G(q0)rW. The first 
order conditions of CUGMM and GMM thus have the same generic form: the crucial 
difference is that G|T (q)  is uncorrelated with gT (q)  by construction. Recalling that it is 
the correlation between GT (q0)rWT and gT (q0)  that is argued to be the source of the finite 
sample biases of GMM, it can be anticipated that the CUGMM estimator leads to an 
estimator whose finite sample behaviour is better approximated by its first order asymp-
totic distribution.

While it may dominate in terms of statistical properties, it should be noted that 
CUGMM involves a much more complex minimand than GMM, and thus finding its 
minimum can be challenging; see Hall (2005, Chapter 3.7) for further discussion and a 
numerical illustration.

We conclude this section by briefly mentioning two other approaches to improving 
inference based on GMM in settings where the key assumptions behind the first order 
asymptotic theory apply. The first such approach is the use of the bootstrap, and this 
has been explored in the context of GMM by Hall and Horowitz (1996). The second is 
the use of formal data- based moment selection techniques that are designed to uncover 
which moments lead to estimators whose finite sample behaviour is best approximated 
by standard first order asymptotic theory. Since neither approach has been widely 
employed in macroeconomic applications to our knowledge, we do not explore them in 
detail here but refer the interested reader to reviews in Hall (2005, Chapters 7.3 and 8.1).

7 WEAK IDENTIFICATION

The first order asymptotic theory in Proposition 1 is predicated on the assumption that 
q0 is first order identified by the population moment condition. In a very influential 
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paper, Nelson and Startz (1990) pointed out that this proviso may not be so trivial in 
situations which arise in practice and provided the first evidence of the problems it causes 
for the inference framework we have described above. Their paper has prompted con-
siderable interest and has led to a vast amount of literature on what has become known 
as weak identification. The problem of weak identification can arise in macroeconomic 
models: for example, Mavroeidis (2005) demonstrates conditions in which it arises in 
GMM estimation of versions of the aggregate supply curve, equation (14.2) above, in 
which Et [p

#
t11 ] is replaced by p# t11.23 In this section, we briefly review the problems caused 

by weak identification and some potential solutions.
The statistical analysis of GMM under weak identification involves some quite subtle 

and sophisticated arguments, and so we do not attempt to reproduce them here. Instead, 
we focus on the essence of the concept. We first consider the consequences of failure 
of the first order identification condition. Consider the population analog to the first 
order conditions for GMM estimation. Recall that if q0 is first order identified then 
(14.11) can be thought of as the information on which GMM estimation is based. Now 
if rank{G(q0)}5,, p then this set of equations represents only , pieces of unique infor-
mation about the p elements of q0 and is thus insufficient information to tie down their 
value. As a consequence the first order asymptotic theory in Proposition 1(ii) no longer 
holds. Consistency may also be lost but this depends on the behaviour of the minimand 
and the Jacobian.24 Following Stock and Wright (2000), weak identification is the term 
used to denote the case in which E [GT (q0) ] S 0 at a rate of T21/2. In this case, Stock and 
Wright (2000) show the GMM estimator is not consistent and conventional inference 
procedures based on first order asymptotic theory are no longer valid.

Kleibergen (2005) proposes inference procedures that can be used irrespective of 
whether or not the parameter vector is identified. Suppose it is desired to test H0 :q0 5 q. 
The so- called K- statistic for testing this hypothesis is

 KT (q) 5 TkT (q)r{G|T (q)r{ST (q) }21G|T (q) }21kT (q)

where kT (q)5 G|T (q)r{ST (q) }21gT (q) , ST (q0)  is a consistent estimator of S(q0)  and G|T (q)  
is the estimator of the Jacobian employed in CUGMM (discussed in the previous 
section). Kleibergen (2005) establishes the following.

Proposition 5 If Assumption 1, 2(i) and certain other regularity conditions hold then 
under H0 : q0 5 q, KT (qd ) S c2

p.

Crucially, the conditions for Proposition 5 do not include any statements about the 
identification of q0. Two aspects of KT (q)  explain this invariance to identification: first, 
the test is based on the Lagrange Multiplier principle and thus requires an ‘estimation’ 
under the null hypothesis and, with this H0, there is no estimation as the value of q0 is 
completely specified; second, as noted in the previous section, G|T (q)  is orthogonal to 
gT (q)  by construction, and this means the behaviour of the sample moment is independ-
ent of the behaviour of the Jacobian.25

The null hypothesis above involves all elements of q. Kleibergen (2005) also presents 
a modified version of the tests that allows the null hypothesis to involve only a subset of 
the parameters. So suppose q5(b r,g r)r, where b is pb 3 1, and the hypothesis of inter-
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est is H0 : b0 5 b. In this case, b0 may be unidentified but g0 must be first order identified 
given b0; let ĝ*T (b)  denote the two- step GMM estimator of g0 based on E [ f(vt,q0)]50 
with b0 5 b. Kleibergen’s (2005) statistic for H0 : b0 5 b is of similar structure to KT (q)  
but is evaluated at q 5(b r, ĝ(b)r)r, and is shown to converge to a c2

pb
 under this null.26

KT (q)  can also be inverted to construct a confidence set for q0 as follows: the 
100(12a)  per cent confidence set for q0 contains all values of q for which KT (q) , cp (a) . 
Notice that unlike the intervals in (14.13), the result is a set of values for the entire 
parameter vector. A further important difference is that the intervals in (14.13) are of 
finite length by construction whereas the sets based on KT (q)  may be infinite, reflect-
ing cases where the population moment condition is completely uninformative about 
q0, being consistent with all possible values of q.27 While such confidence sets have the 
attractive feature of being robust to failures of identification, the computational burden 
associated with their calculation increases with p and makes this approach infeasible for 
large p.

A potential weakness of using the K- statistic is that it may fail to reject H0 : q0 5 q 
in circumstances when E [f(vt,q) ] 2 0 and so the parameter value q is incompatible 
with the population moment condition, and thus the underlying economic model. To 
protect against this eventuality, Kleibergen (2005) proposes testing E [f(vt,q) ] 5 0 
using a statistic, J|T (q) , that is variant of the overidentifying restrictions. Notice that 
like the K- statistic, J|T (q)  does not involve an estimated value of q and thus avoids 
problems that face conventional GMM statistics caused by lack of identification. 
Kleibergen (2005) shows that under E [ f(vt,q) ] 5 0 the J|T (q)  converges to a c2

q2p distri-
bution. Exploiting the independence of J|T (q)  and KT (q)  in large samples, Kleibergen 
(2005) recommends examining both statistics to assess whether q is compatable with 
the model.28

8 INFERENCE BASED ON MOMENT INEQUALITIES

So far, we have considered the situation in which the information about the parameter 
vector consists entirely of a population moment condition. This is by far the leading 
case in applications to date. However, in recent years, there has been interest in settings 
where the information consists either partially or exclusively of moment inequalities. 
For example, moment inequalities naturally arise in models for the behaviour of central 
banks; for example see Moon and Schorfheide (2009) and Coroneo et al. (2011). In this 
section, we briefly discuss the Generalized Moment Selection method that has been pro-
posed by Andrews and Soares (2010) for performing inference about the parameters in 
these kinds of models.

Suppose the underlying macroeconomic model implies

 E [f(vt,q0) ]  e 5 0 for i 5 1, 2. . .q1,
$  0 for i 5 q1 1 1,. . .q.

 (14.15)

Thus, the information about the parameters consists of q1 population moment 
 conditions  – or moment equalities – and q2 5 q 2 q1 moment inequalities.29 In what 
follows, no presumption is made about whether or not this information identifies q0.
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Andrews and Soares (2010) introduce a framework for constructing confidence sets 
for q0 in this setting based on the inversion of a member of a suitably defined class of 
test statistics.30 To summarize the basic ideas behind their approach, we focus on one 
particular member of this class,

 AT (q) 5 a
q1

i51
e gT,i(q)

ŝ(i)
T (q) f2

1 a
q

i5q111
e [gT,i(q) ]

2

ŝ(i)
T (q) f2

 (14.16)

where gT,i(q)  is the ith element of gT (q) , {ŝ(i)
T (q)}2 is the (i, i)th element of ST (q)  (defined 

in section 6), [x]_5xI(x,0) and I (a)  is an indicator variable that takes the value 1 if the 
event a occurs and is zero otherwise.

It can be recognized that AT (q)  is the sum of two terms, one reflecting the sample 
moments associated with the moment equalities and one reflecting the the sample 
moments associated with the moment inequalities. Notice that in both these terms, a 
sample moment only affects the value of AT (q)  if it does not satisfy the restriction in 
(14.15). So, for example, the first element of f( 

#
 )  appears in an equality in (14.15) and 

gT,1 (q)  only impacts on AT (q)  if gT,1 (q) 2 0; and the (q1 1 1)th element of f( 
#

 )  appears 
in an inequality in (14.15), and gT,q111 (q)  only impacts on AT (q)  if gT,q111 (q) ,0.

The confidence set for q0 is then constructed as {q :  AT (q) , cT (a) } where cT (a)  
is the 100(1 2 a)th percentile of the distribution of AT (q)  under the assumption that 
(14.15) holds at q0 5 q. It turns out that the (limiting) distribution of AT does not have 
a convenient form, such as c2, because it depends on the degree of slackness of each of 
the inequality constraints, that is, it depends on whether or not each of the moment 
inequalities is close or far from being an equality. Andrews and Soares (2010) consider 
a number of ways of calculating cT (a)  and recommend the use of bootstrap methods. 
Given the construction of AT (q)  its value is unaffected by any moment inequality that is 
far from being an equality. It is therefore desirable not to allow such moments to affect 
the simulated sampling distribution of the statistic. To achieve this goal, Andrews and 
Soares (2010) propose a data- based method for determining which moment inequalities 
are close and which far from being equalities. It is this feature that gives the method the 
name of ‘Generalized Moment Selection’.

NOTES

 * I am grateful to Ralf Becker, Mardi Dungey and Kostas Kyriakoulis for useful conversations during the 
preparation of this chapter, to Laura Coroneo and Denise Osborn for valuable comments on an earlier 
draft. The support of ESRC grant RES- 062- 23- 1351 is gratefully acknowledged.

 1. For example, see Hansen and West (2002).
 2. See Ghysels and Hall (2002).
 3. For a list of other applications of GMM in macroeconomics and other areas, see Hall (2005, Table 1.1, 

pp. 3–4).
 4. See Pearson (1893, 1894, 1895) and Hall (2005, Chapter 1.2) for summary of this and other statistical 

antecedents of GMM.
 5. For brevity, we omit the constant term from the aggregate supply and monetary policy equations as these 

terms do not play a role in the subsequent discussion.
 6. Zhang et al. (2008) estimate the model using US data. They consider different inflation forecasts obtained 

from the Survey of Professional Forecasts, the Greenbook published by the Federal Reserve Board and 
the Michigan survey. The estimates of real GDP are published by the Congressional Budget Office.
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 7. It should be noted that Zhang et al. (2008) include additional variable on the right- hand side for reasons 
discussed in their paper. For our purposes here, it suffices to focus on the simpler specification in (14.2).

 8. This argument appeals to the Law of Iterated Expectations (e.g. see White, 1984, p. 54) and the fact that 
if wt21 [ It21 then wt21 can be treated as a constant when taking expectations conditional on It21.

 9. See Hall (2005, Chapter 2).
10. BCM show that this VAR(1) model implies that the observables (p# t, yt, it)  follow a VARMA(3,2) process; 

the presence of a VMA component create computational problems that render this representation unat-
tractive as a vehicle for estimating the parameters of the model.

11. See Hall (2005, Chapter 2) for further discussion of this case.
12. See, respectively, ‘Eviews 6 User’s Guide II’ (http://www.eviews.com) and ‘SAS/ETS(R) 9.2 User’s Guide’ 

(http://www.sas.com).
13. It should be noted that SAS also offers numerical optimization routines that can be used to obtain GMM 

estimators but do not provide related statistics of interest: see proc optmodel and proc nlp in ‘SAS/
OR(R) 9.2 User’s Guide: Mathematical Programming’.

14. See http://www.kostaskyriakoulis.com/. This toolbox is linked to the presentation in Hall (2005).
15. See Hall (2005, Chapter 3.2) for further discussion.
16. For example see Hall (2005, pp. 100–101).
17. Contrary to the claim on Hall (2005, p. 53) this first order condition is not necessary for identification. It 

is necessary, however, for the first order asymptotic theory of the GMM estimator presented below; see 
Dovonon and Renault (2011).

18. ‘ Sp ’ signifies convergence in probability; ‘ Sd ’ signifies convergence in distribution.
19. See Hall (2005, Chapter 3.5) for discussion of other choices of kernel and other approaches to long- run 

variance matrix estimation.
20. For brevity we do not present the formula for VR and refer the interested reader to Hall (2005, Chapter 

5.3).
21. The interested reader is referred to Hall (2005, Chapter 6).
22. See Newey and Smith (2004, p. 228).
23. See Kleibergen and Mavroeidis (2009) for an application of the methods described in this section to the 

aggregate supply curve.
24. The characterization of the GMM estimator via the first order conditions is crucial for the derivation of 

asymptotic normality result in Proposition 1(ii). However, this characterization is not needed to establish 
consistency; for example see Hansen (1982).

25. In contrast, if this hypothesis is tested using the conventional Wald, D or LM statistics based for GMM 
(Newey and West, 1987a and discussed in Section 4 above) then these statistics only have a limiting c2

p 
under the null if q0 is identified; see Kleibergen (2005).

26. See Kleibergen (2005) for further details.
27. If q0 is not first order identified then the intervals in (14.13) are invalid; see Dufour (1997) for further 

discussion.
28. See Kleibergen (2005) for further details of the construction of these statistics and some other approaches 

to inference in this setting.
29. Note that the sign of the inequality does not matter. If the underlying model implies E [f (vt, q0) ] # 0 

then this can be fit within the framework here by rewriting this condition as E [ f|(vt,q0) ] $ 0 with 
f|( 
#

 ) 52 f ( 
#

 ) .
30. Also see Chernozhukov et al. (2007).
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15 Maximum likelihood estimation of time series 
models: the Kalman filter and beyond
Tommaso Proietti and Alessandra Luati

1 INTRODUCTION

The purpose of this chapter is to provide a comprehensive treatment of likelihood infer-
ence for state space models. These are a class of time series models relating an observ-
able time series to quantities called states, which are characterized by a simple temporal 
dependence structure, typically a first order Markov process.

The states sometimes have substantial interpretation. Key estimation problems in 
economics concern latent variables, such as the output gap, potential output, the non- 
accelerating inflation rate of unemployment, or NAIRU, core inflation, and so forth. 
Time- varying volatility, which is quintessential to finance, is also an important feature 
in macroeconomics. In the multivariate framework relevant features can be common to 
different series, meaning that the driving forces of a particular feature and/or the trans-
mission mechanism are the same.

The main macroeconomic applications of state space models have dealt with the fol-
lowing topics.

● The extraction of signals such as trends and cycles in macroeconomic time 
series: see Watson (1986), Clark (1987), Harvey and Jäger (1993), Hodrick 
and  Prescott (1997), Morley et al. (2003), Proietti (2006), Luati and Proietti 
(2010).

● Dynamic factor models: for the extraction of a single index of coincident indica-
tors see Stock and Watson (1989) and Frale et al. (2011), and for large dimensional 
systems see Jungbacker et al. (2011).

● Stochastic volatility models: see Shephard (2005) and Stock and Watson (2007) for 
applications to US inflation.

● Time varying autoregressions with stochastic volatility: see Primiceri (2005); 
Cogley et al. (2010).

● Structural change in macroeconomics: see Kim and Nelson (1999); Giordani et al. 
(2007).

● The class of dynamic stochastic general equilibrium (DSGE) models: see Sargent 
(1989); Fernandez- Villaverde and Rubio- Ramirez (2005); Smets and Wouters 
(2003); Fernandez- Villaverde (2010).

Leading macroeconomics books, such as Ljungqvist and Sargent (2004) and Canova 
(2007), provide a comprehensive treatment of state space models and related methods. 
The above list of references and topics is all but exhaustive and the literature has been 
growing at a fast rate.
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State space methods are tools for inference in state space models, since they allow one 
to estimate any unknown parameters along with the states, to assess the uncertainty of 
the estimates, to perform diagnostic checking, to forecast future states and observations, 
and so forth.

The Kalman filter (Kalman, 1960; Kalman and Bucy, 1961) is a fundamental algo-
rithm for the statistical treatment of a state space model. Under the Gaussian assump-
tion, it produces the minimum mean square estimator of the state vector along with its 
mean square error matrix, conditional on past information; this is used to build the one- 
step- ahead predictor of yt and its mean square error matrix. Due to the independence of 
the one- step- ahead prediction errors, the likelihood can be evaluated via the prediction 
error decomposition.

The objective of this chapter is to review this algorithm and discuss maximum likeli-
hood inference, starting from the linear Gaussian case and discussing the extensions to 
a non- linear and non- Gaussian framework. Due to space constraints we shall provide a 
self- contained treatment of the standard case and an overview of the possible modes of 
inference in the non- linear and non- Gaussian case. For more details we refer the reader 
to Jazwinski (1970); Anderson and Moore (1979); Hannan and Deistler (1988); Harvey 
(1989); West and Harrison (1997); Kitagawa and Gersch (1996); Kailath et al. (2000); 
Durbin and Koopman (2012); Harvey and Proietti (2005); Cappé et al. (2005) and 
Kitagawa (2010).

The chapter is structured as follows. Section 2 introduces state space 
models  and  provides the state space representation of some commonly applied 
linear processes, such as univariate and multivariate autoregressive moving average 
 processes  (ARMA)  and dynamic factor models. Section 3 is concerned with the 
basic tool for inference in state space models, that is the Kalman filter. Maximum 
likelihood estimation is the topic of section 4, which discusses the profile and mar-
ginal likelihood,  when non- stationary  and  regression effects are present; section 5 
deals with estimation  by the  Expectation Maximization (EM) algorithm. Section 
6 considers   inference  in  non- linear and non- Gaussian models along with stochas-
tic  simulation methods and new directions of research. Section 7 concludes the chapter.

2 STATE SPACE MODELS

We begin our treatment with the linear Gaussian state space model. Let yt denote an 
N 3 1 vector time series related to an m 3 1 vector of unobservable components, the 
states, at, by the so- called measurement equation,

 yt 5 ztat 1 Gtet,  t 5 1,c,n, (15.1)

where Zt is an N 3 m matrix, Gt is N 3 g and et , NID(0,s2Ig) .

The evolution of the states is governed by the transition equation:

 at11 5 Ttat 1 Htet,  t 5 1,2,c,n, (15.2)

where the transition matrix Tt is m 3 m and Ht is m 3 g.
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The specification of the state space model is completed by the initial conditions 
concerning the distribution of a1. In the sequel we shall assume that this distribution 
is independent of et,4t $ 1 When the system is time- invariant and at is stationary (the 
eigenvalues of the transition matrix, T, are inside the unit circle), the initial conditions 
are provided by the unconditional mean and covariance matrix of the state vector, 
E(a1) 5 0 and Var(a1) 5 s2P1|0, satisfying the matrix equation P1 00 5 TP1 00T r1 HHr. 
Initialization of the system turns out to be a relevant issue when non- stationary compo-
nents are present.

Often the models are specified in a way that the measurement and transition equation 
disturbances are uncorrelated, that is HtGrt 5 0,4t.

The system matrices, Zt, Gt, Tt, and Ht, are non- stochastic, that is they are allowed 
to vary over time in a deterministic fashion, and are functionally related to a set of 
hyperparameters, q [ Q # Rk, which are usually unknown. If the system matrices are 
constant, that is Zt 5 Z, Gt 5 G, Tt 5 T and Ht 5 H, the state space model is time 
invariant.

2.1 State Space Representation of ARMA Models

Let yt be a scalar time series with ARMA(p, q) representation:

 yt 5 �1yt21 1 c1 �pyt2p 1 xt 1 q1xt21 1 c1 qqxt2q,xt , NID(0,s2),

or �(L)yt 5 q (L)xt, where L is the lag operator, and �(L) 5 1 2 �1L 2 c2 �pL 
p, 

q (L) 5 1 1 q1L 1 c1 qqL 
q.

The state space representation proposed by Pearlman (1980) (see Burridge and Wallis, 
1988 and de Jong and Penzer, 2004), is based on m 5 max(p,q)  state elements and it is 
such that et 5 xt. The time invariant system matrices are

 Z 5 [1,   0 rm21 ], G 5 1, T 5 H
�1 1 0 c 0

�2 0 1 f 0

( ( f f 0

( c c 0 1

�m 0 c c 0

X , H 5 H
q1 1 �1

q2 1 �2

(

(

qm 1 �m

X .

If yt is stationary, the eigenvalues of T are inside the unit circle (and vice versa). State space 
representations are not unique. The representation adopted by Harvey (1989) is based on 
m 5 max(p,q 1 1) states and has Z,T as above, but G 5 0 and Hr5 [1,q1, . . . ,qm ]. The 
canonical observable representation in Brockwell and Davis (1991) has minimal state 
dimension, m 5 max(p,q) , and
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 Z 5 [1,   0rm21 ], G 5 1, T 5 H 0 1 0 c 0

0 0 1 f 0

( ( f f 0

( c c 0 1

�m �m21
c c �1

X , H 5 H
y1

y2

(

(

ym

X ,

where yj are the coefficients of the Wold polynomial y(L) 5 q (L) /�(L) . The 
virtue of this representation is that at 5 [y|t 0 t21, y|t11 0 t21,c,  y|t1m21 0 t21 ]r where 
y|t1 j 0 t21 5 E(yt1 j 0Yt21) ,Yt 5 {yt,yt21, . . .}. In fact, the transition equation is based on 
the forecast updating recursions:

 y|t1 j 0t 5 y|t1 j 0t21 1 yj xt, j 5 1,. . .,m 2 1, y|t1m 0t 5 a
m

k51
�ky|t1k21 0t21 1 ymxt.

2.2 AR and MA Approximations of Fractional Noise

The fractional noise process (1 2 L) dyt 5 xt,xt , NID(0,s2) , is  stationary 
if d , 0.5. Unfortunately such a process is not finite order Markovian and does 
not admit a state space representation with finite m. Chan and Palma (1998) 
obtained the finite m AR and MA approximations by truncating respectively the 
AR polynomial �(L) 5 (1 2 L) d 5 1 2 g`

j51
G (j 1 d)

G (d) G (j 1 1) L 
j and the MA polynomial 

q (L) 5 (1 2 L)2d 5 1 1 g`

j51
G ( j 2 d)

G (2 d) G (j 1 1) L 
j. Here G( # )  is the Gamma function. A 

better option is to obtain the first m AR coefficients applying the Durbin–Levinson algo-
rithm to the Toeplitz variance covariance matrix of the process.

2.3 AR(1) Plus Noise Model

Consider an AR(1) process mt observed with error:

 
yt 5 mt 1 et, et , NID(0,se

2),
mt115 �mt1ht, ht , NID(0,s2

h),

where 0� 0 , 1 to ensure stationarity and E(htet1s) 5 0,4s. The initial condition is 
m1 ,N(m|1 00,P1 00) .

Assuming that the process has started in the indefinitely remote past m|1 00 5 0, P1 00 5
s2

h

1 2 �2. 
Alternatively, we may assume that the process started at time 1, so that P1 00 5 0 and m1 is 
a fixed (though possibly unknown) value.

If se
2 5 0 then yt ,  AR(1); on the other hand, if s2

h 5 0 then yt , NID(0,se
2) ; finally, 

if � 5 0 then the model is not identifiable.
When � 5 1, the local level (random walk plus noise) model is obtained.
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2.4 Time Varying AR Models

Consider the time varying vector autoregressive (VAR) model yt 5 ap

k51
Fktyt2k 1  xt,

xt 5 N(0,St)  with random walk evolution for the coefficients:

 vec (Fk,t11) 5 vec(Fk,t) 1 hkt, hkt , NID(0,Sh) ;

(see Primiceri, 2005). Often Sh is taken as a scalar or a diagonal matrix.
The model can be cast in state space form, setting at 5  [vec(F1)r,c,vec(Fp)r ]r,

Zt 5 [(y rt21 # I ) ,c, (y rt2p # I)], G 5 S
1/2, Tt 5 I, H 5 Sh

1/2 .
Time varying volatility is incorporated by writing Gt 5 CtDt where Ct is lower diago-

nal with unit diagonal elements and cij,t11 5 cij,t 1 zij,t, j , i, zij,t , NID(0,s2
z) , and 

Dt 5 diag (dit, i 5 1,. . . , N), ln di,t11 5 ln dit 1 kit, kit , NID(0,s2
k) . Allowing for time 

varying volatility makes the model non- linear.

2.5 Dynamic Factor Models

A simple model is yt 5 Lft 1 ut where L is the matrix of factor loadings, ft are q 
common factors admitting a VAR representation, ft11 5 Fft 1 ht,ht , N(0,Sh)  (see 
Sargent and Sims, 1977; Stock and Watson, 1989). For identification we need to 
impose q(q 1 1) /2 restrictions (see Geweke and Singleton, 1981). One possibility is to 
set Sh 5 I; alternatively, we could set L equal to a lower triangular matrix with 1’s on 
the main diagonal.

2.6 Contemporaneous and Future Representations

The transition equation (15.2) has been specified in the so- called future form; in some 
treatment, for example Harvey (1989) and West and Harrison (1989, 1997), the contem-
poraneous form of the model is adopted, with (15.2) replaced by a*t 5 Tta*t21 1 Htet, 
t 5 1, . . . , n, whereas the measurement equation retains the form yt 5 Z*a*t 1 G*et. The 
initial conditions are usually specified in terms of a*0 , N(0,s2P0) , which is assumed to 
be distributed independently of et,4t $ 1.

Simple algebra shows that we can reformulate the model in future form (15.1)–(15.2) 
with at 5 a*t21, Z 5 Z*T*, G 5 G* 1 Z*H*.

For instance, consider the AR(1) plus noise model in contemporaneous form, speci-
fied as yt 5 m*t 1 e*t, m*t 5 �m*t21 1h*t , with e*t  and h*t  mutually and serially independent. 
Substituting from the transition equation, yt 5 m*t211 h*t 1 e*t , and setting mt 5 m*t21, we 
can rewrite the model in future form, but the disturbances et 5 h*t 1 e*t  and ht 5 h*t  will 
be (positively) correlated.

2.7 Fixed Effects and Explanatory Variables

The linear state space model can be extended to introduce fixed and regression effects. 
There are essentially two ways for handling them.

If we let Xt and Wt denote fixed and known matrices of dimension N 3 k and m 3 k, 
respectively, the state space form can be generalized as follows:
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 yt 5 Ztat 1 Xtb 1 Gtet,    at11 5 Ttat 1 Wtb 1 Htet. (15.3)

In the sequel we shall express the initial state vector in terms of the vector b as follows:

 a1 5 a|*1 00 1 W0b 1 H0e0, e0 , N(0,s2I), (15.4)

where a|*1 00, W0, H0, are known quantities.
Alternatively, b is included in the state vector and the state space model becomes:

 yt 5 Z10
t a

10
t 1 Gtet,   a

10
t11 5 T10

t a
10
t 1 H10

t et

where

 a10
t 5 cat

bt
d , Z10

t 5 [Zt Xt ], T
10
t 5 cTt Wt

0 Ik
d , H10

t 5 cHt

0
d

This representation opens the way to the treatment of b as a time varying vector.

3 THE KALMAN FILTER

Consider a stationary state space model with no fixed effect (15.1)–(15.2) with initial condi-
tion a1 , N(0,s2P1 00), independent of et, t $ 1, and define Yt 5 {y1, y2, . . ., yt}, the infor-
mation set up to and including time t, a|t 0 t21 5 E(at 0Yt21), and Var(at 0Yt21) 5 s2Pt 0 t21.

The Kalman filter (KF) is the following recursive algorithm: for t 5 1, . . . , n,

 vt 5 yt 2 Zta
|

t 0 t21,   Ft 5 ZtPt 0 t21Zrt 1 GtGrt,

 Kt 5 (TtPt 0 t21Zrt 1 HtGrt)F21
t ,

 a|t11 0 t 5 Tta
|

t 0 t21 1 Ktvt1, Pt11 0 t 5 TtPt |t21Trt 1 HtHrt 2 KtFtKrt (15.5)

Hence, the KF computes recursively the optimal predictor of the states and thereby of 
yt conditional on past information as well as the variance of their prediction error. The 
vector nt 5 yt 2 E(yt 0Yt21)  is the time t innovation, that is the new information in yt that 
could not be predicted from knowledge of the past, also known as the one- step- ahead 
prediction error; s2Ft is the prediction error variance at time t, that is Var(yt 0Yt21) . The 
one- step- ahead predictive distribution is yt 0Yt21 , N(Zta

|
t 0 t21,s2Ft). The matrix Kt is 

sometimes referred to as the Kalman gain.

3.1 Proof of the Kalman Filter

Let us assume that a|t 0 t21, Pt 0 t21 are given at the tth run of the KF. The 
 avail able   information set is Yt21. Taking the conditional expectation of both sides 
of  the  measurement equations yields y|t 0 t21 5 E(yt 0Yt21) 5 Zta

|
t 0 t21. The  innova tion 

at  time t is nt 5 yt 2 Zta
|

t 0 t21 5 Zt(at 2 a|t 0 t21) 1 Gtet. Moreover, Var(yt 0Yt21) 5 s2Ft, 
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where Ft 5 ZtPt 0 t21Zrt 1 GtGrt. From the transition  equation, E(at11 0Yt21) 5 
Tta
|

t 0 t21 Var(at11 0 Yt21) 5 Var [Tt (at 2 a|t 0 t21) 1 Htet ] 5 s2 (TtPt 0 t21Trt 1 HtHrt), and 
Cov(at11, yt 0Yt21) 5 s2 (TtPt 0 t21Zrt 1 HtGrt).

The joint conditional distribution of (at11, yt)  is thus:

 
at11

yt

00 Yt21|N c aTta
|

t 0 t21

Zta
|

t 0 t21
b,s2aTtPt 0 t21Trt 1 HtHrt, TtPt 0 t21Zrt 1 HtGrt

ZtPt 0 t21Trt 1 GtHrt, Ft
bd ,

which implies at11 0Yt21, yt ; at11 0Yt , N(a|t11 0 t,s2Pt11 0 t) , with a|t11 0 t 5 Tta
|

t 0 t21 1 Ktvt, 
Kt5(TtPt 0 t21Zrt1HtGrt)F21

t , Pt11 0 t5TtPt 0 t21Trt 1HtHrt1KtFtKrt. Hence,  Kt5Cov(at, yt 0Yt21)  
[Var(yt 0Yt21) ]21 is the regression matrix of at on the new information yt, given Yt21.

3.2 Real Time Estimates and an Alternative Kalman Filter

The updated (real time) estimates of the state vector, a|t 0 t 5 E(at 0Yt), and their covari-
ance matrix Var(at 0Yt) 5 s2Pt 0 t are:

 a|t 0 t 5 a|t 0 t21 1 Pt 0 t21ZrtF21
t vt, Pt 0 t 5 Pt 0 t21 2 Pt 0 t21ZrtF21

t ZtPt 0 t21. (15.6)

The proof of (15.6) is straightforward. We start writing the joint distribution of the 
states and the last observation, given the past:

 
at

yt

00Yt21 , N caa|t 0 t21

Zta
|

t 0 t21
b,s2a Pt 0 t21, Pt 0 t21Zrt

ZtPt 0 t21, Ft
bd ,

whence it follows at 0Yt21, yt ; at|Yt , N(a|t 0 t,s2Pt 0 t)  with (15.6) providing, respectively,

 E(at 0Yt) 5 E(at 0Yt21) 1 Cov(at, yt 0Yt21) [Var(yt 0Yt21) ]21 [yt 2 E(yt 0Yt21)],

 Var(at 0Yt) 5 Var(at 0Yt21) 2 Cov(at, yt 0Yt21) [Var(yt 0Yt21) ]21Cov(yt,at 0Yt21).

The KF recursions for the states can be broken up into an updating step, followed by 
a prediction step: for t 5 1, . . . , n,

 vt 5 yt 2 Zta
|

t 0 t21, Ft 5 ZtPt 0 t21Zrt 1 GtGrt,

 a|t 0 t 5 a|t 0 t21 1 Pt |t21ZrtF21
t vt, Pt 0 t 5 Pt 0 t21 2 Pt 0 t21ZrtF21

t ZtPt 0 t21,

 a|t11 0 t 5 Tta
|

t 0 t 1 HtGrtF21
t vt,   Pt11 0 t 5 TtPt 0 tTrt 1 HtHrt 2 HtGrtF21

t GtHrt. (15.7)

The last row follows from et 0Yt , N(GrtF21
t vt,s2 (I 2 GrtF21

t Gt)) . Also, when HtGrt 5 0 
(uncorrelated measurement and transition disturbances), the prediction equations in 
(15.7) simplify considerably.
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3.3 Illustration: The AR(1) Plus Noise Model

For the AR(1) plus noise process considered above, let s2 5 1 and 
m1 , N(m|1 00, P1 00) , m|1 00 5 0, P1 00 5 sh /(1 2 �2). Hence, y|1 00 5 E(y1 0Y0) 5 m|1 00 5 0, so that 
at the first update of the KF,

 n1 5 y1 2 y|1 00 5 y1,    F1 5 Var(y1 0Y0) 5 Var(n1) 5 P1 00 1 se
2 5

s2
h

1 2 �2 1 se
2.

Note that F1 is the unconditional variance of yt. The updating equations will provide the 
mean and variance of the distribution of m1 given y1:

 m|1 01 5 E(m1 0Y1) 5 m|1 00 1 P1 00F21
1 n1 5

s2
h

1 2 �2 c s2
h

1 2 �2 1 se
2 d21

y1,

 P1 01 5 Var(m1 0Y1) 5 P1 00 2 P1 00F21
1 P1 00 5

s2
h

1 2 �2 c1 2
s2

h/ (1 2 �2)

s2
h/ (1 2 �2) 1 se

2 d .
It should be noticed that if se

2 5 0, m|1 01 5 y1 and P1 01 5 0 as the AR(1) process is 
observed without error. Conversely, when s2

e . 0, y1 will be shrunk towards zero 
by  an  amount depending on the relative contribution of the signal to the total 
variation.

The one- step- ahead prediction of the state and the state prediction error variance 
are:

 m|2 01 5 E(m2 0Y1)m|2 01 5 �E(m1 0Y1) 1 E(h1 0Y1) 5 �m|1 01,
 P2 01 5 Var(m2 0Y1) 5 E(m2 2 �m|1 00) 2 5 E[�(m1 2 m|1 00) 1 h1 ]2 5 �2P1 01 1 s2

h.

At time t 5 2, y|2 01 5 E(y2 0Y1) 5 m|2 01 5 �m|1 01, so that n2 5 y2 2 y|2 01 5 y2 2 m|2 01 and 
F2 5 Var(y2 0Y1) 5 Var(n2) 5 P2 01 1 se

2, and so forth.
The KF equations (15.5) give for t 5 1,. . ., n,

 
nt 5 yt 2 m|t 0 t21, Ft 5 Pt 0 t21 1 se

2,
Kt 5 �Pt 0 t21 F21

t ,
m|t11 0 t 5 �m|t 0 t21 1 Ktnt, Pt11 0 t 5 �2Pt 0 t21 1 s2

h 2 �2P2
t 0 t21 F21

t .

Notice that s2
e 5 0 1 Ft 5 Pt 0 t21 5 s2

h and y|t11 0 t 5 m|t11 0 t 5 �yt.

3.4 Non- stationarity and Regression Effects

Consider the local level model,

 
yt5 mt 1 et, et , NID(0,se

2) ,

mt115 mt 1 ht, ht , NID(0,s2
h) ,
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which is obtained as a limiting case of the above AR(1) plus noise model, letting � 5 1. 
The signal is a non- stationary process. How do we handle initial conditions in this case? 
We may alternatively assume:

i Fixed initial conditions: the latent process has started at time t 5 0 with m0 repre-
senting a fixed and unknown quantity.

ii Diffuse (random) initial conditions: the process has started in the remote past, so 
that at time t 5 1, m1 has a degenerate distribution centred at zero, m|1 00 5 0, but with 
variance tending to infinity: P1 00 5 k,k S `.

In the first case, the model is rewritten as yt 5 m0 1 at 1 et,at11 5 at 1 ht,
a1 , N(a|1 00, P1 00) ,a|1 00 5 0, P1 00 5 s2

h, which is a particular case of the augmented state 
space model (15.3). The generalized least squares estimator of m0 is m̂0 5 (irg21i)21ig21y, 
where y is the stack of the observations, i is a vector of 1’s and g 5 s2

eI 1 s2
hCCr, where 

C is lower triangular with unit elements. We shall provide a more systematic treatment of 
the filtering problem for non- stationary processes in section (4.2). In particular, the GLS 
estimator can be computed efficiently by the augmented KF. For the time being we show 
that, under diffuse initial conditions, after processing one observation, the usual KF pro-
vides proper inferences. At time t 5 1 the first update of the KF, with initial conditions 
m|1 00 5 0 and P1 00 5 k, gives:

 
n1 5 y1, F1 5 k 1 se

2,
K1 5 k/(k 1 se

2) ,
m|2 01 5 y1k/(k 1 s2

e ) P2 01 5 se
2k/(k 1 se

2) 1 s2
h.

The distribution of n1 is not proper, as y1 is non- stationary and F1 S ` if we let k S `. 
Also, by letting k S `, we obtain the limiting values K1 5 1, m|2 01 5 y1 P2 01 5 s2

e 1 s2
h. 

Notice that P2 01 no longer depends upon k and n2 5 y2 2 y1 has a proper distribution, 
n2 , N(0, F2), with finite F2 5 s2

h 1 2se
2. In general, the innovations nt, for t . 1, can 

be expressed as a linear combination of Dyt,Dyt21, . . ., and thus they possess a proper 
distribution.

4 MAXIMUM LIKELIHOOD ESTIMATION

Let q [ Q # Rk denote a vector containing the so- called hyperparameters, that is the 
vector of structural parameters other than the scale factor s2. The state space model 
depends on q via the system matrices Zt 5 Zt(q) , Gt 5 Gt(q) , Tt 5 Tt(q) , Ht 5 Ht(q) 
and via the initial conditions a|1 00, P1 00.

Whenever possible, the constraints in the parameter space Q are handled by transfor-
mations. Also, one of the variance parameters is attributed the role of the scale param-
eter s2. For instance, for the local level model, we set: Z 5 T 5 1, G 5 [1, 0],s2 5 se

2,   
et , NID(0,s2

eI2) , H 5 [0, eq ],q 5
1
2lnq, where q 5 s2

h /se
2 is the signal to noise ratio.

As a second example, consider the Harvey–Jäger (1993) decomposition of US gross 
domestic product (GDP): yt 5 mt 1 yt, where mt is a local linear trend and yt is a sto-
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chastic cycle. The state space representation has at 5 [mt bt yt y*t ]r, Z 5 [1, 0, 1, 0], 
G 5 [0,0,0,0], T 5 diag(Tm,Ty) ,

 Tm 5 c1 1
0 1

d ,   Ty 5 r c  cos l  sin l

2 sin l  cos l
d ,

 H 5 diagash

sk

,
sz

sk

,1,1b; et 5 ≥ htsk /sh

ztsk /sz

kt

k*t

¥ , N(0,s2
kI4)

The parameter r is a damping factor, taking values in (0,1), and l is the cycle fre-
quency, restricted in the range [0,p ]. Moreover, the parameters s2

h and s2
z take non- 

negative values. The parameter s2
k is the scale of the state space disturbance which will be 

concentrated out of the likelihood function.
We reparameterize the model in terms of the vector q, which has four unrestricted 

 elements, so that Q # R4, related to the original hyperparameters by:

 
s2

h

s2
k

5 exp(2q1) ,      

s2
z

s2
k

5 exp(2q2) ,

 r 5
0q3 0"1 1 q2

3

,      l 5
2p

2 1 expq4
.

Let ,(q,s2) denote the log- likelihood function (LF), that is the logarithm of 
the joint density of the sample time series {y1, . . . , yn} as a function of the parameters 
q,s2.

The log- likelihood can be evaluated by the prediction error decomposition:

 ,(q,s2) 5 ln g(y1, . . . , yn;q,s2) 5 a
n

t51
ln g(yt 0Yt21;q,s2).

Here g( # )  denotes the Gaussian probability density function. The predictive density 
g(yt 0Yt21;q,s2) is evaluated with the support of the KF, as yt 0Yt21 , NID(y|t 0 t21,s2Ft), 
so that

 ,(q,s2) 5 2
1
2
aNn lns2 1 a

n

t51
ln 0Ft 0 1 1

s2a
n

t51
nrtF21

t ntb. (15.8)

The scale parameter s2 can be concentrated out of the LF: maximizing ,(q,s2) with 
respect to s2 yields

 ŝ2 5 a
t

nrtF21
t nt/(Nn).

The profile (or concentrated) likelihood is
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 ,s2 (q) 5 2
1
2
cNn(ln ŝ2 1 1) 1 a

n

t51
ln 0Ft 0 d . (15.9)

This function can be maximized numerically by a quasi- Newton optimization routine, by 
iterating the following updating scheme:

 q
|

k11 5 q
|

k 2 lk [�2,s2 (q|k) ]21�,s2 (q|k) ,

where lk is a variable step- length, and �,s2 (q|k) and �2,s2(q|k) are respectively the gradi-
ent and hessian, evaluated at q|k. The analytical gradient and hessian can be obtained in 
parallel to the Kalman filter recursions; see Harvey (1989) and Proietti (1999), for an 
application.

The innovations are a martingale difference sequence, E(nt 0Yt21) 5 0, which implies 
that they are uncorrelated with any function of their past: using the law of iterated expec-
tations E(ntnt2 j 0Yt21) 5 0. Under Gaussianity they will also be independent.

The KF performs a linear transformation of the observations with unit Jacobian: if n 
denotes the stack of the innovations and y that of the observations: then n 5 C21y, where 
C21 is a lower triangular matrix such that Sy 5 Cov(y) 5 s2CFCr,

C 5 F I 0 0 . . . 0 0
2Z2K1 I 0 . . . 0 0

2Z3L3,2K1 2Z3K2 I f 0 0
( ( f f f (

2Zn21Ln21,2K1, 2Zn21Ln21,3K2, . . . f I 0
2ZnLn,2K1, 2ZnLn,3K2, 2ZnLn,4K3, . . . 2ZnKn21, I

V (15.10)

where Lt 5 Tt 2 KtZrt, and Lt,s 5 Lt21Lt22
cLs for t . s, Lt,t 5 I and 

F 5 diag(F1,. . . , Ft,. . . , Fn). Hence, nt is a linear combination of the current 
and past observations and is orthogonal to the information set Yt21. As a result 0g y 0 5 s2n 0F 0 5 s2nPt 0Ft 0 and yrg21

y y 5
1
s2nrF21n 5

1
s2g tntF21

t nt.

4.1 Properties of Maximum Likelihood Estimators

Under regularity conditions, the maximum likelihood estimator of q is consistent and 
asymptotically normal, with covariance matrix equal to the inverse of the asymptotic 
Fisher information matrix (see Caines, 1988). Besides the technical conditions regard-
ing the existence of derivatives and their continuity about the true parameter, regularity 
requires that the model is identifiable and the true parameter values do not lie on the 
boundary of the parameter space. For the AR(1) plus noise model introduced in section 
2.3 these conditions are violated, for instance, when � 5 0 and when � 5 1 or se

2 5 0, 
respectively. While testing for the null hypothesis � 5 0 against the alternative � 2 0 is 
standard, based on the t- statistics of the coefficient yt21 in the regression of yt on yt21 or 
on the first order autocorrelation, testing for unit roots or deterministic effects is much 
more involved, since likelihood ratio tests do not have the usual chi square distribution. 
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Testing for deterministic and non- stationary effects in unobserved component models is 
considered in Nyblom (1986) and Harvey (2001).

Pagan (1980) has derived sufficient conditions for asymptotic identifiability in sta-
tionary models and sufficient conditions for consistency and asymptotic normality of 
the maximum likelihood estimators in non- stationary but asymptotically identifiable 
models. Strong consistency of the maximum likelihood estimator in the general case 
of a non- compact parameter space is proved in Hannan and Deistler (1988). Recently, 
full asymptotic theory for maximum likelihood estimation of non- stationary state space 
models has been provided by Chang et al. (2009).

4.2  Profile and Marginal Likelihood for Non- stationary Models with Fixed and 
Regression Effects

Let us consider the state space model (15.3), with initial conditions stated in (15.4).
Let us start from the simple case when the vector b is fixed and known, so that 

a1 , N(a|1 00,s2P1 00), where a|1 00 5 a|*1 00 1 W0b and P1 00 5 H0Hr0.
The KF for this model becomes, for t 5 1, . . ., n:

 nt 5 yt 2 Zta
|

t 0 t21 2 Xtbt, Ft 5 ZtPt 0 t21Zrt 1 GtGrt,

 Kt 5 (TtPt 0 t21Zrt 1 HtGrt)F21
t

 a|t11 0 t 5 Tta
|

t 0 t21 1 Wtb 1 Ktnt, Pt11 0 t 5 TtPt 0 t21Trt 1 HtHrt 2 KtFtKrt (15.11)

We refer to this filter as KF(b). Apart from a constant term, the log likelihood is as given 
in (15.8), whereas (15.9) is the profile likelihood.

The KF and the definition of the likelihood need to be amended when we remove the 
assumption that b is a known vector and that the state vector has a stationary distribu-
tion. An instance is provided by the local level model, for which Zt 5 1, Xt 5 0, at 5 mt, 
Gt 5 [1, 0], s2 5 se

2, et 5 [et,seht/sh ]r, Ht 5 [0,sh /se ], Tt 5 1, Wt 5 0,

 a|*
1 00 5 0, W0 5 1, b 5 m0, H0 5 [0,sh /se ].

If a scalar explanatory variable is present in the measurement equation, xt, with 
co efficient g: Xt 5 [0, xt ],b 5 [m0,g ]r, W0 5 [1,0], Wt 5 [0,0], t . 0.

When b is fixed but unknown, Rosenberg (1973) showed that it can be concentrated 
out of the likelihood function and that its generalized least square estimate is obtained 
from the output of an augmented KF. In fact, a1 has mean a|1 00 5 a|*

1 00 1 W0b and 
 covariance matrix P*

1 00 5 s2H0Hr0. Defining A1 00 5 2W0, rewriting a|1 00 5 a|*
1 00 2 A1 00b, 

and running the KF recursions for a fixed b, we obtain the set of innovations 
nt 5 n*t 2 Vtb and one- step- ahead state predictions a|t11 0 t 5 a|*t11 0 t 2 At11 0 tb, as a linear 
function of b.

In the above expressions the starred quantities, n*t  and a|*t11 0 t, are produced by the KF 
in (15.11), run with b 5 0, that is with initial conditions a|*1 00 and P*1 00 5 H0Hr0, hereby 
denoted KF(0). The latter also computes the matrices F*t,  K*t  and P*t11 0 t, t 5 1, . . ., n, that 
do not depend on b.
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The matrices Vt and At11 0 t are generated by the following recursions, that are run in 
parallel to KF(0):

 Vt 5 Xt 2 ZtAt 0 t21,   At11 0 t 5 TtAt 0 t21 1 Wt 1 K*t Vt,   t 5 1, . . . , T, (15.12)

with initial value A1 00 5 2W0. Notice that this amounts to running the same filter, 
KF(0), on each of the columns of the matrix Xt.

Then, replacing nt 5 n*t 2 Vtb into the expression for the log- likelihood (15.8), and 
defining sn 5 g n

1Vrt F*21
t n*t  and Sn 5 gn

1Vrt F*21
t Vt, yields, apart from a constant term:

,(q,s2,b) 5 2
1
2
aNn lns2 1 a

n

t51
ln 0F*t 0 1 s22 can

t51
n*rt F*21

t n*t 2 2brsn 1 brSnb d b. (15.13)

Hence, the maximum likelihood estimator of b is b̂ 5 S21
n sn. This is coincident with the 

generalized least square estimator. The profile likelihood (with respect to b) is

 ,b(q,s2) 5 2
1
2
aNn lns2 1 a

n

t51
ln 0F*t 0 1 s22 can

t51
n*rt F*21

t n*t 2 srnS21
n sn d b  (15.14)

The MLE of s2 is

 ŝ2 5
1

Nn
can

t51
n*rt F*21

t n*t 2 srnS21
n sn d

and the profile likelihood (also with respect to s2) is

 ,b, s2 (q) 5 2
1
2
cNn(lnŝ2 1 1) 1 a

n

t51
ln 0F*t 0 d . (15.15)

The vector b is said to be diffuse if b , N(0,g b), where g21
b S 0. Writing g b 5 kId, 

where d is the number of elements of b and k . 0, so that the prior log- density is, up to 
a constant, ,(b) 5 ln p(b) 5 20.5d ln k 2 0.5brb/k, the diffuse likelihood is defined as 
the limit of ,(q,s2,b) 1 0.5d ln k as k S `. Using ,(y) 5 ,(b) 1 ,(y 0b) 2 ,(b 0y) , this 
yields

 ,`
(q,s2) 5 2

1
2{N(n 2 k) ln s2 1 a ln 0F*t 0 1 ln 0Sn 0 1 s22 [an*t rF*t

21n*t 2 snrSn
21sn ],}

where k is the number of elements of b. The MLE of s2 is

  ŝ2 5
1

N(n 2 k) can
n

t51

*t rF*21
t n*t 2 srnS21

n sn d
and the profile likelihood is

 ,`, s2 (q) 5 2
1
2
cN(n 2 k) (ln ŝ2 1 1) 1 a

n

t51
ln|F*t | 1 ln|Sn| d . (15.16)
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The notion of a diffuse likelihood is close to that of a marginal likelihood, being based 
on reduced rank linear transformation of the series that eliminates dependence on b; see 
the next subsection and Francke et al. (2010).

De Jong (1991) has further shown that the limiting expressions for the innovations, the 
one- step- ahead prediction of the state vector and the corresponding covariance matrices 
are

 nt 5 n*t 2 VtS21
t21st21, Ft 5 F*t 1 VtS21

t21Vrt ,

 a|t 0 t21 5 a|*
t 0 t21 2 At 0 t21S21

t21st21, Pt 0 t21 5 Pt |t21* 1 At 0 t21S21
t21Art |t21. (15.17)

De Jong and Chu- Chun- Lin (1994) show that the additional recursions (15.12), referring 
to initial conditions, can be collapsed after a suitable number of updates (equal to the 
rank of W0).

4.3 Discussion

The augmented state space model (15.3) can be represented as a linear regression model 
y 5 Xb 1 u for a suitable choice of the matrix X. Under the Gaussian assumption 
y , N(Xb,g u), the MLE of b is the GLS estimator

 b̂ 5 (XrS21

u
X)21XrS21

u y.

Consider the LDL decomposition (see, for instance, Golub and Van Loan, 1996) of 
the matrix Su, Su 5 C*F*C*r, where C* has the same structure as (15.10). The KF(0) 
applied to y yields v* 5 C*21y. When applied to each of the deterministic regressors 
making up the columns of the X matrix, it gives V 5 C*21X. The GLS estimate of b is 
thus obtained from the augmented KF as follows:

 b̂ 5 (XrC*21rF*21C*21X)21XrC*21rF*21C*21y

 5 (VrF*21V)21VrF*21v*

 5 (StVtF*21
t Vrl )21StVtF*21

t v*l .

The restricted or marginal log- likelihood estimator of q is the maximizer of the mar-
ginal likelihood defined by Patterson and Thompson (1971) and Harville (1977):

 ,R ( ,q s2) 5 ,b(q,s2) 2
1
2 [ln 0XrS21

u X 0 2 ln 0XrX 0 ]
5 2

1
2{ln 0Su

0 1 ln 0XrS21
u X 0 2 ln 0XrX 0 1 yrS21

u y 2 yrS21
u X(XrS21

u X)21XrS21
u y}.

Simple algebra shows that ,R (q,s2) 5 ,`
(q,s2) 1 0.5ln 0XrX 0 . Thus the marginal MLE 

is obtained from the assumption that the vector b is a diffuse random vector, that is it has 
an improper distribution with a mean of zero and an arbitrarily large variance matrix.
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The restricted likelihood is the likelihood of a non- invertible linear transformation 
of the data, (I 2 QX)y, QX 5 X(XrS21

y X)21XrS21
y , which eliminates the dependence on 

b. The maximizer of ,R (q,s2) is preferable to the profile likelihood estimator when n is 
small and the variance of the random signal is small compared to that of the noise.

4.4 Missing Values and Sequential Processing

In univariate models missing values are handled by skipping the KF updating opera-
tions: if yi is missing at time i, ni and Fi cannot be computed and a|i11 0 i21 5 Tia

|
i 0 i21, 

Pi11 0 i21 5 TiPi 0 i21Tr 1 HiHri  are the moments of the two- step- ahead predictive 
distribution.

For multivariate models, when yi is only partially missing, sequential processing must 
be used. This technique, illustrated by Anderson and Moore (1979) and further devel-
oped by Koopman and Durbin (2000) for non- stationary models, provides a very flexible 
and convenient device for filtering and smoothing and for handling missing values. Our 
treatment is prevalently based on Koopman and Durbin (2000). However, for the treat-
ment of regression effects and initial conditions we adopt the augmentation approach by 
de Jong (1991).

Assume, for notation simplicity, a time invariant model with HGr 5 0 (uncorrelated 
measurement and transition disturbances) and GGr 5 diag{g2

i , i 5 1, . . . , N}, so that the 
measurements yt, i are conditionally independent, given at. The latter assumption can be 
relaxed: a possibility is to include Get in the state vector, and set g2

i 5 0,4i; alternatively, 
we can transform the measurement equation so as to achieve that the measurement dis-
turbances are fully idiosyncratic.

The multivariate vectors yt, t 5 1,. . ., n, where some elements can be missing, are stacked 
one on top of the other to yield a univariate time series {yt, i, i 5 1, . . ., N, t 5 1, . . ., n}, 
whose elements are processed sequentially. The state space model for the univariate time 
series {yt, i} is constructed as follows.

The new measurement equation for the ith element of the vector yt is:

 yt, i 5 zriat, i 1 xrt, ib 1 gie*t, i,   t 5 1,. . ., n,  i 5 1,. . .,N,  e*t, i , NID(0,s2)  (15.18)

where zri  and xrt, i denote the ith rows of Z and Xt, respectively. Notice that (15.18) has two 
indices: the time index runs first and it is kept fixed as series index runs.

The transition equation varies with the two indices. For a fixed time index, the transi-
tion equation is the identity at, i 5 at, i21, for i 5 2, . . ., N, whereas for i 5 1,

 at, 1 5 Tat21, N 1 Wb 1 Het,1

The state space form is completed by the initial state vector which is 
a1,1 5 a1,1 1 W0b 1 H0e1,1, where Var(e1,1) 5 Var(et,1) 5 s2I.

The augmented Kalman filter, taking into account the presence of missing values, is 
given by the following definitions and recursive formulae.

● Set the initial values a1,1 5 0, A1,1 5 2W0, P1,1 5 H0Hr0, q1,1 5 0, s1,1 5 0, S1,1 5 0, 
d1,1 5 0,
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● for t 5 1, . . . , n, i 5 1, . . . , N 2 1,
– if yt, i

†  is available:

 

vt, i 5 yt, i 2 zriat, i, Vrt, i 5 xrt, i 2 zriAt, i,
ft, i 5 zri Pt, i zri 1 g2

i , Kt, i 5 Ptzri /ft, i

at, i11 5 at, i 1 Kt, ivt, i, At, i11 5 At, i 1 Kt, iVrt, i,
Pt, i11 5 Pt, i 2 Kt, iKrt, i ft,
qt, i11 5 qt, i 1 v2

t, i /ft, i, st, i11 5 st, i 1 Vt, ivt, i /ft, i

St, i11 5 St, i 1 Vt, iVrt, i/ft, i dt, i11 5 dt, i 1 lnft,i

cn 5 cn 1 1

 (15.19)

– Here, cn counts the number of observations.
– Else, if yt, i is missing:

 

at, i11 5 at, i,     At, i11 5 At, i,      
Pt, i11 5 Pt, i,
qt, i11 5 qt, i,   st, i11 5 st, i,   St, i11 5 St, i,   dt, i11 5 dt, i.

 (15.20)

● For i 5 N, compute:

 

at11,1 5 Tat, N, At11,1 5 W 1 TAt, N,
Pt11,1 5 TPt, NTr 1 HHr,
qt11,1 5 qt, N,   st11,1 5 st, N, St11,1 5 St, N,   dt11,1 5 dt, N.

 15.21)

 Under the fixed effects model maximizing the likelihood with respect to b and s2 
yields:

 b̂ 5 S21
n11,1sn11,1, Var(b̂) 5 S21

n11,1,   ŝ2 5
qn11,1 2 srn11,1S21

n11,1sn11,1

cn
. (15.22)

The profile likelihood is ,b, s2 5 20.5[dn11,1 1 cn(lnŝ2 1 ln(2p) 1 1)].
When b is diffuse, the maximum likelihood estimate of the scale parameter is

 ŝ2 5
qn11,1 2 srn11,1S21

n11,1sn11,1

cn 2 k
,

and the diffuse profile likelihood is:

 ,` 5 20.5[dn11,1 1 (cn 2 k)(ln ŝ2 1 ln(2p) 1 1) 1 ln 0Sn11,1 0 ]. (15.23)

This treatment is useful for handling estimation with mixed frequency data. Also, 
temporal aggregation can be converted into a systematic sampling problem, see 
Harvey and Chung (2000), and handled by sequential processing; see Frale et al. 
(2011).
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4.5 Linear Constraints

Suppose that the vector at is subject to c linear binding constraints Ctat 5 ct, with Ct 
and ct fixed and known. An example is a Cobb–Douglas production function with time 
varying elasticities, but constant returns to scale in every time period. See Doran (1992) 
for further details.

These constraints are handled by augmenting the measurement equation with further 
c observations:

 cyt

ct
d 5 cZt

Ct
d at 1 cGt

0
d et.

Non- binding constraints are easily accommodated.

4.6 A Simulated Example

We simulated n 5 100 observations from a local level model with signal to noise ratio 
q 5 0.01. Subsequently, 10 observations (for t 5 60–69) were deleted, and the parameter 
0.5lnq estimated by profile and diffuse MLE. Figure 15.1 displays the simulated series 
and true level (left), and the profile and diffuse likelihood (right).

The maximizer of the diffuse likelihood is higher and closer to the true value, which 
amounts to −2.3. This illustrates that the diffuse likelihood in small samples provides a 
more accurate estimate of the signal to noise ratio when the latter is close to the bound-
ary of the parameter space.

0 20 40 60

Simulated series

80 100
–1

0

1

2

3

4

5

–5 –4 –3

Profile and Diffuse Lik 0.5 ln q

–2 –1
133.2

133.6

134

134.4

134.8

135.2

Series
Level

Diffuse
Profile

Figure 15.1  Simulated series from a local level model with q 5 0.1 (0.5 ln q 5 −2.3) 
and underlying level (left): plot of the profile and diffuse likelihood of the 
parameter 0.5 ln q
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5 THE EM ALGORITHM

Maximum likelihood estimation of the standard time invariant state space 
model  can  be  carried out by the EM algorithm (see Shumway and Stoffer, 
1982, and Cappé et al., 2005). In the sequel we will assume without loss of generality 
s2 5 1.

Let y 5 [yr1, . . . , yn ]r, a 5 [ar1, . . . ,arn ]r. The log- posterior of the states is 
ln g(a 0y;q) 5 ln g(y,a;q) 2 ln g(y;q), where the first term on the right- hand side is the 
joint probability density function of the observations and the states, also known as 
the complete data likelihood, and the subtrahend is the likelihood, ,(q) 5 ln g(y;q), of 
the observed data.

The complete data log- likelihood can be evaluated as follows: 
ln g(y,a;q) 5 ln g(y 0a;q) 1 ln g(a;q), where ln g(y 0a;q) 5 g n

t51ln g(yt 0at), and 
ln g(a;q) 5 g n

t51ln g(at11 0at;q) 1 ln g(a1;q). Thus, from (15.1)–(15.2),

 ln g(y,a;q) 5 2
1
2 [n ln 0GGr 0 1 tr{(GGr)21g n

t51 (yt 2 Zat) (yt 2 Zat)r}]

 2
1
2 n ln 0HHr 0 1 tr{(HHr)21g n

t52 (at11 2 Tat) (at11 2 Tat)r}]

 2
1
2{ln 0P1 00 0 1 tr{P21

1 00 a1ar1}]

where P0 satisfies the matrix equation P1 00 5 TP1 00Tr 1 HHr and we take, with little loss 
in generality, |a1 00 5 0.

Given an initial parameter value, q*, the EM algorithm iteratively maximizes, with 
respect to q, the intermediate quantity (Dempster et al., 1977):

 Q(q;q*) 5 Eq* [ln g(y,a;q) ] 5 3 ln g(y,a;q)g(a 0y;q*)da,

which is interpreted as the expectation of the complete data log- likelihood with respect 
to g(a 0y;q*), which is the conditional probability density function of the unobservable 
states, given the observations, evaluated using q*. Now,

 Q(q;q*) 5 2
1
2 [n ln 0GGr 0 1 tr{(GGr)21g n

t51 [(yt 2 Za|t 0n) (yt 2 Za|t 0n)r 1 ZPt 0nZr ]}]

 2
1
2 [n ln 0HHr 0 1 tr{(HHr)21 (Sa 2 Sa, a21Tr 2 TSra,a21 1 TSa21Tr)}]

 2
1
2 [ln 0P0 0 1 tr{P21

0 (a|0 0na|r0 0n 1 P0 0n)}]

where a|t 0n 5 E(at 0y;q( j)) , Pt 0n 5 Var(at 0y;q( j)) , and

 Sa 5 can

t52

(Pt11 0n 1 at11|n
| art11|n

| ) d ,
 Sa21 5 can

t52
aPt 0n 1at 0n| a|rt 0n) d ,Sa, a21 5 can

t52

(Pt11,t 0n 1at11 0n| a|rt 0n) d .
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These quantities are evaluated with the support of the Kalman filter and smoother (KFS, 
see below), adapted to the state space model (15.1)–(15.2) with parameter values q*. 
Also, Pt11, t 0n 5 Cov(at11,at 0y;q*)  is computed using the output of the KFS recursions, 
as will be detailed below.

Dempster et al. (1977) show that the parameter estimates maximizing the log- 
likelihood ,(q), can be obtained by a sequence of iterations, each consisting of an expec-
tation step (E- step) and a maximization step (M- step), that aim at locating a stationary 
point of Q(q;q*). At iteration j, given the estimate q( j), the E- step deals with the evalua-
tion of Q(q;q( j)); this is carried out with the support of the KFS applied to the state space 
representation (15.1)–(15.2) with hyperparameters q( j).

The M- step amounts to choosing a new value q( j11), so as to maximize with respect 
to q the criterion Q(q;q( j)) , that is, Q(q( j11);q( j)) $ Q(q( j);q( j)). The maximization is in 
closed form, if we assume that P0 is an independent unrestricted parameter. Actually, the 
latter depends on the matrices T and HHr, but we will ignore this fact, as is usually done. 
For the measurement matrix the M- step consists of maximizing Q(q;q( j)) with respect to 
Z, which gives

 Ẑ ( j11) 5 aan

t51
yta
|rt 0nbS21

a .

The (j 1 1) update of the matrix GGr is given by

 GGr( j11) 5 diag e 1
na

n

t51

[ytyrt 2 Ẑ( j11)a|t 0nyrt ]}

Further, we have:

 T̂( j11) 5 Sa, a21S
21
a21,    HHr( j11) 5

1
n

(Sf 2 T̂( j11)
Sra, a21).

5.1 Smoothing Algorithm

The smoothed estimates a|t 0n 5 E(at 0y;q), and their covariance matrix 
Pt 0n 5 E[ (at 2 at |n

| ) (at 2 at |n
| )r 0y;q ], are computed by the following backwards recur-

sive formulae, given by Bryson and Ho (1969) and de Jong (1989), starting at t 5 n, with 
initial values rn 5 0, Rn 5 0 and Nn 5 0: for t 5 n 2 1,. . . ,1,

 rt21 5 Lrtrt 1 ZrtF21
t vt, Mt21 5 LrtMtLt 1 ZrtF21

t Zt,

 a|t 0n 5 a|t 0 t21 1 Pt 0 t21rt21, Pt 0n 5 Pt 0 t21 2 Pt 0 t21Mt21Pt 0 t21. (15.24)

where Lt 5 Tt 2 KtZr.
Finally, it can be shown that Pt, t21 0n 5 Cov(at,at21 0y) 5 TtPt21 0n 2

HtHrtMt21Lt21Pt21 0 t22.

L

L
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6 NON- LINEAR AND NON- GAUSSIAN MODELS

A general state space model is such that the density of the observations is conditionally 
independent, given the states, that is

 p(y1,. . . , yn 0a1, . . . ,an;q) 5 q
n

t51
p(yt 0at;q), (15.25)

and the transition density has the Markovian structure,

 p(a0,a1, . . .,an 0q) 5 p(a0 0q)q
n21

t50
p(at11 0at;q). (15.26)

The measurement and the transition density belong to a given family. The linear 
Gaussian state space model (15.1)–(15.2) arises when p(yt 0at;q) , N(Ztat,s2GtGrt) and 
p(at11 0at;q) , N(Ttat,s2HtHrt).

An important special case is the class of generalized linear state space models, which 
are such that the states are Gaussian and the transition model retains its linearity, 
whereas the observation density belongs to the exponential family. Models for time 
series observations originating from the exponential family, such as count data with 
Poisson, binomial, negative binomial and multinomial distributions, and continuous 
data with skewed distributions such as the exponential and gamma have been considered 
by West and Harrison (1997), Fahrmeir and Tutz (1994) and Durbin and Koopman 
(2012), among others. In particular, the latter perform MLE by importance sampling; 
see section 6.2.

Models for which some or all of the state have discrete support (multinomial) are 
often referred to as Markov switching models; usually, conditionally on those states, 
the model retains a Gaussian and linear structure. See Cappé et al. (2005) and Kim and 
Nelson (1999) for macroeconomic applications.

In a more general framework, the predictive densities required to form the likeli-
hood via the prediction error decomposition need not be available in closed form 
and their evaluation calls for Monte Carlo or deterministic integration methods. 
Likelihood inference is straightforward only for a class of models with a single 
source of  disturbance, known as observation driven models; see Ord et al. (1997) and 
section 6.5.

6.1 Extended Kalman Filter

A non- linear time series model is such that the observations are functionally related in 
a non- linear way to the states, and/or the states are subject to a non- linear transition 
function. Non- linear state space representations typically arise in the context of DSGE 
models. Assume that the state space model is formulated as

 yt 5 Zt(at) 1 Gt(at)et

 at11 5 Tt(at) 1 Ht(at)et,    a1 , N(a|1 00, P1 00), (15.27)

where Zt( # ) and Tt( # ) are known smooth and differentiable functions.
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Let at denote a representative value of at. Then, by Taylor series expansion, the model 
can be linearized around the trajectory {at, t 5 1,. . . , n}, giving,

 yt 5 Z|tat 1 ct 1 Gtet,

 at11 5 T|tat 1 dt 1 Htet,   a1 , N(a|1 00,P1 00), (15.28)

where

 Z|t 5
0Zt(at)
0at

0 at 5at
, ct 5 Zt(at) 2 Z|tat,Gt 5 Gt(at) ,

and

 T|t 5
0Tt(at)
0at

0at 5at
, dt 5 Tt(at) 2 T|tat, Ht 5 Ht(at) .

The extended Kalman filter results from applying the KF to the linearized model. The 
latter depends on at and we stress this dependence by writing KF(at). The likelihood of 
the linearized model is then evaluated by KF(at), and can be maximized with respect 
to the unknown parameters. See Jazwinski (1970) and Anderson and Moore (1979, 
Chapter 8).

The issue is the choice of the value at around which the linearization is taken. One 
possibility is to choose at 5 at 0 t21, where the latter is delivered recursively on line as the 
observations are processed in (15.5). A more accurate solution is to use at 5 at 0 t21 for the 
linearization of the measurement equation and at 5 at 0 t for that of the transition equa-
tion, using the prediction- updating variant of the filter of section 3.2.

Assuming, for simplicity Gt(at) 5 Gt, Ht(a) 5 Ht, and et , NID(0,s2I) , the lineari-
zation can be performed using the iterated extended KF (Jazwinski, 1970, Chapter 8), 
which determines the trajectory {at} as the maximizer of the posterior kernel:

 a
t

(yt 2 Zt(at))r (GtGr)21
t (yt 2 Zt(at)) 1 a

t
(at11 2 Tt(at))r (HtHr)21

t (at11 2 Tt(at))

with respect to {at, t 5 1,. . . , n}. This is referred to as posterior mode estimation, as it 
locates the posterior mode of a given y, and is carried out iteratively by the following 
algorithm:

1. Start with trial trajectory {at};
2. Linearize the model around it;
3. Run the Kalman filter and smoothing algorithm (15.24) to obtain a new trajectory 

at 5 at 0n;
4. Iterate steps 2–3 until convergence.

Rather than approximating a non- linear function, the unscented KF (Julier and 
Uhlmann, 1996, 1997), is based on an approximation of the distribution of at 0Yt based 
on a deterministic sample of representative sigma points, characterized by the same 
mean and covariance as the true distribution of at 0Yt. When these points are propagated 
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using the true non- linear measurement and transition equations, the mean and covari-
ance of the predictive distributions at11 0Yt and yt11 0Yt can be approximated accurately 
(up to the second order) by the weighted average of the transformation of the chosen 
sigma points.

6.2 Likelihood Evaluation via Importance Sampling

Let p(y)  denote the joint density of the n observations (as a function of q, omitted from 
the notation), as implied by the original non- Gaussian and non- linear model. Let g(y)  
be the likelihood of the associated linearized model. See Durbin and Koopman (2012) 
for the linearization of exponential family models, non- Gaussian observation densities 
such as Student’s t, as well as non- Gaussian state disturbances; for functionally non- 
linear models see above.

The estimation of the likelihood via importance sampling is based on the following 
identity:

 p(y) 5 3p(y,a)da 5 g(y)3p(y,a)
g(y,a) g(a 0y)da 5 g(y)Eg c p(y,a)

g(y,a) d . (15.29)

The expectation, taken with respect to the conditional Gaussian density g(a 0y), can be 
estimated by Monte Carlo simulation using importance sampling: in particular, after 
having linearized the model by posterior mode estimation, M samples a(m), m 5 1, . . . , M, 
are drawn from g(a 0y), the importance sampling weights

 wm 5
p(y,a(m))
g(y,a(m)) 5

p(y 0a(m))p(a(m))
g(y 0a(m))g(a(m)) ,

are computed and the above expectation is estimated by the average 1
Mgmwm. Sampling 

from g(a 0y) is carried out by the simulation smoother illustrated in the next subsection. 
The proposal distribution is multivariate normal with mean equal to the posterior mode 
a|t 0n. The curvature around the mode can also be matched in special cases, in the deriva-
tion of the Gaussian linear auxiliary model. See Shephard and Pitt (1997), Durbin and 
Koopman (2012) and Richard and Zhang (2007) for further details.

6.3 The Simulation Smoother

The simulation smoother is an algorithm which draws samples from the conditional 
distribution of the states, or the disturbances, given the observations and the hyper-
parameters. We focus on the simulation smoother proposed by Durbin and Koopman 
(2002).

Let ht denote a random vector (for example a selection of states or disturbances) and 
let h| 5 E(h 0y), where h is the stack of the vectors ht; h| is computed by the Kalman 
filter and smoother. We can write h 5 h| 1 e, where e 5 h 2 h| is the smoothing error, 
with conditional distribution e 0y , N(0, V), such that the covariance matrix V does not 
depend on the observations, and thus does not vary across the simulations (the diagonal 
blocks are computed by the smoothing algorithm).
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A sample h* from h 0y is constructed as follows:

● Draw (h1, y1) , g(h, y).
 As p(h, y) 5 g(h)g(y 0h), this is achieved by first drawing h1 , g(h) from an 

unconditional Gaussian distribution, and constructing the pseudo observations 
y1 recursively from a1

t11 5 Tta
1
t 1 Hte

1
t , y1

t 5 Zta
1
t 1 Gte

1
t , t 5 1, 2, . . . , n, where 

the initial draw is a1
1 , N(a|1 00, P1 00), so that y1 , g(y 0h).

● The Kalman filter and smoother computed on the simulated observations y1
t  will 

produce h|1 and h1 2 h|1 will be the required draw from e 0y.

Hence, h| 1 h1 2 h|1 is the required sample from h 0y , N(h|, V).

6.4 Sequential Monte Carlo Methods

For a general state space model, the one- step- ahead predictive densities of the states and 
the observations, and the filtering density are respectively:

 p(at11 0Yt) 5 3p(at11 0at)p(at 0Yt)dat 5 Eat 0Yt
[p(at11 0at) ]

 p(yt11 0Yt) 5 3p(yt11 0at11)p(at11 0Yt)dat11 5 Eat 1 1 0Yt
[p(yt11 0at11)]

 p(at11 0Yt11) 5 p(at11 0Yt)p(yt11 0at11) /p(yt11 0Yt) (15.30)

Sequential Monte Carlo methods provide algorithms, known as particle filters, for recur-
sive, or on- line, estimation of the predictive and filtering densities in (15.30). They deal 
with the estimation of the above expectations as averages over Monte Carlo samples 
from the reference density, exploiting the fact that p(at11 0at) and p(yt11 0Yt)  are easy to 
evaluate, as they depend solely on the model prior specification.

Assume that at any time t an IID sample of size M from the filtering density p(at 0Yt) 
is available, with each draw representing a ‘particle’, a(i)

l , i 5 1,. . . , M, so that the true 
density is approximated by the empirical density function:

 p̂(at [ A 0Yt) 5
1
Ma

M

i51
I(at

(i) [ A), (15.31)

where I( # )  is the indicator function.
The Monte Carlo approximation to the state and measurement predic-

tive densities is obtained by generating a(i)
t11 0 t , p(at11 0a(i)

t ) , i 5 1,. . . , M and 
y(i)

t11 0 t , p(yt11 0a(i)
t11) , i 5 1,. . . , M.

The crucial issue is to obtain a new particle characterization of the filtering 
density p(at11 0Yt11), avoiding particle degeneracy, that is a non- representative sample 
of particles. To iterate the process it is necessary to generate new particles from 
p(at11 0Yt11) with probability mass equal to 1/M, so that the approximation to the 
filtering density will have the same form as (15.31), and the sequential simulation 
process can progress. Direct application of the last row in (15.30) suggests weighted 
resampling (Rubin, 1987) of the particles a(i)

t11 0 t , p(at11 0a(i)
t ), with importance weights 
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wi 5 p(yt11 0a(i)
t11 0 t) /gM

j51 p(yt11 0a(i)
t11 0 t). The resampling step eliminates particles with low 

importance weights and propagates those with high wi’s. This basic particle filter is 
known as the bootstrap (or Sampling/Importance Resampling, SIR) filter; see Gordon 
et al. (1993) and Kitagawa (1996).

A serious limitation is that the particles, a(i)
t11 0 t, originate from the prior density and 

are ‘blind’ to the information carried by yt11; this may deplete the representativeness 
of the particles when the prior is at conflict with the likelihood, p(yt11 0a(i)

t11 0 t), resulting 
in a highly uneven distribution of the weights wi. A variety of sampling schemes have 
been proposed to overcome this conflict, such as the auxiliary particle filter; see Pitt and 
Shephard (1999) and Doucet et al. (2001).

More generally, in a sequential setting, we aim at simulating a(i)
t11 from the target 

distribution:

 p(at11 0at, Yt11) 5
p(at11 0at)p(yt11 0at11)

p(yt11 0at)
,

where, typically, only the numerator is available in closed form. Let g(at11 0at, Yt11) be an 
importance density, available for sampling a(i)

t11 , g(at11 0at
(i), Yt11) and let

 wi ~
p(yl11 0a(i)

t11) p(a(i)
t11 0a(i)

l )
g(at11 0a(i)

t , Yt11)
;

M particles are resampled with probabilities proportional to wi. Notice that SIR arises 
as a special case with proposals g(at11 0at, Yt11) 5 p(at11 0at) that ignore yt11. Van der 
Merwe et al. (2000) used the unscented transformation of Julier and Uhlmann (1997) to 
generate a proposal density. Amisano and Tristani (2010) obtain the proposal density 
by a local linearization of the observation and transition density. Winschel and Krätzig 
(2010) proposed a particle filter that obtains the first two moments of the predictive 
distributions in (15.30) by Smolyak Gaussian quadrature, using a normal proposal 
g(at11 0at, yt11), with mean and variance resulting from a standard updating Kalman 
filter step (see section 3.2).

Essential and comprehensive references for the literature on sequential MC are Doucet 
et al. (2001) and Cappé et al. (2005). For macroeconomic applications see Fernández- 
Villaverde and Rubio Ramírez (2007) and the recent survey by Creal (2012). Poyiadjis et 
al. (2011) propose sequential MC methods for approximating the score and the informa-
tion matrix and use it for recursive and batch parameter estimation of non- linear state 
space models.

At each update of the particle filter, the contribution to the likelihood of each 
observation can be thus estimated. However, maximum likelihood estimation by 
quasi- Newton method is infeasible as the likelihood is not a continuous function of the 
parameters. Grid search approaches are only feasible when the size of the parameter 
space is small. A pragmatic solution consists of adding the parameters in the state 
vector and assigning a random walk evolution with fixed disturbance variance, as in 
Kitagawa (1998). In the iterated filtering approach proposed by Ionides et al. (2006), 
generalized in Ionides et al. (2011), the evolution variance is allowed to tend determin-
istically to zero.
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6.5 Observation Driven Score Models

Observation driven models based on the score of the conditional likelihood are a class of 
models independently developed by Harvey (2013) and Creal et al. (2011a, 2011b).

The model specification starts with the conditional probability distribution of yt, for 
t 5 1,. . ., n,

 p(yt 0lt 0 t21, Yt21;q) ,

where lt 0 t21 is a set of time varying parameters that are fixed at time t 2 1, Yt21 is the 
information set up to time t 2 1, and q is a vector of static parameters that enter in 
the specification of the probability distribution of yt and in the updating mechanism 
for lt. The defining feature of these models is that the dynamics that govern the 
evolution of the time varying parameters are driven by the score of the conditional 
distribution:

 lt11 0 t 5 f(lt 0 t21,lt21 0 t22,. . ., st, st21,. . . ,q)

where

 st ~
0,(lt 0 t21)
0lt 0 t21

and ,(lt 0 t21) is the log- likelihood function of lt 0 t21. Given that lt is updated through the 
function f, maximum likelihood estimation eventually concerns the parameter vector q. 
The proportionality constant linking the score function to st is a matter of choice and 
may depend on q and other features of the distribution, as the following examples show.

The basic GAS(p, q) models (Creal et al., 2011a, 2011b) consists in the specification of 
the conditional observation density

 p(yt 0lt 0 t21, Yt21,q)

along with the generalized autoregressive updating mechanism

 lt11 0 t 5 d 1 a
p

i51
Ai(q)st2 i11 1 a

q

j51
Bi(q)lt2 i11

where d is a vector of constants and Ai(q)  and Bi(q) are coefficient matrices and where st 
is defined as the standardized score vector, that is the score pre- multiplied by the inverse 
Fisher information matrix I21

t 0 t21,

 st 5 I

21
t 0 t21

0,(lt 0 t21)
0lt 0 t21

.

The recursive equation for lt11 0 t can be interpreted as a Gauss–Newton algorithm for 
estimating lt11 0 t through time.
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The first order Beta- t- EGARCH model (Harvey and Chakravarty, 2008) is specified 
as follows,

 p(yt 0lt 0 t21, Yt21,q) , tn (0, elt 0 t 2 1)

 lt11 0 t 5 d 1 �lt 0 t21 1 kst

where

 st 5
(n 1 1)y2

t

nelt 0 t 2 1 1 y2
t

2 1

is the score of the conditional density and q 5 (d,�,k,n). It follows from the properties 
of the Student- t distribution that the random variable

 bt 5
st 1 1
n 1 1

5
(st 1 1) / (nelt 0 t 2 1)
(n 1 1) / (nelt 0 t 2 1)

is distributed like a Beta (1
2,

v
2). Based on this property of the score, it is possible to 

develop full asymptotic theory for the maximum likelihood estimator of q (Harvey, 
2013). In practice, having fixed an initial condition such as, for 0� 0 , 1, l1 00 5

d
1 2 �, 

likelihood optimization may be carried out with a Fisher scoring or Newton–Raphson 
algorithm.

7 CONCLUSIONS

The focus of this chapter was on likelihood inference for time series models that can be 
represented in state space. Although we have not touched upon the vast area of Bayesian 
inference, the state space methods presented in this chapter are a key ingredient in 
designing and implementing Markov chain Monte Carlo sampling schemes.
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16 Bayesian methods*
Luc Bauwens and Dimitris Korobilis

1 INTRODUCTION

The scope of this chapter is to introduce applied macroeconomists to the world of 
Bayesian estimation methods. Why would an empirical macroeconomist invest in learn-
ing Bayesian estimation after having invested hours learning estimation methods like 
maximum likelihood and generalized method of moments (see previous chapters)?

Nowadays, with the advancement of computing power and the establishment of new 
simulation techniques, it is probably much easier to answer this question compared to, 
say, thirty years ago. First, Bayesian methods offer a wide range of estimation tools 
for macroeconomic models, ranging from simple time series models to structural macr-
oeconometric models. When optimizing the likelihood function becomes a daunting task 
(due to its high dimensionality or multimodality, or due to underidentification of specific 
model parameters), Bayesian methods can prove more robust since they do not rely on 
using complex optimization techniques that might get stuck in local optima. Second, 
Bayesian methods allow the researcher to incorporate prior beliefs in her model. We 
argue in this chapter that such beliefs are not so difficult to formalize as one may fear 
a priori, and that they may help to get reasonable estimates and forecasts, for example 
through soft shrinkage constraints.

The purpose of this chapter is to provide the reader with a soft introduction to the 
Bayesian world. Exhaustively presenting the advances of Bayesian methods in macro-
economics is beyond the scope of this chapter. The interested reader should consult 
Bauwens et al. (1999), Koop (2003), Lancaster (2004) and Geweke (2005), in order 
to delve deeper into Bayesian methods in econometrics. We start by introducing the 
basic principles of Bayesian inference and the numerical tools that are necessary for its 
implementation (section 2). We apply all this in section 3 to the dynamic linear regres-
sion model. The last section contains a short guide to the Bayesian literature for more 
sophisticated models.

2 BASICS OF BAYESIAN INFERENCE

2.1 Prior, Posterior and Likelihood

At the core of the Bayesian paradigm lies ‘Bayes theorem’. This is our starting point for 
statistical inference. Assume two random events A and B, and a probability measure P 
such that P(B) 2 0, then Bayes Theorem states that

 P(A 0B) 5
P(B 0A)P(A)

P(B) .
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It holds, by definition of conditional probability, that P(A 0B) 5 P(AdB) /P(B)  and sim-
ilarly P(B 0A) 5 P(AdB) /P(A) , which gives P(A 0B)P(B)  5 P(AdB) 5 P(B 0A)P(A) , 
and by rearranging terms we end up with Bayes theorem. However, this exposition from 
probability theory may not be interesting to the applied econometrician who wants to 
estimate a parametric model which could potentially be connected to economic theory. 
Subsequently assume that the random event B is a stochastic process y from which 
our observed data (for instance US inflation) occur, and the random event A is our 
parameters q which take values in a space Q. An econometric model might have other 
assumptions apart from observed data and model parameters, but we can ignore them at 
this level of generality. The parameters q might come from a regression model, a vector 
autoregressive (VAR) model, a dynamic stochastic general equilibrium (DSGE) model, 
or another type of model. We can write Bayes theorem in terms of y and q in the follow-
ing form:

 p(q 0y) 5
p(y 0q)p(q)

p(y) . (16.1)

where p denotes generically a probability density function. The density p(q)  is repre-
senting our prior beliefs about the values of our parameters. The conditional density of 
the data given the parameters, p(y 0q) , is the familiar likelihood function L(q;y)  (once 
y is ‘realized’ into observations). The density p(y)  is the marginal ‘likelihood’ or prior 
predictive density of the data. It is the density p(y 0q)  marginalized with respect to the 
parameters q, that is

 p(y) 53
 Q

p(y 0q) p(q) dq, when  q  is  continuous (16.2)

 p(y) 5a
Q

p(y 0q)  p(q) , when  q  is  discrete (16.3)

The resulting conditional density p(q 0y)  in equation (16.1) is called the posterior of the 
parameters: it is the density of the parameters after observing the data (hence conditional 
on y). Note that p(y)  does not depend on q since it is integrated out from this density. 
Subsequently the formula of the posterior can be written as

 p(q 0y) ~ p(y 0q)p(q)  (16.4)

or

 p(q 0y) ~ L(q;y)p(q) , (16.5)

where the symbol ~  means ‘proportional to’ and is used extensively to avoid writing 
uninteresting constants in many formulae. This formulation makes it clear that the pos-
terior density of the parameters, p(q 0y) , updates our prior beliefs (before seeing the data) 
with the data information embedded in the likelihood function that measures the prob-
ability that our data come from the specified model.

Consequently, the Bayesian econometrician tries to average the likelihood with the 
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prior p(q) , whereas the frequentist tries to maximize the likelihood L(q;y) ~ p(y 0q) . 
The equation above has several implications. One of those is that we assumed that we 
can assign a probability density not only to our data, but also to our parameters q. That 
is, the parameters are considered as random variables, with a well defined probability 
density. Subsequently, for the Bayesian, a parameter q is not only identified by the likeli-
hood, but also by the prior distribution, something that has very important implications 
in possibly underidentified macroeconometric models, especially DSGE models.

Thus, what is common to Bayesian and frequentist econometricians is the need to 
define a model that is assumed to have generated the data, yielding a likelihood function. 
What differentiates them is that the Bayesian finds it convenient to treat the parameters 
as random variables, while the frequentist views the parameters as unknown fixed con-
stants. Notice that these viewpoints are not necessarily contradictory, since the Bayesian 
is just adding that unknown true constants may be the object of (subjective or objec-
tive) probability judgements, precisely because they are unknown. The frequentist then 
maximizes the likelihood (or another) function and reports point estimates and typically 
asymptotic standard errors. The Bayesian computes the posterior by integral calculus 
and reports posterior means as point estimates and posterior standard deviations as 
measures of uncertainty about these estimates.

The presence of a prior distribution is thus one of the main elements that differenti-
ate substantially frequentist from Bayesian analysis. At the same time, the prior is a 
useful tool for the modern macroeconomist in that it allows the incorporation of beliefs 
from economic theory, personal experience and opinions about the structure or the 
future of the economy coming from analysts in business, academia, or simply consum-
ers’ beliefs. Given that macroeconomic series at monthly or quarterly frequencies are 
short, thus making the likelihood not very informative (especially when trying to model 
the economy using many variables), the prior often plays a favourable role in produc-
ing reasonable results. Subsequently the prior should be seen as an ally for the applied 
macroeconomist, and not as one more trouble to solve during the process of statistical 
inference. In the next section, we discuss in detail the elaboration of priors for the param-
eters of regression models, and we give examples of informative priors that have been 
adopted by applied econometricians.

This explains why applied macroeconomics is one of the few fields in economics where 
the philosophical dispute about being subjective (as opposed to being objective) plays 
less of a significant role. Nevertheless, Bayesian analysis allows us to produce results that 
are comparable to maximizing the likelihood (objective analysis). For instance, it is cus-
tomary in Bayesian econometrics to use a non- informative prior on a parameter q when 
we have no prior information about this parameter. Suppose that this parameter is the 
mean of a normal density with possible values (support) on the space (2 ,̀1`)  and that 
since we have no information to restrict this support a priori,1 we use the uniform prior 
p(q) ~ c (an arbitrary constant), so that all values of q are a priori equally likely. This 
leads to the posterior being written as p(q 0y) ~ L(q;y) 3 c ~ L(q;y) , so that the poste-
rior is proportional to the likelihood function (up to a normalizing constant that does 
not involve q). Subsequently the mode of the posterior density is equal to the maximum 
likelihood estimate (MLE), and the posterior mean is close to the MLE if the likelihood 
is symmetric around its mode.

Finally we should note that another benefit of using Bayesian analysis is that the 
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computation of the posterior (see next subsection) usually does not require optimization 
techniques that can fail in complex models, when the likelihood function is multimodal 
or highly dimensional. Additionally, basing predictions (that are often essential for 
applied macroeconomists) on the predictive density of future observations means that 
uncertainty about the values of the parameters is accounted for. Let yf  denote future 
observations to be predicted, that is yf  occurs after our sample y that serves to compute 
p(q 0y) . Then the predictive density of yf  is obtained as

 p(yf 0y) 5 3p(yf 0y,q)p(q 0y)dq. (16.6)

The integrand in the previous formula shows that the density of future observations 
conditional on the past data and the parameters (that is the likelihood function of the 
potential future data) is weighted by the evidence obtained about the parameters from 
the past data. The integration means that this evidence is taken into account for all pos-
sible values of q, and not only at the MLE as in a frequentist analysis. Indeed, a natural 
frequentist point predictor of yf  is E(yf 0y, q̂) , where q̂ is the MLE, whereas a Bayesian 
point predictor is naturally taken to be E(yf 0y)  (or any other central measure like the 
median). Notice that E(yf 0y) 5 E [E(yf 0y,q)], implying that E(yf 0y, q̂)  is just one of the 
averaged values in the Bayesian formula.

2.2 Methods to Compute the Posterior

In essence all Bayesian computation techniques try to estimate the formula in (16.5). 
In the Bayesian context, ‘estimate’ means finding the normalizing constant of the 
posterior (which is nothing else but p(y) ), and, more importantly, whatever features 
of it are of interest. Such features typically include the expected value, the covari-
ance matrix, univariate marginal densities of q and their quantiles, and often also of 
functions of q, denoted by g(q) . In general the quantities we wish to compute can be 
expressed as

 E [g(q) 0y ] 53g(q)p(q 0y)dq, (16.7)

where it is understood that p(q 0y)  is a properly normalized density, that is ep(q 0y)dq 5 1. 
To be concrete, if g(q) 5 q, we get the expected value of q, if g(q) 5 qq r, we get the 
matrix of uncentred second moments, and from these two, we easily get the covariance 
matrix of q. If we are interested in the posterior probability that the ith element of q is in 
the interval (a, b) , we define g(q)  as the indicator function that is equal to 1 if qi [ (a, b)  
and to zero otherwise. Moreover, if g(q)  is taken to be p(yf 0y,q) , we get p(yf 0y), and if it 
is E(yf 0y,q) (which may be available analytically), we get E(yf 0y).

For a few (simple) econometric models (in particular the normal linear regression 
model), some choices of prior densities, and some simple functions g, there is no need 
to compute the integrals above by numerical methods, because they are known ana-
lytically. For example, if the posterior is a Normal density, we know all its moments, 
but if we are interested in a special function of q, we may not know the result.2 In this 
case, we need numerical methods to compute integrals as in (16.7). We also need these 
numerical integration techniques in most econometric models. This is due to the fact 

HASHIMZADE 9780857931016 CHS. 14-17 (M3110).indd   366HASHIMZADE 9780857931016 CHS. 14-17 (M3110).indd   366 01/07/2013   10:1401/07/2013   10:14



Bayesian methods   367

that their likelihood function is so complex that whatever the prior we choose and the 
functions g we are interested in, the integrals are not known analytically. In this kind of 
situation, the typical tool to compute integrals as in (16.7) is Monte Carlo simulation. 
The principle of this technique is to simulate on a computer a large sample of values of q 
that are distributed according to the posterior density p(q 0y) . Let us denote by {q(r)}R

r51 
a sample of size R of such values, called (random) draws or replicates (of the posterior). 
Then we can estimate consistently3 E [g(q) 0y ] (if it is finite) by the sample mean of the 
draws, that is

 
1
Na

R

r51
g(q(r)) S

p
E [g(q) 0y ] (16.8)

as R tends to infinity. We present next the most useful ways of generating draws of the 
posterior density of the parameters of econometric models.

2.2.1 Direct sampling
As mentioned above, in linear regression models under the normality assumption, it 
is possible to obtain the posterior analytically. Write the regression model for obser-
vation t as yt 5 brxt 1 et, where xt and b are vectors of k elements, et , N(0,s2)  and 
t 5 1, 2, . . . , T. In matrix form, this is written as y 5 Xb 1 e where X  is the matrix of 
T  observations on the k regressors, and we assume T . k. The likelihood function is 
then

 L(b,s2; y,X) ~ (s2)2T/2 exp c2 (y 2 Xb)r (y 2 Xb)
2s2 d . (16.9)

We use the non- informative prior p(b,s2 0) ~ 1/s2. This means that we consider each 
regression coefficient and the logarithm of s2 to be uniformly distributed on the real line.4 
For sure, such a prior is not a density, since it is not integrable (‘improper’). However the 
posterior is integrable (proper) as we explain below. The reader who feels uneasy about 
using an improper prior may be reassured by the following argument: instead of saying 
that a regression coefficient is uniformly distributed on (2`,1`) , we could decide that it 
should be uniformly distributed on the bounded interval (2B,1B) . By choosing B to be 
very large but finite, the prior is proper and the posterior will be the same as if we used 
the improper uniform prior. A way to choose B that ensures this equivalence is to choose 
B as the smallest value such that when the likelihood function is evaluated at b 56B, 
the computer returns zero (an underflow). It would be a waste of time to search for this 
value, so that using an improper uniform prior is a convenient shortcut.

By multiplication of the likelihood and the prior, we get the posterior

 p(b,s2 0y, X) ~ (s2)2(T12)/2 exp c2 (b 2 b̂)rX rX(b 2 b̂) 1 s2

2s2 d  (16.10)

where b̂ 5 (X rX)21X ry is the OLS estimator and s2 5 (y 2 X b̂)r (y 2 X b̂)  is the sum of 
squared OLS residuals. The equality of (y 2 Xb)r (y 2 Xb) and (b 2 b̂)rX rX(b 2 b̂) 1 s2 
can be checked by using the definitions of b̂ and s2 in the latter. To obtain the posterior 
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density of b alone, we must integrate the above expression with respect to s2. This yields 
a proper density if T . k, given by

 p(b 0y,X) ~ [ (b 2 b̂)rX rX(b 2 b̂) 1 s2 ]2
n 1 k

2 , (16.11)

where n 5 T 2 k is the degrees of freedom parameter. The posterior density of b is a 
multivariate t, with parameters b̂, X rX, s2 and n. To write it as a normalized density, 
we should multiply the expression in the above formula by some constants (see 
Bauwens et al., 1999, Appendix A, for a complete definition and properties). Using 
the properties of the t density, we can state that the posterior mean of b is b̂, and its 
posterior covariance matrix is s2 (X rX)21/ (T 2 k 2 2). Thus the posterior mean is the 
OLS estimator, and the posterior covariance differs only slightly from the covariance 
of the OLS estimator, which is equal to s2 (X rX)21/ (T 2 k) . For the reader who is not 
familiar with the multivariate t density, but who is familiar with the Normal density, 
the difference disappears as n tends to infinity. Thus if the sample size is large relative 
to the number of regressors, the posterior (16.11) is very well approximated by the 
N(b̂,s2 (X rX)21/ (T 2 k))  density.

This is an example of a model and prior which give numerical results that are quasi- 
identical from the frequentist and Bayesian perspectives. However, the interpretation 
of the results is different. The Bayesian says that given the observed unique sample that 
is available, the unknown parameter b has a posterior density centred on b̂, while the 
frequentist says that the (sampling) distribution of b̂ is centred on the (unknown) true 
value of b. Thus the frequentist refers to a hypothetically infinitely many times repeated 
experiment of sampling the data from the population model, whereas the Bayesian just 
refers to the single sample that has been observed.

Subsequently all we need to do to obtain features of the posterior density that are not 
known analytically is to generate independent draws of the t density with the parameters 
specified above. This can be done easily in any programming language using a random 
number generator from the t density (see Bauwens et al., 1999, Appendix B, for a gen-
erator). For example, if we are interested in generating the marginal posterior density of 
(b1 1 b2)/(1 2 b3) , we proceed as follows:

1. Generate R draws {b(r)}R
r51 of b from the t density with parameters b̂, X rX, s2 and n.

2. Compute (b(r)
1 1 b(r)

2 ) / (1 2 b(r)
3 )  for r 5 1, 2, . . .,R.

3. Use a kernel method to obtain an estimate of the posterior density.

We draw the reader’s attention to the fact that the posterior mean of (b1 1 b2) / (1 2 b3)  
does not exist, so that a point estimator of that quantity could be the median of its pos-
terior. The median is obtained by ordering the R draws of (b(r)

1 1 b(r)
2 ) / (1 2 b(r)

3 )  by 
increasing value and selecting the value ranked in position R/2 (if R is an even number).

2.2.2 Methods to simulate posteriors that are not tractable
There are cases where multiplying the prior with the likelihood gives a mathematical 
expression of the posterior density that does not belong to any known family of densities 
or is not easy to simulate by direct sampling. If this happens, we are unable to simulate 
directly samples {q(r)}R

r51 from the posterior of the parameters using known random 
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number generators. In these cases we need to rely on other simulation methods. One 
useful class of methods to do this is called ‘Markov chain Monte Carlo’ (MCMC). Two 
MCMC sampling methods, very much used, are the Metropolis–Hastings (MH) algo-
rithm and the Gibbs algorithm. The ‘Markov chain’ part of the name reveals that the 
samples generated by these methods have a ‘Markov property’, implying that the draws 
are not independent, contrary to the direct sampling method. To explain MCMC, we 
first define the Markov property.

A Markov chain is a stochastic process (that is a sequence of random variables) which 
has the Markov property, that is the probability of the next state of the stochastic process 
depends only the current state, and not on any other state in the distant past. Formally, 
consider a process {st}, t 5 1, 2, . . .,T. If the probability of moving from one state st to 
the next st11 satisfies P(st11 0st,st21, . . .,s1) 5 P(st11 0st) , the process satisfies the Markov 
property. If the variable st is continuous, the above property holds using densities (that 
is P is replaced by p). All you need to remember in order to understand MCMC is that 
we have a variable st, with initial state (or initial condition) s0, and transition density 
p(st11 0st)  which satisfies the Markov property.

Gibbs sampling In the rest of this section, we denote the posterior by p(q)  instead of 
p(q 0y) . The Gibbs sampler requires us to partition the parameter vector q (of k elements) 
into b sub- vectors (‘blocks’), with b # k, denoted by q[i], that is q 5 (q r[1]q r[2] . . .q r[b])r, such 
that for each block, the ‘full’ conditional density p(q[i] 0q2[i]) , where q2[i] denotes q without 
q[i], can be directly simulated. To generate a sample of size R of draws from p(q)  (after 
warming up the algorithm with R0 draws), the algorithm proceeds as follows:

1. Choose an initial value q(0)
2[1] that belongs to the parameter space.

2. Set r 5 1.
3. Draw successively

 q(r)
[1]  from p(q[1] 0q(r21)

2[1] )

 q(r)
[2]  from  p(q[2] 0q(r)

[1], q(r21)
[3] , . . .,q(r21)

[b] )

 (

q(r)
[i]   from  p(q[i] 0q(r)

[1],. . .,q(r)
[i21],q(r21)

[i11] , . . ., q(r21)
[b] )

 (

 q(r)
[b]  from  p(q[b] 0q(r)

2[b]) .

4. Set r 5 r 1 1 and go to step 3 unless r . R0 1 R.
5. Discard the first R0 values of q(r) 5(q(r)r[1] q(r)r[2] . . .q(r)r[b])r. Compute what you are inter-

ested in (estimates of posterior means, variances . . .) from the last R generated 
values.

In step 3, we sample successively from the full conditional posterior densities of each 
block. Each full conditional density is updated by the values of the previously generated 
blocks in the current iteration (r), while the blocks that have not yet been generated are 
set at the values of the previous iteration (r 2 1). This creates the dependence in the 
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sample (through the Markov property). Note that if there is only one block, the method 
boils down to direct sampling, which should be used whenever possible. The number of 
blocks should be chosen as small as possible but this choice is constrained by our ability 
to find full conditional densities that can be directly simulated. It may happen that for 
some blocks, we are not able to perform the direct simulation of the full conditional. 
We then resort to an indirect method to sample from the full conditional (a ‘Metropolis 
step’; see section 3.2.2 for an example) within the Gibbs sampler.

Note that we must warm up the algorithm with R0 draws that are discarded. The 
purpose of this is to get rid of the impact of the initial value q(0)

[1] and to let the algorithm 
converge to the target distribution. Convergence means that the sampled values of q are 
a valid sample from the target. The issue of convergence is important and too often over-
looked by applied researchers. Though it is often easy to state theoretical conditions for 
convergence,5 it is not possible to prove convergence practically (for a given run). There 
are convergence diagnostics that should always be used and reported (see for example 
Bauwens et al., 1999, Chapter 3, pp. 90–92 for details and references).

Metropolis–Hastings algorithm This is a useful algorithm when Gibbs sampling is not 
applicable, because there is no way to partition the parameter q into blocks whose full 
conditional densities are easy to simulate. The MH algorithms require elaborating a 
density that approximates the target (posterior) and is easy to simulate (for example a 
Normal, a fi nite mixture of Normals . . .). Parameter values are drawn from the approxi-
mating density (called candidate density) and subject to an acceptance- rejection test to 
decide if the drawn value (called candidate) is a draw of the target, in which case it is kept 
as a valid draw q(r). If the candidate is rejected, the previously accepted draw is accepted 
once again (that is q(r) 5 q(r21)). Thus there will be sequences of identical draws in the 
posterior sample, which directly indicates that the draws are dependent. If the approxi-
mating density is identical to the target, all draws are accepted and the method boils 
down to direct simulation of independent draws of the posterior. Thus, the approximat-
ing density should be designed to be as close as possible to the target, which is more easily 
said than done in a large dimension.

The candidate density may depend on the last accepted draw and is therefore denoted 
by q(q 0q(r21)) . The steps of the MH algorithm are:

1. Set r 5 1. Choose an initial value q(0) that belongs to the parameter space.
2. Draw q(cand) , q(q 0q(r21)) . Compute p 5 min{p (q(cand))

p (q(r 2 1))
q (q(r 2 1) 0q(cand))
q (q(cand) 0q(r 2 1)) ,1}.

3. Set q(r) 5 q(cand) with probability p, and set q(r) 5 q(r21) with probability 1 2 p.
4. Set r 5 r 1 1 and go to step 2 unless r . R0 1 R.
5. Identical to step 5 of the Gibbs algorithm.

Step 3 is implemented by drawing a random number U  from the Uniform (0,1)  
density, and if U , p, setting q(r) 5 q(cand), otherwise to q(r21). The ratio in the min of Step 
2 is called the MH ratio. It may be larger than 1, in which case the candidate is definitely 
accepted. Indeed it is the ratio of the posterior to candidate densities evaluated at the 
candidate draw, to the same ratio evaluated at the previous draw. If that ratio is larger 
than 1, the new candidate must be accepted. If it is smaller than 1, it is accepted only with 
probability p , 1.
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Some choices of proposal density are of interest. If q does not depend on q(r21), the 
algorithm is known as the independent MH algorithm. If q is symmetric in the sense that 
q(q(r21) 0q(cand)) 5 q(q(cand) 0q(r21))  the MH ratio is simplified. One way to let q depend on 
q(r21) is the random walk MH algorithm. This generates q(cand) as q(r21) 1 v where v is a 
draw from a distribution (for example Normal) centred on 0 and with a variance matrix 
to be selected not too small so as to allow the candidate draw to walk in the parameter 
space without staying too close to the previous draw.

3 LINEAR REGRESSION MODELS

Since choosing a prior is an important step in an application using Bayesian inference, 
and this step may look like a daunting task (which it is not), we provide in this section 
several useful approaches to do this in the context of the dynamic linear regression 
model. We also describe the corresponding algorithms to compute the posterior.

Consider a univariate time- series of interest yt (GDP, price inflation . . .) observed over 
the period t 5 1, . . .,T. The empirical macroeconomist usually assumes that yt depends 
on an intercept, some own lags, and current or past values of some predictor variables zt. 
Then a popular model for yt is the dynamic regression model of the form

 yt 5 k 1a
p

i51
fiyt2 i 1 a

q

j50
lrj zt2q 1 et (16.12)

with the usual assumption that et , N(0,s2) . This model can be cast in the 
standard regression form already introduced in section 2.2.1, yt 5 b rxt 1 et, 
where xt 5 (1, y rt21, . . .,y rt2p,z rt21, . . . ,z rt2q)r collects all the regressors, and br 5 
(k,f1, . . . ,fp,lr1, . . ., lrq )  the coefficients. The first thing the researcher needs to do is 
choose a ‘sensible’ prior for the parameters q 5 (br) . Here we will guide the reader step 
by step on what exactly Bayesians mean by choosing a sensible prior. We have already 
presented an easy- to- use and sensible prior in section 2.2.1. It is actually a particular case 
of what is called a conjugate prior.

3.1 Conjugate Priors

The uninformative prior presented in section 2.2.1 does not allow the researcher to 
add information: it just allows the likelihood to determine the final result about b. 
Presumably the researcher is free to use any other prior density of the form

 p(q) 5 f(q 0a1, a2, . . . , an)  (16.13)

where f( # )  is a generic density function (Beta, Gamma, Dirichlet, Normal and so on) 
and (a1,a2,. . . ,an)  are parameters of this distribution. In practice, there are three major 
considerations to keep in mind when deciding on the specific form of the prior:

1. The prior distribution must be congruent with the support of the parameters. As an 
example, an inverse- Gamma density6 denoted by iG (n, q) has support on [0,`) , so 
it is not an appropriate choice for a regression coefficient b that is expected to take 
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negative values, but it is appropriate for the variance parameter s2 of the regression 
model.

2. The prior must be of a form that allows sensible values of the prior parameters 
(a1,a2,. . . ,an)  to be chosen easily. Subsequently Bayesians usually focus on standard 
distributions, such as the Normal, Bernoulli, Beta, Gamma, Exponential and so on 
which have one or two prior parameters to choose from.

3. The prior distribution must be such that the resulting posterior is either known ana-
lytically or easy to sample from using simulation methods such as those reviewed in 
section 2.2.

In that respect, for many models that are the focus of macroeconomists, default 
choices of prior densities exist. In practice, Bayesian macroeconomists usually focus 
on conjugate priors that have all three of the above properties. A prior distribution 
such as (16.13) is said to be conjugate to the likelihood function L(q;y)  if the resulting 
posterior p(q 0y)  also belongs to the family f(q 0a1,a2,. . . ,an) , but obviously the poste-
rior parameters (overlined) update the prior ones (underlined) with some functions of 
the data.

3.1.1 Conjugate prior for the regression model
The conjugate prior on b is the Normal density N(b,s2V b)  where the parameters b,s2V b 
are the prior mean and prior covariance matrix. Notice that for conjugacy the inclu-
sion of s2 is needed as a proportionality factor in the prior covariance. This is not very 
convenient since it forces us to interpret the variances and covariances in units of s, an 
unknown parameter, though an idea of its value is given by the usual OLS estimator. We 
explain how to avoid this problem in section 3.2. Written explicitly, that normal prior is

 p(b 0s2) ~ (s2)2
k
2 0V b021

2  exp c2 (b 2 b)rV21
b (b 2 b)

2s2 d . (16.14)

Since the likelihood has the same functional form, that is, Normal – see (16.9) and 
(16.10) – the resulting posterior of b given s2 has the same form: b 0s2,y , N(b,s2Vb) ,7 
where

 Vb 5 (V21
b 1 X rX)21, b 5 Vb(V21

b b 1 X rX b̂) .  (16.15)

We notice an interesting feature: the posterior mean b does not depend on s2 and it is 
therefore the unconditional mean of b, E(b 0y) , as well as its conditional mean, E(b 0y,s2) . 
That posterior mean is a matrix weighted average of the prior mean and of the OLS 
estimator. On the other hand, the posterior covariance matrix Var(b 0y,s2)  is propor-
tional to s2 and is thus not the unconditional covariance matrix that we need to make 
 inferences. For example, to compute a highest posterior density (HPD) interval for a 
particular element of b, we need to know its marginal variance.8

Since the posterior we have obtained for b is conditioned on s2, we must still marginal-
ize it to use it for inferences. For this we need the posterior of s2, since marginalization 
means computing ep(b 0s2,y)p(s2 0y)ds2 to get p(b 0y) . The conjugate prior for s2 is the 
iG(n,q)  density. The resulting posterior density of s2 is iG (n, q) , where
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 n 5 n 1 T, q 5 q 1 y ry 1 brV21
b b 2 b rV21

b b.

Finally, the marginal density of b 0y is multivariate t with parameters b (the mean), V21
b , n 

(degrees of freedom) and q, such that the posterior covariance matrix is qVb/ (n 2 2). The 
posterior mean of s2 is q/ (n 2 2), so that we have obtained that the posterior marginal 
(or unconditional) covariance of b is equal to the posterior mean of s2 multiplied by the 
matrix Vb.

The above results are fully analytical and useful if we are just interested in b and s2. 
However, if we are interested in functions of these parameters, we may need to simulate 
the posterior. Though we can do this by direct simulation (as explained at the end of 
section 2.2.1) we can also use the Gibbs sampler to sample from the posterior. The algo-
rithm iterates between the conditional posterior of b given s2, which is none other than 
N(b,s2Vb) , and that of s2 given b, which can be easily shown to be iG(n*, q*) , where

 n* 5 n 1 T 1 k, q* 5 q 1 (y2Xb)r (y 2 Xb)1 (b 2 b)rV21
b (b 2 b) .

Here is the Gibbs sampling algorithm to generate a sample of size R of draws from the 
posterior distribution of b and s2 (after warming up the algorithm with R0 draws):

1. Choose an initial value (s2) (0) (e.g. the OLS sum of squared residuals divided by 
T 2 k).

2. Set r 5 1.
3. Draw successively b(r) from N(b, (s2) (r21)Vb)  and (s2) (r) from iG(n*, (q*) (r)) , where 

(q*) (r) is q* evaluated at b 5 b(r).
4. Set r 5 r 1 1 and go to step 3 unless r . R0 1 R.
5. Discard the first R0 values of b(r) and (s2) (r). Compute what you are interested in 

(estimates of posterior means, variances . . .) from the last R generated values.

3.1.2 Non- informative conjugate prior
It is worth mentioning at this point that even though conjugate priors are not by default 
non- informative, they can (almost) always become non- informative by taking their 
parameters to some limit. For instance, the bell- shaped Normal density becomes almost 
flat when its variance is large. Therefore, the conjugate prior N(0,s2106Ik)  implies that 
for each element of b, values in the range (– 1000, 1000) are practically speaking ‘equally 
likely’ a priori. For the regression variance parameter, the inverse Gamma density 
becomes non- informative (variance close to infinity) when both n and q tend to zero. 
Then it is customary in practice to use the iG(0.001,0.001)  in the absence of prior infor-
mation. The fully non- informative prior p(b,s2 0) ~ 1/s2 of section 2.2.1 is the conjugate 
prior for b,s2 given by N(b,s2Vb) 3 iG(n, q)  when b 5 0 (a vector), V21

b 5 0 (a matrix) 
and n 5 q 5 0 (scalars).

3.1.3 Practical recommendations for fixing b and Vβ
It is recommended to choose a value for the inverse of Vb since it is the inverse that 
appears in the formulae (16.15) defining the posterior parameters. The researcher who 
wants to be very little informative on an element of b should choose a very small positive 
value for the corresponding diagonal element of Vb, and zero values for the off- diagonal 
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elements on the corresponding row and column of that matrix. For the prior mean, 
the element of b should be fixed to zero. For being informative on an element of b, the 
researcher should assign his or her belief of what could be the most likely value of this 
coefficient to the corresponding element of b. Such a belief may be inspired by theory 
or by empirical results on similar (but different) data. For example, if a theory or past 
results suggest that the parameter should be between two values, the average of these is 
a sensible prior mean. The prior variance can then be fixed in such a way that with high 
prior probability the parameter lies in the interval in question. The corresponding diago-
nal element of V21

b  is then just the inverse of this variance if one assumes, as is almost 
always the case, that V21

b  is a diagonal matrix. More examples and ways to choose the 
prior parameters are discussed in Bauwens et al. (1999, Chapter 4).

A researcher might have a subjective opinion about a parameter of choice. For 
instance if in the dynamic regression model written in (16.12) the GDP growth rate is the 
dependent variable, one might want to incorporate the belief that the intercept should 
be in the bounds, say, –15 to 15 per cent since the researcher might not expect with cer-
tainty to observe a growth rate beyond these bounds in his or her economy of interest. 
This could be translated to the subjective conjugate prior for the intercept k/s , N(0,9) . 
This prior gives almost all the prior weight in the support (215,15). Additionally, due 
to the bell shape of the Normal distribution, more prior probability goes to values of the 
growth rate around zero and less probability is given to tail (extreme) values.

As another example, consider the AR(1) coefficient in a dynamic regression model for 
the case of price inflation. The AR(1) coefficient is not expected to be more than 1 (the 
process can be assumed to be stationary or near- stationary, but definitely not explosive); 
hence the prior f1/s , N(0,1)  seems more appropriate than the non- informative option 
N(0,106) , since it will attract the likelihood towards a more realistic posterior mean 
value. In models with several lags, the researcher might choose for more distant lags to 
use the prior fi/s , N(0,1/i) , so that more distant lags are increasingly penalized.9

Other than these specific examples to elicit the prior parameters, macroeconomists 
(for instance working in central banks) have well defined economic theories to guide 
them empirically10 as well as strong opinions about the state of the economy. In that 
respect, researchers have used estimates from national econometric models to form 
priors for regional models for which data are sparse or simply at yearly frequency (see 
Adkins et al., 2003). Other researchers have used priors informed from estimated DSGE 
models (see Ingram and Whiteman, 1994).

3.1.4 The g- prior
Zellner (1986) proposed to use a conjugate prior of the form

 b 0s2, X , N(0, gs2 (X rX)21)

that is, scale the prior variance by using the inverse of the information matrix. The result-
ing Bayes estimate also provides shrinkage over the least squares estimate, since the 
posterior mean in (16.15) is simplified into

 b 5
g

1 1 g
b̂.
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For g S ` we get the least squares estimate, while for g S 0 we have shrinkage 
towards zero (the prior mean). Despite the shrinkage properties, this prior has mainly 
been used because it allows analytical calculation of the marginal likelihood. The 
latter is a prevalent model choice criterion among Bayesian econometricians. Between 
two models for the same data y, the model that has the highest marginal likelihood is 
preferred.

This prior has been used extensively in situations where (macroeconomic) theory 
fails to give directions for constructing the empirical model. This is the case of the 
famous ‘growth regressions’ where researchers try to identify factors affecting growth 
from a large pool of potential factors (see Fernandez et al., 2001). A major criticism of 
the g- prior in dynamic models is that X  includes data from y (the vector of data of the 
dependent variable) through lags, so that prior depends on y and Bayes theorem is inap-
plicable. The ridge prior presented in the next subsection is a shrinkage prior that avoids 
this criticism.

3.2 Non- conjugate Priors

A reason for using a non- conjugate prior is convenience in choosing the parameters of 
the prior. We have seen that the normal (conjugate) prior for b depends on s2 through 
its covariance matrix that is proportional to s2. Thus if we choose for example the prior 
b , N(0,s2Vb)  (assume b is scalar here) and s2 , IG(n,q)  with n smaller than 2, the 
unconditional prior variance of b is ‘infinite’ (that is it does not exist). This implies that 
however small we fix the value of Vb, a choice we would like to make if we have precise 
information on b, we will be actually non- informative on b. This happens because a 
value of a smaller than 2 implies that E(s2)  does not exist, and though E(b 0s2) 5 s2Vb 
exists for any finite value of s2, E(b) 5 E(s2)Vb does not exist if E(s2)  does not exist. 
In practice, it is very practical to be non- informative on s2 since this is a parameter 
about which we usually have no prior ideas. A convenient non- informative prior on 
s2 is proportional to 1/s2, even if an iG(0.001, 0.001)  is practically non- informative as 
well. To avoid the problem outlined above when we want to be informative about at 
least one element of b, we recommend therefore to use a prior on b that does not depend 
on s2.

3.2.1 Normal priors
There are many possible choices on non- conjugate priors for b, and we consider first 
the case where the prior is Normal, say b , N(b,Vb) , multiplied by the non- informative 
prior 1/s2 for the variance parameter of the regression model. The price to pay for 
avoiding conjugacy is that the posterior results are not available analytically and must 
be computed numerically. However, a Gibbs sampling algorithm is easily constructed 
to simulate the posterior. It is the same as the algorithm described in section 3.1 except 
that the distributions to simulate in step 3 are given below. Indeed, calculations similar 
to those of section 2.2.1 provide the following conditional posteriors:11

 b 0y, X,s2 , N(b*,V*b)

 s2 0y,X,b , iG(T, (y 2Xb)r (y 2Xb))
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where

 V *b 5 (V21
b 1 s22X rX)21,   b* 5 V*b(V21

b b 1 s22X rX b̂) .  (16.16)

Apart from subjective choices of b and Vb, we briefly review other choices that have 
been proposed and are less demanding in terms of prior elicitation.

Ridge regression priors A Normal prior of the form

 p(b) , N(0,tIk)

where t is a prior parameter, is called a ‘ridge regression’ prior. It leads to a posterior 
mean similar to the estimate obtained from classical ridge regression. In this case, b 0s2 
has a Normal posterior with posterior mean

 b* 5 as22X rX 1
1
t

Ikb21

s22X ry.

As for the g- prior, the case where the prior variance is infinite (t S `) leads to the OLS 
estimate as unconditional posterior mean. For t S 0 the unconditional posterior mean 
of b also tends to zero, thus this prior can provide shrinkage over the OLS estimate. 
Apart from these two limit cases, the unconditional posterior mean must be computed 
by Gibbs sampling. Ridge regression priors impose prior independence between the coef-
ficients b, since the prior covariance matrix is diagonal, and cannot incorporate prior 
beliefs of correlations between elements of b.

Empirical Bayes priors The Empirical Bayes technique relies on the information in the 
observations to estimate the parameters of the prior distribution. In that respect, they are 
subject to the major criticism that Bayes theorem is not applicable if the prior depends 
on the data y. Depending on the problem at hand, there are many options for defi ning 
an Empirical Bayes prior. For instance, Judge and Bock (1978) suggested the Empirical 
Bayes prior

 b , N(0,t(X rX)21)

where t 5
ŝ2

x̂2, ŝ2 5 (y 2 X b̂)r (y 2 X b̂) /T  and x̂2
5

b̂r b̂
tr (X rX) 21 2 ŝ2. This empirical Bayes 

prior is Stein- like, also shrinking b towards zero, since the posterior mean of b given s2 
writes

 b* 5 a t

t 1 s2bb̂.

Full- Bayes (hierarchical) priors Ridge and g- priors are based on the subjective choice 
of a ‘tuning’ prior parameter that provides shrinkage, and hence are diffi  cult to justify 
among objective researchers. On the other hand, Empirical Bayes priors are less favoured 
by Bayesians because they do not respect Bayes Theorem, though from an empirical 
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viewpoint, they often prove to be helpful. Since anyway the coeffi  cients b are assumed 
to be random variables, why not also treat the prior parameters as random variables 
which admit a prior on their own and can be updated from information in the likelihood 
(using again Bayes Theorem)? Although this choice may seem abstract conceptually, by 
defi nining a hyperprior distribution on unknown prior parameters, we can accommodate 
a variety of shrinkage and model selection estimators.

To give an example, we consider hierarchical shrinkage priors. In the ridge regression 
prior b , N(0,tIk) , all k coefficients in b share the same shrinkage factor t. If we want 
the different coefficients in b to be shrunk to a different degree, we can use the prior

 bi 0ti , N(0,ti)  (16.17)

for i 5 1, 2, . . . , k. Choosing all the different ti is very demanding. If instead we assume a 
common prior on all tis, we allow the data to determine their values. To see this, assume 
the conjugate prior for this variance parameter of the form

 ti , iG(q1, q2) . (16.18)

Then we can easily derive the conditional posterior densities for this model and 
use the Gibbs sampler to simulate all parameters:

1) Draw ti conditional on bi from

 iG(q1 1 1, q2 1 b2
i ) , for  i 5 1, 2, . . . , k. (16.19)

2) Draw s2 conditional on b and the data from iG(T, (y 2 Xb)r (y 2 Xb)) .
3) Draw b conditional on all tis, s2 and the data from

 N((s22X rX 1 (V)21)21X ry, (s22X rX 1(V)21)21)  (16.20)

where V 5 diag(t1, . . . ,tk)  is the prior covariance matrix constructed from the ti.
Note that in step 1 the data do not revise ti directly but only through bi, in step 2 the 

tis influence s2 only through b, and in step 3 they influence b directly. The data appear 
directly only in steps 2 and 3.

Numerous such examples exist in the literature. For instance, one can specify a 
Uniform (non- informative) prior on ti, while an Exponential prior on ti gives a posterior 
mean with shrinkage properties identical to the LASSO (least absolute shrinkage and 
selection operator) algorithm. Other authors have used hierarchical priors for model 
selection and model averaging. For instance, one can replace the prior in (16.17) by

 p(bi) , N(0,giti)  (16.21)

where ti may, or may not, have a prior but the crucial assumption is that gi is a 0/1 vari-
able. This prior is a mixture of Normal priors: when gi 5 0, we have a N(0,0)  prior, that 
is a point mass at zero, which by definition will restrict the posterior of bi to have point 
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mass at zero; when gi 5 1, we have a N(0,ti)  prior, that is an unrestricted prior (for non- 
zero values of ti) and hence bi is updated by the likelihood. The Bayesian can allow the 
information in the likelihood to determine which gi will be zero and which will be 1, by 
placing a prior on gi. The conjugate prior is of the form

 gi , Bernoulli (pi) . (16.22)

It leads to a Gibbs sampler algorithm which gives: (i) a posterior estimate of bi, which 
is shrunk towards zero if and only if gi 5 0; and (ii) a posterior estimate of gi indicat-
ing which coefficients (and hence which predictor variables) should be included in the 
model.

One can take this hierarchical analysis to a further step and combine algorithms and 
ideas. For instance, if in (16.21) we assume ti S ` we just let all coefficients with gi 5 1 
have a very flat and uninformative prior. However, we can use the prior (16.18) instead. 
In that case, if a coefficient is not restricted to be exactly 0 (that is if gi 5 1), it can still be 
shrunk towards zero by allowing ti to vary according to information in the likelihood. 
Similarly, if we are unsure about choosing a precise value for the hyperparameter pi in 
(16.22), we can easily introduce one more hierarchical layer and place a prior on this 
hyperparameter! In this case, the conjugate prior on pi is in the family of Beta densities, 
so that the posterior of pi is also a Beta density, and hence is easy to sample from.

3.2.2 Non- Normal priors
If a researcher wishes to use a non- Normal prior for b, denoted by p(b) , the conditional 
posterior of b 0y,X,s2 is not Normal.12 We can only say that

 p(b 0y,X,s2) ~ p(b)  exp[2(b 2 b̂)rX rX(b2b̂)/(2s2) ], (16.23)

and that it will not be possible to simulate it directly. In such a case, the simulation of 
b 0y, X, (s2) (r21) in step 3 of the Gibbs sampling algorithm of section 3.1 has to be done 
using a Metropolis step. To do this, at iteration r, we must approximate (16.23) (where 
s2 is set at the value (s2) (r21) generated at step 3 of the previous iteration) by a density 
that we can simulate directly, denoted by q(b 0 (s2) (r21)) . The sampling of b at step 3 of the 
algorithm of section 3.1 is done like this:

● Draw b(cand) from q(b 0 (s2) (r21)) . Set b(r) 5 b(cand) with probability a and 5 b(r21) 
with probability 1 2 a, where a 5 min{p (b(cand) 0 y,X, (s2) (r 2 1))

p (b(r 2 1) 0 y,X, (s2) (r 2 1))
q (b(r 2 1) 0b(cand), (s2) (r 2 1))
q (b(cand) 0b(r 2 1), (s2) (r 2 1)) ,1} and 

p(. 0 .)  defined in (16.23).

If the prior p(b)  is not very informative, or if it is not highly non- normal, (16.23) can 
be easily approximated by replacing the non- normal prior by a normal prior approxi-
mating it. Then the candidate q(b 0s2)  will be the normal posterior defined in section 3.2.1 
above formula (16.16), and the Metropolis step is easy to implement. If the prior is highly 
non- normal and very sharp, one will have to think harder to design a good proposal, that 
is one that does not lead to frequent rejections of the candidate draws of b. Too many 
rejections would slow down (or prevent) the convergence of the algorithm to the targeted 
posterior distribution.
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4 OTHER MODELS: A SHORT GUIDE TO THE LITERATURE

Several books cover Bayesian inference in econometrics in detail. The most comprehen-
sive ones for applied macroeconomists are probably Bauwens et al. (1999) and Koop 
(2003). Geweke et al. (2011) has chapters on time series state space models, macroecono-
metrics and MCMC methods. Geweke (2005) and Lancaster (2004) each include one 
chapter on time series models.

Bayesian inference on DSGE models is covered in Chapters 18 and 21 of this 
Handbook.

Bayesian inference for VAR models is reviewed in Chapter 9 of Bauwens et al. (1999). 
A recent treatment of VAR models with shrinkage, time- varying parameters and sto-
chastic volatility, as well as factor augmented VARs can be found in Koop and Korobilis 
(2010). The authors also provide MATLAB code to estimate the models using analytical 
or MCMC methods of the form introduced in section 2 of this chapter.

Markov switching and state- space models are covered extensively in the two excellent 
books by Frühwirth- Schnatter (2006) and Kim and Nelson (1999).

The list of resources related to Bayesian analysis in macroeconomics is by no means 
restricted to the books and monographs just presented. However, this referenced mate-
rial is a good starting point for the inexperienced student or researcher who wishes to 
start conducting research using Bayesian methods.

NOTES

 * Research supported by the contract ‘Projet d’Actions de Recherche Concertées’ 07/12- 002 of the 
‘Communauté française de Belgique’, granted by the ‘Académie universitaire Louvain’. This chapter 
presents research results of the Belgian programme on Interuniversity Poles of Attraction initiated by 
the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsibility is 
assumed by the authors. 

 1. As an alternative, if q is the mean of GDP growth, a prior belief would be to restrict this parameter on the 
interval, say, −20 to 25 per cent, implying that we do not realistically expect to observe growth beyond 
these bounds. Letting the bounds become arbitrarily large may be viewed as a convenient simplification.

 2. For example, if q 5 (q1 q2) , and we are interested in q1/q2, we do not know the density of this ratio.
 3. Invoking the ergodic theorem, we do not even need the sample to be independent.
 4. If p (log s2) ~ 1, then p (s2) ~ 1/s2 due to the Jacobian 0 log s2/0s2.
 5. A sufficient condition is that the full conditional densities are always strictly positive in the parameter 

space. 
 6. The iG(n, q)  density with n . 0 degrees of freedom and scale parameter q . 0, for the random variable 

U, is given by [1/G (n/2) ] (q/2) n/2u2 (n12)/2 exp2 [q/ (2u)]. Its mean is q/ (n 2 2)  (if n . 2) and its variance is 
2q2/ [ (n 2 2) (n 2 4) ] (if n . 4). 

 7. For a detailed proof, see Bauwens et al. (1999, Chapter 2, pp. 58–9). 
 8. An HPD interval of (probability) level a for a scalar parameter q is the shortest interval of values (qi, qs)  

such that P [q[ (qi, qs) ] 5a. If the density of q is N(m, s2) , it is given by (m 2 za/2, m 1 za/2s) , where za/2 is 
the quantile of level a/2 of the right tail of the standard Normal. For a Bayesian, an HPD interval is an 
interval estimator. An HPD interval resembles a frequentist confidence interval, but it has a quite differ-
ent interpretation: for a Bayesian, q is random, for a frequentist, the interval is random. 

 9. This is similar in spirit, but not identical to, the so- called Minnesota prior for VAR models; see Doan et 
al. (1984). 

10. At least, one can argue that macroeconomic theory can guide the empirical researcher on what outcome 
to expect, as well as what empirical result makes sense. In that respect, empirical results like the price 
puzzle in VAR models (the fact that inflation responds with an increase after a contractionary monetary 
policy shock), have been solved by using prior restrictions about the expected signs of the responses of 
each variable; see Uhlig (2001). 
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11. The normality of p (b 0y, X, s2)  comes from the fact that its functional form is the product of two 
functions that are like Normal densities: exp[2(b 2 b̂)rX rX (b2 b̂) / (2s2) ] (from the likelihood) and 
exp[2(b 2 b)rV21

b (b 2 b) /2] (from the prior). Actually, the Normal prior used here is conjugate for the 
likelihood when s2 is fixed, though the joint prior of b and s2 is not conjugate to the likelihood for both 
parameters. Thus we have ‘partial conjugacy’. 

12 . For example, we may wish to use an asymmetric prior if our prior belief is that a parameter is of the order 
of 0.95 (prior mean or mode), definitely smaller than 1, and with high probability in the interval (0.5, 1) . 
A normal prior centred on 0.9 with a small standard deviation (such as 0.015) implies that the parameter 
has a negligible probability to be larger than 1, but it also implies that the parameter is in the interval 
(0.9,1)  with probability (very close to) 1 rather than in the desired interval (0.5, 1) . A Beta density for that 
parameter can be easily chosen to satisfy all the prior beliefs. 
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17 Forecasting in macroeconomics
Raffaella Giacomini and Barbara Rossi

1 INTRODUCTION

This chapter offers a review of forecasting methodologies and empirical applications that 
are useful for macroeconomists. The chapter is divided in two parts. The first part over-
views econometric methods available for forecast evaluation, including both traditional 
methods as well as new methodologies that are robust to instabilities. We discuss their 
usefulness, their assumptions as well as their implementation, to provide practical guid-
ance to macroeconomists. The second part addresses special issues of interest to forecast-
ers, including forecasting output growth and inflation as well as the use of real- time data 
and structural models for forecasting.

PART I  ECONOMETRIC METHODOLOGIES FOR 
FORECASTING IN MACROECONOMICS

2 Methods for Forecast Evaluation

An important area of research over the past couple of decades has been the development 
of formal econometric techniques for evaluating the accuracy of forecasts. The problem 
can be viewed in a decision- theoretic context: if yt11 is the variable of interest and ft its 
forecast made at time t, the accuracy of ft is judged by the expected loss E [L(yt11, ft) ], 
for a choice of loss function L( # )  that reflects the type of forecast (point- , interval-  or 
density- ) and the decision problem of the forecaster. The vast majority of empirical work 
has typically focused on the quadratic or absolute error loss, but there is some literature 
discussing different choices of loss function, for example, Diebold and Lopez (1996), 
Amisano and Giacomini (2007), Giacomini and Komunjer (2005), Leitch and Tanner 
(1991), West et al. (1993). See also Elliott et al. (2005) for a method for eliciting forecast-
ers’ loss functions from survey data. Most of the methods discussed in the remainder 
of this chapter will be applicable to a general loss function, and we will provide some 
concrete examples below.

The expected loss of a forecast is in practice estimated using sample data. This can 
be done in a relatively straightforward manner if the data consists of a sequence of 
forecasts and corresponding realizations, as is the case for applications analysing the 
accuracy of survey- based forecasts. The econometric methods for this case are standard, 
and we refer to, for example, Diebold’s (2007) textbook for further discussion. In many 
empirically relevant situations, however, a forecaster is interested in assessing the accu-
racy of model- based forecasts using macroeconomic and financial time series data. In 
this case a sequence of forecasts is obtained by a so- called ‘pseudo- out- of- sample’ fore-
casting exercise, which we describe formally below. Informally, this involves pretending 
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that one could go back in time to a given date R in the sample (of total size T)  and mimic 
what an actual forecaster would have done as time went by: estimate the model using 
the data up to time R, produce a forecast for time R 1 1, wait until R 1 1, observe the 
realization of the variable and compare it to the forecast, re- estimate the model includ-
ing the data at time R 1 1, produce a forecast for R 1 2, wait until R 1 2 and compare 
it to the actual realization and so on. This procedure results in a sequence of P 5 T 2 R 
forecasts {ft(q̂t) }T21

t5R  and of corresponding out- of- sample losses {L(yt11, ft(q̂t)) }T21
t5R 

which depend on the data and on parameters estimated over a sequence of overlapping 
samples. The accuracy of the forecast is then estimated by the average of the out- of- 
sample losses

 E [L(y
t11

, ft) ] 5
1
P a

T21

t5R
L(yt11, ft(q̂t)) , (17.1)

which, in the typical case of a quadratic loss, is the Mean Square Forecast Error (MSFE).
This estimate of the accuracy of the forecast is not in general directly interpretable, as 

it depends on the units of measurement of yt. In practice therefore one typically relates 
the accuracy of a model to that of a benchmark model, or compares the accuracy of 
multiple competing models by comparing their out- of- sample average losses (17.1) . In 
the remainder of this section we focus on testing the relative predictive ability of models, 
and separately consider the case of pairwise and multiple comparisons. Even though the 
technicalities are different, the basic idea of all the approaches that we discuss below is 
to develop statistical tests to assess whether the average out- of- sample losses of compet-
ing models are significantly different from each other in a way that takes into account 
their dependence on out- of- sample data, in- sample data and recursively estimated 
parameters.

A further econometric challenge that arises in the context of developing such tests is 
the fact that one needs to pay attention to whether the models compared are nested (in 
the sense that one model can be obtained from the other by imposing parameter restric-
tions) or non- nested. We will discuss this issue and the possible solutions below.

Finally, we will briefly consider the extension to conditional predictive ability testing, 
which goes beyond assessing the forecasting performance of models on average.

2.1 The econometric environment
In the following, we assume that the researcher is interested in forecasting the scalar 
variable yt and that he or she has available a number of competing forecasting models. 
Out- of- sample testing involves dividing a sample of size T  into an in- sample portion 
of size R and an out- of- sample portion of size P. The models are then first estimated 
using data from 1 to R and the parameters are used to produce h 2  step ahead fore-
casts. We denote the first forecast from model i by f (i)

R (q̂R) . Some of the approaches 
that we discuss below do not impose restrictions on the type of model (for example, 
linear or non- linear) or the estimation method used in- sample, whereas others are only 
applicable in special cases (for example, the linear model estimated by OLS). We will 
make these assumptions explicit in each subsection. The forecasts at time R are then 
compared to the realization yR1h and the corresponding loss for model i is denoted 
by L 

(i) (yR1h, f (i)
R (q̂R)) . The second sets of h 2  step ahead forecasts are obtained at 

L
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time R 1 1 by either: keeping the parameter estimates fixed at q̂R (fixed scheme); re- 
estimating the models over data indexed 1, . . . , R 1 1 (recursive scheme) or re- estimating 
the models over data indexed 2, . . . ,R 1 1 (rolling scheme). The loss for model i  is then 
given by L 

(i) (yR111h, f (i)
R11 (q̂R11)), where the definition of q̂R11 depends on the estimation 

scheme used. Iterating this procedure until all sample observations are exhausted yields 
a sequence of P 5 T 2 h 2 R 1 1 out- of- sample losses {L 

(i) (yt1h, f (i)
t (q̂t))}T2h

t5R for each 
model i.

It is important to note that most of the techniques described below can be applied 
regardless of whether the forecasts are point- , volatility- , interval- , probability-  or 
density- forecasts. The only difference lies in selecting the appropriate loss func-
tion for each type of forecast. Examples of loss functions for point forecasts are: 
(i) (quadratic) L(yt1h, ft) 5 (yt1h 2 ft) 2; (ii) (absolute error) L(yt1h, ft) 5 0yt1h 2 ft 0 ; 
(iii) (lin- lin) L(yt1h, ft) 5 (a 21(yt1h 2 ft , 0)) (yt1h 2 ft)  for a [ (0,1) ; (iv) (linex) 
L(yt1h, ft) 5 exp(a(yt1h 2 ft)) 2 a(yt1h 2 ft)2 1 for a [ R; (v) (direction- of- change) 
L(yt1h, ft) 5 1{sign(yt1h 2 yt) 2 sign(ft 2 yt)}. Loss functions for conditional 
 variance forecasts are (i) L(yt1h, ft) 5 (log(y2

t1h) 2 log( ft)) 2; (ii) L(yt1h, ft) 5 (y2
t 1 h

ft
2 1)2; 

(iii) L(yt1h, ft) 5 log( ft) 1
y2

t 1 h
ft

. For probability forecasts, we have L(yt1h, ft) 5 ( ft 2 It) 2, 
where It 5 1 if the event occurred and is 0 otherwise. For density forecasts one can 
 consider L(yt1h, ft) 5 log ft(yt1h) .

2.2 Pairwise (unconditional) predictive ability testing
When there are only two models, one can compare their accuracy by computing 
the difference in, say, MSFEs, ask whether the difference is significantly differ-
ent from zero and, if so, choose the model with the smallest MSFE. For a general 
loss function, a test of equal predictive ability can be implemented by first con-
structing the time series of P out- of- sample loss differences {DLt1h (q̂t)}T2h

t5R where1 
DLt1h 5 L 

(1) (yt1h, f (1)
t ( q̂t)) 2 L 

(2) (yt1h, f (2)
t (q̂t))  and then conducting a t- test of the 

hypothesis H0  : m 5 0 in the regression

 DLt1h (q̂t) 5 m 1 et1h, t 5 R, . . .,T 2 h. (17.2)

The test has a standard normal asymptotic distribution, provided one uses the 
correct standard errors which take into account the time- series properties of et1h and 
the dependence of DLt1h in (17.2) on estimated in- sample parameters. The former 
 challenge is relatively easy to deal with and has long been addressed in the litera-
ture,  starting from Diebold and Mariano (1995), who suggested considering the test 
statistic

 00 "P m̂
ŝ

005 00 1"P a
T2h

t5R

DLt1h (q̂t)
ŝ

00 ,  (17.3)

where ŝ is a heteroscedasticity-  and autocorrelation- consistent standard error, for 
example,

 ŝ2 5 a
q21

j52q11

(12 0 j/q 0)P21a
T2h

t5R
DLt1hDLt1h2 j, (17.4)
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with truncation lag q 5 h 2 1. The challenge of accounting for estimation uncertainty 
is trickier and has been the subject of a sizable body of literature. Broadly speaking, there 
are two strands of the literature, which correspond to two different asymptotic approxi-
mations in the derivation of a test of equal predictive ability. The two approaches are 
exemplified by West (1996) and Giacomini and White (2006).

2.2.1 West (1996) The key insight of West (1996) is to acknowledge the dependence 
of (17.2) on q̂t and propose a test of equal predictive ability that is valid as both the in- 
sample size R and the out- of- sample size P grow to infi nity. West (1996) considers a t- test 
of H0  : m 5 0 in a modifi cation of the regression in (17.2) where the dependent variable 
is a function of the population parameter q* (interpretable as the probability limit of q̂t 
as the size of the estimation sample grows to infi nity):

 DLt1h (q*) 5 m 1 et1h, t 5 R, . . . ,T 2 h. (17.5)

The practical implication of this focus on population parameters is that one needs to 
take into account that the test statistic depends on in- sample parameter estimates, which 
may have an effect on the estimator of the asymptotic variance to be used in the test. 
Formally, West’s (1996) test statistic is

 
1
P a

T2h

t5R

DLt1h (q̂t)
ŝ

,

where ŝ is an asymptotically valid standard error that reflects the possible contribution 
of in- sample parameter estimation uncertainty. The main technical contribution of West 
(1996) is to show how to construct ŝ for a fairly wide class of models and estimation 
procedures, as well as point out special cases in which estimation uncertainty is asymp-
totically irrelevant and ŝ is the same standard error (17.4) as in the Diebold and Mariano 
(1995) test statistic (for example, this occurs in the case of MSFE comparisons of models 
estimated by OLS).

West’s (1996) test has two main ‘disadvantages’. The first, which is merely an issue of 
convenience of implementation, is that ŝ is not as easily computed as the corresponding 
standard error in the Diebold and Mariano (1995) test, because in general it depends 
on the estimators used by the two models and on the estimation scheme. The second 
disadvantage is of a more fundamental nature, and has been discussed in a series of 
papers by Clark and McCracken (2001, 2005) and McCracken (2007). The key limitation 
of West’s (1996) result is that it is only applicable to comparisons between non- nested 
models and thus rules out the empirically relevant comparison between a model and a 
nested benchmark such as an autoregression or a random walk. The technical reason for 
this is that West’s (1996) result requires the probability limit of ŝ to be positive as both 
R and P grow to infinity, which may be violated in the case of nested models. Clark and 
McCracken (2001, 2005) and McCracken (2007) show that it is nonetheless possible to 
derive a valid test of equal predictive ability for nested models within a more restrictive 
class of models and estimation procedures (that is, linear models estimated by OLS and 
direct multi- step forecasting). The asymptotic distribution is however non- standard, so 
critical values for the t- test must be simulated in each specific case.
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2.2.2 Giacomini and White (2006) Giacomini and White (2006) propose deriving 
 predictive ability tests in a diff erent asymptotic environment with growing  out- of- sample 
size P and fi xed in- sample size R. Importantly, this assumption rules out the use of the 
recursive scheme in the construction of the out- of- sample test, but allows for both 
fi xed  and rolling schemes. The basic idea is to propose a test of H0  :  m 5 0 in the 
regression

 DLt1h (q̂t) 5 m 1 et1h, t 5 R, . . . ,T 2 h, (17.6)

where the dependent variable DLt1h (q̂t)  is now a function of estimated – rather than 
population – parameters. This corresponds to taking a different ‘philosophical’ view on 
what the relevant object of interest of the forecasting exercise is.2 In practice, the test sta-
tistic considered by Giacomini and White (2006) is the same as the Diebold and Mariano 
(1995) test statistic, and thus the key message is that Diebold and Mariano’s (1995) test 
is valid regardless of whether the models are nested or non- nested, as long as the esti-
mation window does not grow with the sample size. The reason for the test being valid 
regardless of whether the models are nested or non- nested is that, in a context with non- 
vanishing estimation uncertainty (due to the finite estimation window), the estimator q̂t 
does not converge to its probability limit and thus the denominator ŝ  of the Diebold and 
Mariano (1995) test cannot converge to zero.

The asymptotic framework with non- vanishing estimation uncertainty allows 
Giacomini and White (2006) to weaken many of the assumptions used by West (1996), 
Clark and McCracken (2001, 2005) and McCracken (2007), and as a result yields a 
test that is applicable to a wide class of models and estimation procedures, including 
any linear or non- linear model estimated by classical, Bayesian, semi- parametric or 
non- parametric procedures. The only restriction to keep in mind is that the forecasts 
cannot be obtained by using the recursive scheme (see Clark and McCracken, 2009 for 
an example of a test of the Giacomini and White (2006) null hypothesis that permits 
recursive estimation, applicable in the special case of linear models estimated by OLS).

2.3 Pairwise (conditional) predictive ability testing
The central idea of conditional predictive ability testing (also in Giacomini and White, 
2006) is to ask whether one could use available information – above and beyond past 
average performance – to predict which of the two forecasts will be more accurate in the 
future. Another way to look at this is to argue that more could be learned about the fore-
casting performance of models by studying the time series properties of the sequence of 
loss differences in its entirety, rather than limiting oneself to asking whether it has mean 
zero. For example, one could extend the regression (17.6) to

 DLt1h (q̂t) 5 brXt 1 et1h,  t 5 R, . . . , T 2 h, (17.7)

where Xt contains elements from the information set at time t, such as a constant, lags 
of DLt and economic indicators that could help predict the relative performance of the 
models under analysis. One could then test H0  :  b 5 0 by a Wald test:

 W 5P(b̂)r Ŝ21 (b̂) , (17.8)
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where, because of the finite- estimation window asymptotic framework, Ŝ is the standard 
HAC estimator computed by any regression software. The test is also applicable to both 
nested and non- nested models.

One useful feature of the extension to conditional predictive ability testing is that rejec-
tion of the null H0  :  b 5 0 implies that the future relative performance of the models is 
predictable using current information, which suggests the following simple decision rule 
for choosing at time T  a forecasting model for time T 1 h: choose the second model if 
b̂rXT . 0 and the first model otherwise, where b̂ is estimated from (17.7).

2.4 Multiple predictive ability testing
It is often the case that a forecaster is interested in comparing the performance of 
several models to that of a benchmark model, which can be viewed as a problem of 
multiple hypothesis testing. Referring back to the notation in section 2.1, suppose 
there are N models and a benchmark denoted by 0, so that DL 

(i)
t1h 5 L 

(0)
t1h 2 L 

(i)
t1h is the 

loss difference between the benchmark and model i. The null hypothesis of interest is 
that none of the N models outperforms the benchmark, and the key econometric chal-
lenge is to propose procedures that control the overall Type I error of the procedure, 
while taking into account the dependence of the forecast losses on each other and on 
the in- sample parameter estimates. White (2000) does so by proposing a ‘reality check’ 
test of

 H0: max
i51,. . . ,N

E [DL 
(i)
t1h ] # 0 against

 H1: max
i51,. . . ,N

E [DL 
(i)
t1h ] . 0, (17.9)

where the alternative states that there is at least one model outperforming the bench-
mark. White (2000) uses the asymptotic framework of West (1996) to derive the asymp-
totic distribution of the test statistic, which is the (out- of- ) sample analogue of (17.9). 
The asymptotic distribution is the maximum of a Gaussian process and thus the p- values 
must be obtained by simulation. White (2000) suggests a bootstrap procedure for obtain-
ing p- values that are valid under the assumption that at least one model is not nested in 
(and non- nesting) the benchmark and that estimation uncertainty is asymptotically irrel-
evant as in the special cases considered by West (2006) (for example, MSFE comparison 
in linear models estimated by OLS).

Hansen (2005) modifies White’s (2000) procedure to obtain a test that is less sensitive 
to the inclusion of poor- performing models and thus has higher power than White’s 
(2000) test. Romano and Wolf (2005) suggest a further possible power improvement by 
adopting a ‘step- wise’ multiple testing approach.

While the approaches described above are useful for identifying the best perform-
ing model relative to the benchmark, if there is one, they are silent about what to do in 
case the null hypothesis is not rejected (which could mean that the benchmark is more 
accurate than all the competing models or that it is as accurate as all or some of them). 
One may try to take a further step and ask whether it is possible to eliminate the worst- 
performing models and retain all the models that have equal performance, which is 
related to the notion of constructing a ‘model confidence set’ (MCS), as described by 
Hansen et al. (2011). The procedure consists of the following steps:
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1. Let M be the set of all possible models. Test H0  :  E [L 
(i)
t1h 2 L 

(j)
t1h ] 5 0 for all i, j [ M 

using the statistic

 T 5 max
i, j [M

ti, j, (17.10)

 where ti, j is the Diebold and Mariano (1995) test statistic in (17.3).
2. If fail to reject, all models in M are equally accurate. If reject, eliminate the worst 

model (that with the highest average loss) and repeat step 1 until no model is 
eliminated.

As in the case of the tests described above, the p- value for the test in step 1 is obtained 
by bootstrap methods as the test statistic (17.10) is not pivotal since it depends on the 
cross- sectional correlation of the ti, j. The bootstrap p- values are computed by consid-
ering the bootstrap test statistic T (b) 5 maxi, j [M 0" P ( m̂*(b) 2 m̂)

ŝ* 0  for b 5 1, . . ., B, where 
ŝ* 5

P
B S

B

b51
(m̂*(b) 2 m̂) 2 and computing p* 5 1

B S
B

b51
1{T(b) .T}.

2.5 Open issues in forecast evaluation
An important issue that has been largely ignored by the literature so far, at least from a 
theoretical standpoint, is how to choose the sample split and/or rolling window size for 
the out- of- sample evaluation exercise. The question is in part linked to which asymptotic 
approximation one considers. There is limited evidence based on Monte Carlo simula-
tions that shows that Giacomini and White’s (2006) approximation works best when the 
in- sample size is small relative to the out- of- sample size, as one would expect given the 
finite- estimation window assumption. Regarding West’s (1996) approximation, instead, 
no clear guidelines seem to emerge from the simulations in the literature, except that it 
might not work very well when the in- sample size is small. Note that a direct comparison 
between the two approximations is not possible, as they test different null hypotheses. 
This issue has attracted a lot of attention and several new techniques have been proposed 
to help researchers reach empirical conclusions that are robust to the choice of the rolling 
window size and/or the split point, or where the latter are chosen optimally. Section 3.4 
will review the recently proposed techniques that address this issue.

Another important issue is that the methodologies previously discussed are applicable 
only in stationary environments, which for example rules out unit roots or highly persist-
ent variables. Analyses of the properties of forecast tests in the presence of high persist-
ence are provided by Corradi et al. (2001) and Rossi (2005).

A more general question that has received no clear answer in the literature is if, why 
and when out- of- sample testing is preferable to in- sample testing, particularly when the 
null hypothesis is formulated in terms of (pseudo- ) true parameters, as in (17.5). An 
argument against out- of- sample testing is for example made by Inoue and Kilian (2005), 
who show that out- of- sample tests may in fact have lower power than in- sample tests 
and they may not necessarily guard against data- mining, as is generally believed. An 
argument in favour is indirectly given by Clark and McCracken (2005), who show that 
out- of- sample tests may have an advantage over in- sample tests in that they are more 
‘robust’ to changes in predictive ability due to un- modelled structural change. Rossi 
and Sekhposyan (2011a) propose a new methodology to explain the difference between 
in- sample fit and out- of- sample forecasting performance. They propose to decompose 
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models’ forecasting ability into asymptotically uncorrelated components that measure 
the contribution of instabilities, predictive content and over- fitting. We will discuss these 
contributions more in detail in section 3.5.

The last result suggests that the link between predictive ability testing and structural 
change is worth exploring in greater depth, which is the subject of the research summa-
rized in the next section.

3 Methods for Forecast Evaluation in the Presence of Instabilities

Stock and Watson (2003) and Rossi (2011) have discussed two main stylized facts exist-
ing in the forecasting literature on macroeconomic variables. The first stylized fact is that 
the predictive ability is unstable over time. For example, instabilities have been found 
when forecasting GDP growth using the term spread for both the US (Giacomini and 
Rossi, 2006, and Bordo and Haubrich, 2008) as well as other major developed countries 
(Schrimpf and Wang, 2010, and Wheelock and Wohar, 2009). Instabilities have been 
found in a variety of predictors for forecasting inflation and output growth over time, as 
shown in Stock and Watson (2007) and Rossi and Sekhposyan (2010).

More in detail, Stock and Watson (2003) assess the lack of stability using parameter 
instability tests in Granger- causality type regressions. In- sample Granger- causality tests 
assess the significance of the proposed predictors in a regression of the dependent vari-
able (say yt1h) onto the lagged predictors (say, xt), where h is the forecast horizon. That 
is, the Granger- causality test is a simple F- test on the parameter vector bh, where:

 yt1h 5 brh xt 1 grh zt 1 et, h, t 5 1,. . . ,T  (17.11)

and zt are other control variables (for example, lags of y: yt, yt21, . . .) and the total sample 
size available to the researcher is T 1 h. Stock and Watson (2003) evaluate the stability 
of bh in regression (17.11) by using Andrews’ (1993) test for structural breaks, and reject 
stability for most of the regressors. In addition, they evaluate the forecasting ability of 
predictors in subsamples and find that the existence of predictability in a subsample does 
not necessarily imply existence of predictability in the other subsamples.

A second stylized fact existing in the literature is that the existence of in- sample 
predictive ability does not necessarily imply out- of- sample forecasting ability. That is, 
predictors that Granger- cause macroeconomic variables in the in- sample regression 
(17.11) do not necessarily perform well in an out- of- sample forecasting framework. 
A well- known example is the fact that, while exchange rate models fit well in- sample, 
their forecasting ability is poorer than that of a random walk (Meese and Rogoff, 
1983). For other examples, see Swanson and White (1995) in forecasting interest rates, 
Swanson (1998) for forecasting monetary aggregates, Stock and Watson (2003) for 
forecasting output growth and inflation using a large dataset of predictors. That is, 
out- of- sample forecasting ability is harder to find than in- sample predictive ability, 
and therefore it is a tougher metric to be used in evaluating the performance of macro-
economic models.

How does one then assess predictive ability or estimate forecast models in the presence 
of instabilities? Does the widespread evidence of instabilities in macroeconomic forecast-
ing models change our evaluation of whether it is possible to forecast macroeconomic 
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variables? In what follows, we will review several methodologies that can be used to 
answer these questions; for a more detailed discussion of several test statistics as well as 
estimation strategies that have been proposed explicitly to address the presence of insta-
bilities, see Rossi (2011).

In what follows, we will focus on a simplified situation where researchers are interested 
in predicting the h- steps ahead value of the dependent variable (say yt1h) using lagged 
predictors (say, xt), where h is the forecast horizon. That is,

 yt1h 5 b rh xt 1 et,h, t 5 1, . . . ,T. (17.12)

3.1 Granger- causality tests robust to instabilities
Traditional Granger- causality tests are invalid in the presence of instabilities. In fact, 
Rossi (2005) showed that traditional Granger- causality tests may have no power in the 
presence of instabilities. Rossi (2005) proposed a test that is robust to the presence of 
instabilities.

Rossi (2005) is interested in testing whether the variable xt has no predictive content 
for yt in the situation where the parameter bt might be time- varying.3 Her procedure 
is based on testing jointly the significance of the predictors and their stability over 
time. Among the various forms of instabilities that she considers, we focus on the case 
in which bt may shift from b1 to b2 2 b1 at some unknown point in time, t. That is, 
bt 5 b1

# 1(t , t)1 b2
# 1(t $ t) .

The test is implemented as follows. Let b̂1t  and b̂2t  denote the OLS estimators before 
and after the break:

 b̂1t 5 a1
ta

t21

t51
xtxrtb21a1

t a
t21

t51
xtyt1hb,

 b̂2t 5 a 1
T 2 t a

T

t5t
xtx rtb21a 1

T 2 ta
T

t5t
xtyt1hb.

The test builds on two components: t
T b̂1t1(12

t
T) b̂2t and b̂1t2 b̂2t. The first is simply 

the full- sample estimate of the parameter, tT b̂1t1(12
t
T) b̂2t5(1

T S
T

t51
xtxrt)21 (1

T S
T

t51
xtyt1h)21; a 

test on whether this component is zero is able to detect situations in which the param-
eter bt is constant and different from zero. However, if the regressor Granger- causes 
the  dependent variable in such a way that the parameter changes but the average of the 
estimates equals zero (as in the example previously discussed), then the first component 
would not be able to detect such situations. The second component is introduced to 
perform this task. It is the difference between the parameters estimated in the two sub-
samples; a test on whether this component is zero is able to detect situations in which 
the parameter changes. Rossi (2005) proposes several test statistics, among which the 
following:

 QLR*T 5 sup
t5 [0.15T], . . . , [0.85T]

F*T

 Exp 2 W*T 5
1
T a

[0.85T]

t5 [0.15T]

1
0.7

exp e a1
2
bF*T f
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 Mean 2 W*T 5
1
T a

[0.85T]

t5 [0.15T]

1
0.7

F*T (17.13)

where F*T ; (( b̂1t 2 b̂2t)r (
t
T b̂1t 1 (1 2

t
T) b̂2t)r)V̂21a    ( b̂1t 2 b̂2t)

(t
T b̂1t 1 (12

t
T)b̂2t)

b,

 V̂ 5 a t
T S rxx Ŝ21

1 Sxx 0
0 T 2 t

T S rxxŜ21
2 Sxx

b,

 Sxx ;
1
T a

T

t51
xtxrt

 Ŝ1 5 a1
ta

t

t51
xt êt1h êt1h xrtb 1 a

t21

j51
a1 2 00 j

t1/3
00 b a1

t a
t

t5 j11
xt êt1h êt1h2 j x rt2 jb, (17.4)

 Ŝ2 5 a 1
T 2 t a

T2t

t5t11
xt21êt1h êt1hx rtb

 1 a
T2t

j5t11
a1 2 00 j

(T 2 t) 1/3
00 b a 1

T 2 t a
T2t

t5 j11
xt êt1hêt1h2 jxrt2 jb, (17.5)

for êt1h ; yt1h 2 xrt b̂. If there is no serial correlation in the data, only the first compo-
nent in (17.14) and (17.15) is relevant. Under the joint null hypothesis of no Granger- 
causality and no time- variation in the parameters (bt 5 b 5 0), QLR*T, Mean 2 W*T  and 
Exp 2 W*T  have asymptotic distributions whose critical values depend on the number of 
predictors, p, and are tabulated in Rossi’s (2005) Table B1. For example, the 5 per cent 
critical values of the QLR*T, Mean 2 W*T  and Exp 2 W*T  tests are, respectively: (9.826, 
3.134, 5.364) in the presence of one regressor, and (14.225, 5.015, 8.743) in the presence 
of two regressors.

3.2 Forecast comparisons tests robust to instabilities
If researchers are interested in establishing which model forecasts the best in the presence 
of instabilities, they could use Giacomini and Rossi’s (2010) Fluctuation test. To simplify 
notation, let DLt1h (q̂t) , defined in (17.2), be denoted by DLt1h. To test the null hypoth-
esis of equal performance at each point in time:

 H0  :  E(DLt1h) 5 0 for all t, (17.16)

they propose computing the sequence of statistics

 Ft 5 ŝ21m21/2 a
t1m/221

j5t2m/2
DLj, t 5 R 1 h 1 m/2,. . . , T 2 m/2 1 1, (17.17)

where m(, R)  is a user- defined ‘bandwidth’, ŝ2 is an HAC estimator of the asymptotic 
variance of the forecast losses, for example,
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 ŝ2 5 a
q|21

j5 2q|11

(12 0 j/q| 0)P21 a
T

t5R1h
DLt1hDLt1h2 j,  (17.18)

and q| is appropriately chosen (see for example, Andrews, 1991 and Newey and West, 
1987). Giacomini and Rossi (2010) rely on an asymptotic approximation that assumes 
lim
TS`

m
P 5 d. The null hypothesis is rejected at the 100a per cent significance level against 

the two- sided alternative E(DLt1h) 2 0 for some t when max t 0Ft 0 . kGR
a , where kGR

a  is the 
appropriate critical values, which depend on d. The critical values depend on d, and are 
reported in their Table 1. For example, for values of d equal to (.1, .2, .3, .4, .5, .6, .7, .8 
and .9), the critical values are 3.393, 3.179, 3.012, 2.890, 2.779, 2.634, 2.560, 2.433, 2.248 
respectively.4

The test statistic Ft in (17.17) is equivalent to Diebold and Mariano’s (1995) and 
Giacomini and White’s (2006) (unconditional) test statistic, computed over rolling 
 out- of- sample windows of size m. Giacomini and Rossi (2010) show that their approach 
can be generalized to allow for any other commonly used test for out- of- sample predic-
tive ability comparisons discussed in section 2, as long as their asymptotic distribution 
is Normal. In particular, one could use the test statistics proposed by West (1996) or 
by Clark and West (2007), which are respectively applicable to non- nested and nested 
models.5 The adoption of West’s (1996) framework involves replacing  ̂s in (17.18) with 
an estimator of the asymptotic variance that reflects the contribution of estimation 
uncertainty (see Theorem 4.1 of West, 1996). For the nested case, the use of the Clark 
and West (2007) test statistic in practice amounts to replacing DLt1h in (17.17) with Clark 
and West’s (2007) corrected version.

Also note that West’s (1996) approach allows the parameters to be estimated using a 
recursive scheme, in addition to a rolling or fixed scheme. In that case, let {WOOS

t } denote 
a sequence of West’s (1996) test statistics for h- steps ahead forecasts calculated over recur-
sive windows (with an initial window of size R)  for t 5 R 1 h 1 m/2, . . . ,T 2 m/2 1 1. 
Giacomini and Rossi (2010) show that the null hypothesis of equal predictive ability is 
rejected when maxt 0WOOS

t 0 . krec
a "T 2 R

t (1 1 2 t 2 R
T 2 R) , where (a, krec

a )  are (0.01, 1.143), 
(0.05, 0.948)  and (0.10, 0.850).

Empirically, taking into account instabilities when assessing predictive ability is very 
important. For example, Rossi and Sekhposyan (2010) used the Fluctuation test to 
empirically investigate whether the relative performance of competing models for fore-
casting US industrial production growth and consumer price inflation has changed over 
time. Their predictors include interest rates, measures of real activity (such as unemploy-
ment and GDP growth), stock prices, exchange rates and monetary aggregates. Their 
benchmark model is the autoregressive model. Using both fully revised and real- time 
data, they find sharp reversals in the relative forecasting performance. They also esti-
mate the time of the reversal in the relative performance, which allows them to relate the 
changes in the relative predictive ability to economic events that might have happened 
simultaneously. In particular, when forecasting output growth, interest rates and the 
spread were useful predictors in the mid- 1970s, but their performance worsened at the 
beginning of the 1980s. Similar results hold for money growth (M2), the index of supplier 
deliveries, and the index of leading indicators. When forecasting inflation, the empirical 
evidence in favour of predictive ability is weaker than that of output growth, and the 
predictive ability of most variables breaks down around 1984, which dates the  beginning 
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of the Great Moderation. Such predictors include employment and unemployment 
measures, among others, thus implying that the predictive power of the Phillips curve 
disappeared around the time of the Great Moderation.

3.3 Forecast optimality tests robust to instabilities
Rossi and Sekhposyan’s (2011b) proposed robust tests of forecast optimality that can be 
used in case researchers are interested in assessing whether forecasts are rational. In fact, 
traditional tests for forecast rationality are subject to the same issues as the other tests 
previously discussed: they are potentially invalid in the presence of instabilities.

Consider the forecast optimality regression:

 vt1h 5 grt # a 1 ht, h, for t 5 R, . . . ,T, (17.19)

where a is a (p 3 1) parameter vector. The null hypothesis of interest is H0  :  a 5 a0, 
where typically a0 5 0. For example, in forecast rationality tests (Mincer and Zarnowitz, 
1969), vt1h 5 yt1h, gt 5 [1,yt1h 0t ], a 5 [a1,a2 ]r, and typically a researcher is interested in 
testing whether a1 and a2 are jointly zero. For forecast unbiasedness, gt 5 1, for forecast 
encompassing gt is the forecast of the encompassed model, and for serial uncorrelation 
gt 5 vt.

To test forecast optimality, one typically uses the re- scaled Wald test:

 WT 5 â r ̂V21
a â, (17.20)

where V̂a is a consistent estimate of the long- run variance of the parameter vector 
obtained following West and McCracken (1998).6

Rossi and Sekhposyan (2011b) propose the following procedure, inspired by Giacomini 
and Rossi (2010). Let ât be the parameter estimate in regression (17.19) computed over 
centred rolling windows of size m (without loss of generality, we assume m to be an even 
number). That is, consider estimating regression (17.20) using data from t 2 m/2 up to 
t 1 m/2 2 1, for t 5 m/2,. . . ,P 2 m/2 1 1. Also, let the Wald test in the corresponding 
regressions be defined as:

 Wt, m 5 ârt V̂21
q, t ât, for t 5 m/2, . . . , P 2 m/2 1 1, (17.21)

where V̂a,t is a consistent estimator of the asymptotic variance of the parameter esti-
mates in the rolling windows obtained following West and McCracken (1998). Rossi 
and Sekhposyan (2011b) refer to Wt, m as the Fluctuation optimality test. The test rejects 
the null hypothesis H0  :  E(ât) 5 0 for all t 5 m/2, . . . , P 2 m/2 1 1 if maxtWt, m . kRS

a,k, 
where kRS

a, k are the critical values at the 100a per cent significance level. The critical values 
are reported in their Table 1 for various values of m 5 [m/P ] and the number of restric-
tions, p.7

3.4 The choice of the window size
In the presence of breaks, it might be useful to use a rolling window. But which size of the 
rolling window should be used? Similarly, recursive window forecasts require researchers 
to split the sample between an in- sample and an out- of- sample portion. Again, which 
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split- point should be used? For simplicity, in this section we will focus on the choice of 
the window size, although we note that similar issues and solutions are applicable to 
the choice of split- point. The choice of the estimation window size has always been a 
concern for practitioners, and they raise several concerns. The first concern is that the 
use of different window sizes may lead to different empirical results in practice. In addi-
tion, arbitrary choices of window sizes have consequences about how the sample is split 
into in- sample and out- of- sample portions. Notwithstanding the choice of the window 
size is crucial, in the forecasting literature it is common to only report empirical results 
for one window size.

Pesaran and Timmermann (2007) study the problem of determining the optimal 
window size that guarantees the best forecasting performance, especially in the presence 
of breaks. They propose several methods in practice, among which several are available if 
the researcher possesses an estimate of the break, in which case, using either only the post- 
break window data to estimate the parameter or a combination of pre-  and post- break 
data according to weights that trade- off bias against reduction in parameter estimation 
error, might improve forecasting performance. A difficulty in the latter methods is the 
fact that, in practice, it may be difficult to precisely estimate the time and magnitude of 
the break. Thus, rather than selecting a single window, they propose to combine forecasts 
based on several estimation windows. For example, they propose an average (‘Ave’) 
forecast:

 yAVE, f
t1h 0t 5 (T 2 R 1 1)21 a

t

R5t2R
yf

t1h 0t(R)  (17.22)

where R is the size of the rolling window, R is the researcher’s minimum number of 
observations to be used for estimation, and the forecast for the target variable h- steps 
into the future made at time t based on data from the window size R (that is data from 
time t 2 R 1 1 to t) is denoted by yf

t1h 0t(R) .
An alternative approach is suggested by Inoue and Rossi (2012). Inoue and Rossi 

(2012) are interested in assessing the robustness of conclusions of predictive ability tests 
to the choice of the estimation window size. They argue that the common practice of 
reporting empirical results for only one window size raises two types of concerns. First, 
it might be possible that satisfactory results (or lack thereof) were obtained simply by 
chance, and are not robust to other window sizes. Second, it might be possible that the 
data were used more than once for the purpose of selecting the best forecasting model 
and thus the empirical results were the result of data snooping over many different 
window sizes and the search process was not ultimately taken into account when report-
ing the empirical results. Inoue and Rossi (2012) propose new methodologies for com-
paring the out- of- sample forecasting performance of competing models that are robust 
to the choice of the estimation and evaluation window size by evaluating the models’ rel-
ative forecasting performance for a variety of estimation window sizes, and then taking 
summary statistics. Their methodology can be applied to most of the tests of predictive 
ability that have been proposed in the literature, such as those discussed in section 2.

Inoue and Rossi’s (2012) proposed methodology is as follows. Let DLT (R)  denote 
the test of equal predictive ability implemented using forecasts based either on a rolling 
window of size R or recursive/split estimation starting at observation R. For example, 
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for the case of Diebold and Mariano’s (1995) and West’s (1996) test, DLT (R)  is defined 
as in (17.3). Similarly, let DL 

e
T (R)  denote Clark and McCracken’s (2001) ENCNEW test 

for nested models comparison based either on rolling window estimation with window 
size R or recursive/split window estimation starting at observation R. Finally, let WT (R)  
denote tests for forecast optimality analysed by West and McCracken (1998), including 
tests of forecast encompassing (Clements and Hendry, 1993; Harvey et al., 1998), tests 
for forecast rationality (Mincer and Zarnowitz, 1969) and tests of forecast uncorrelat-
edness (Granger and Newbold, 1986; and Diebold and Lopez, 1996) based on forecast 
errors obtained either by estimation on a rolling window of size R or recursive/split 
 estimation starting at observation R.

They suggest the following statistics:

 RT 5 sup
R[{R,. . . R}

0DLT (R) 0 , and AT 5
1

R 2 R 1 1 a
R

R5R

0DLT (R) 0 , (17.23)

 Re
T 5 sup

R[{R,. . .R}
DL 

e
T (R)  and Ae

T 5
1

R 2 R 1 1 a
R

R5R
DL 

e
T (R) , (17.24)

 RW
T 5 sup

R[{R,. . .R}
WT (R) , and AW

T 5
1

R 2 R 1 1 a
R

R5R
WT (R) , (17.25)

where R is the smallest window size considered by the researcher, R is the largest window 
size, and ŴR is a consistent estimate of the long run variance matrix.8 Inoue and Rossi 
(2012) obtain asymptotic approximations to (17.23), (17.24) and (17.25) by letting 
the size of the window R be asymptotically a fixed fraction of the total sample size: 
z 5  lim 

TS`
(R/T) [ (0,1) . The null hypothesis of equal predictive ability or forecast optimal-

ity at each window size for the RT test is rejected when the test statistics are larger than 
the critical values reported in the tables in Inoue and Rossi (2012). For example, at the 5 
per cent significance level and for R 5 [0.15T ] and R 5 [0.85T ], the critical values for 
the RT and AT test are, respectively, 2.7231 and 1.7292. Inoue and Rossi (2012) also con-
sider cases where the window size is fixed – we refer interested readers to their paper for 
more details. Hansen and Timmermann (2012) propose a similar approach; the differ-
ence is that they focus on nested models’ comparisons based on recursive window estima-
tion procedure. The advantage of their method is to provide analytic power calculations 
for the test statistic under very general assumptions. Unlike Inoue and Rossi (2012), 
however, they do not consider rolling window estimation, nor the effects of time- varying 
predictive ability on the power of the test.

3.5 Empirical evidence on forecasting in the presence of instabilities
In an empirical analysis focusing on the large dataset of macroeconomic predictors used 
in Stock and Watson (2003), Rossi (2011) finds that the Granger- causality test robust 
to instability proposed by Rossi (2005) is capable of overturning existing stylized facts 
about macroeconomic predictability and identifies more empirical evidence in favour of 
macroeconomic predictability, due to the fact that, in several cases, predictability only 
appears in subsamples of the data. She also finds similar results when evaluating the 
out- of- sample forecasting ability of macroeconomic predictors: using tests of predic-
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tive ability that are robust to instabilities (such as Giacomini and Rossi, 2010) is key to 
uncovering more predictive ability than previously found. On the other hand, tests of 
forecast rationality that are robust to instability (such as Rossi and Sekhposyan, 2011b) 
find instead more evidence that typical macroeconomic predictors of inflation and 
output growth lead to forecasts that are not optimal.

Finally, in the presence of instabilities, as discussed in Inoue and Rossi (2012), tradi-
tional tests may encounter two problems due to the fact that they are performed condi-
tional on a given estimation window: they might either find spurious predictability (if the 
researcher had performed data- mining over several window sizes) or too little predictive 
ability (if the window chosen for estimation was not the optimal one given the instabil-
ity in the data). Inoue and Rossi (2012) and Hansen and Timmermann (2012) propose 
methods to assess forecasting ability in a way that is robust to the choice of the estima-
tion window size.

Rossi (2011) also notes that there are several estimation procedures that have been 
proposed to improve models’ estimation in the presence of instabilities. One should note 
that, as shown in Elliott and Muller (2007), it is very difficult to estimate break dates 
in the data, which complicates estimation in the presence of instabilities; in addition, 
Pesaran and Timmermann (2002) have shown that, unlike what one might suspect, it 
is not necessarily optimal to use only observations after a break to forecast. Estimation 
methods that perform well in forecasting are therefore a bit more sophisticated than 
models in subsamples estimated according to possible break- dates. For example, 
Pesaran and Timmermann (2002, 2007) propose to adapt the estimation window to 
the latest break in a more sophisticated manner; Pesaran et al. (2006) and Koop and 
Potter (2007) propose time- varying parameter models where the size and duration of 
the process is modelled explicitly, and Clements and Hendry (1996) propose intercept 
corrections. Alternative methods include forecast combinations (Timmermann, 2006) 
and Bayesian model averaging (Wright, 2008, 2009). In her empirical analysis on the 
large dataset of macroeconomic predictors for inflation and output growth, Rossi (2011) 
finds that, among the estimation and forecasting methodologies robust to instabilities 
discussed above, forecast combinations with equal weights are the best.

Should one rely on in- sample measures of fit or out- of- sample measures of forecast 
performance when evaluating models? The short answer is that the two provide very 
different assessments of models’ validity. Clark and McCracken (2005) show that 
 out- of- sample forecasting procedures have more power in finding predictive ability 
than traditional in- sample Granger- causality tests in the presence of instabilities since 
they re- estimate the models’ parameters over time. On the other hand, Inoue and Kilian 
(2005) argue that in- sample tests are based on a larger sample size than out- of- sample 
forecast tests, and thus may be better when designed appropriately. In fact, Clark and 
McCracken (2005) also show that the Granger- causality tests designed to be robust to 
instabilities (Rossi, 2005) perform even better. However, instabilities are only one of 
the sources of the difference between in- sample fit and out- of- sample forecasting per-
formance. Giacomini and Rossi (2009) show that the difference depends on parameter 
instabilities, instabilities in other aspects of the forecasting model, as well as estimation 
uncertainty (including over- fitting). They also propose a ‘Forecast Breakdown’ test 
to determine whether, empirically, models’ in- sample fit differs from out- of- sample 
forecasting ability. How does one determine empirically why in- sample fit differs from 
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 out- of- sample forecasting ability? Rossi and Sekhposyan (2011a) provide a  methodology 
to decompose the models’ forecasting ability into asymptotically uncorrelated compo-
nents that measure the contribution of instabilities, predictive content and over- fit in 
explaining the differences between in- sample fit and out- of- sample forecasting perform-
ance. Using their method, one can uncover the source of the difference between the two. 
In an empirical analysis on a large dataset of macroeconomic predictors, Rossi (2011) 
finds that most predictors for output growth and inflation experienced a forecast break-
down based on Giacomini and Rossi’s (2009) test. She investigates the reasons for the 
breakdown using Rossi and Sekhposyan’s (2011a) decomposition, and finds that, when 
forecasting inflation, instabilities are a major determinant when using interest rates as 
predictors, whereas when using real measures of activity (such as unemployment) not 
only are there instabilities but the predictive content is misleading (that is, out- of- sample 
forecasting ability goes in the opposite direction relative to in- sample fit). When fore-
casting output growth, overfitting drives a wedge between in- sample and out- of- sample 
measures of performance even for predictors that have significant predictive content.

PART II  SPECIAL EMPIRICAL ISSUES IN FORECASTING IN 
MACROECONOMICS

In the second part of the chapter we will focus on special issues that arise in practice 
when forecasting with macroeconomic data. Given the space constraints we will focus 
only on four issues that are especially important in practice, in particular: forecasting 
real activity with leading indicators, forecasting inflation, forecasting with real- time 
data, and including economic theory in forecasting.

4 Forecasting Real Economic Activity with Leading Indicators

An important goal of forecasting is to identify and evaluate leading indicators of real 
economic activity. Typically, the target variable for the leading indicator is either Gross 
Domestic Product (GDP) or industrial production or a composite index. For example, 
Burns and Mitchell (1946) define business cycles as co- movements, happening at the 
same time, in a large number of economic variables, which fluctuate from expansions 
and recessions and whose duration can last between 1 and 8 years (see Stock and Watson, 
1999a). Since typically most measures of economic activity are highly correlated with 
GDP, one can use the latter as the measure of the business cycle, or an index (weighted 
average of several real economic variables) summarizing the joint co- movements among 
the real variables. An example of the latter is the Stock and Watson (1989) coincident 
index of economic activity based on industrial production, real disposable income, hours 
and sales.

The objective of the leading indicators literature is to predict the future values of such 
target variables, and successful leading indicators either: (i) successfully predict turning 
points while at the same time maintaining good predictive power across the various 
stages of the business cycle; for example, a good leading indicator should systematically 
anticipate the target variable with a stable lead time and be capable of predicting peaks 
and troughs with sufficient lead times; (ii) are economically and statistically significant 
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predictors; for example, one would expect that good leading indicators have significant 
marginal predictive content and Granger- cause the target variable. In order for a leading 
indicator to have the aforementioned properties, it is often necessary to transform (or 
filter) the leading indicator to remove high frequency fluctuations and very long- run 
components that do not contain useful information on the business cycle. Typically, 
filtering the data is done by using Baxter and King’s (1999) bandpass filter, which allows 
research to focus on the frequencies of interest (see Stock and Watson, 1999a); note that 
Hodrick–Prescott filters, while removing very long frequencies, do keep very high fre-
quency movements and therefore are not ideal.

Widely used leading indicators include model- free composite indexes as well as 
model- based indexes. The former apply statistical methods such as detrending, sea-
sonal adjustment and removal of outliers to the candidate leading indicator series. An 
example is the composite coincident index (CCI) by the Conference Board. A major 
problem of model- free composite indexes is that it is not possible to construct measures 
of uncertainty around them, since they are not estimated models. Model- based leading 
indicators instead rely on either dynamic factor models or Markov- switching models to 
estimate the index, and the estimation procedure does provide a measure of uncertainty 
around the point forecast. The difference between the two is that the underlying unob-
servable state of the economy is modelled as a continuous variable in the former and 
as a discrete variable in the latter. Examples of the former include the dynamic factor 
models of Geweke (1977), Sargent and Sims (1977), Stock and Watson (1991, 1993) 
and Forni et al. (2000); examples of the latter include Hamilton (1989), Diebold and 
Rudebusch (1989), Chauvet (1998) and Kim and Nelson (1998), among others. For a 
detailed technical description of these models, see Marcellino (2009). It is also possible 
to model directly the state of the business cycle (that is, the expansions/recessions) using 
probit or logit models, as in Stock and Watson (1991) or Estrella and Mishkin (1998), 
for example.

Marcellino (2009) provides an extensive empirical analysis of the success of leading 
indicators in practice as well as an excellent overview of the theoretical literature. He 
notes that most CCI indicators behave similarly for the US, and their peaks and troughs 
coincide with the recession dates identified by the NBER.

To evaluate the success of a leading indicator, it is common practice to compare its 
out- of- sample predictions with the realized values of the target variable, either the busi-
ness cycle indicator (expansion/recession) or the state of the business cycle. In the latter 
case, the tests for forecast comparisons listed in section 2 can be used; in the former case, 
one often constructs probability scores. For example, Diebold and Rudebusch (1989) 
have proposed using the quadratic probability score:

 QPS 5
2
P a

P

t5R11

(Pt1h 0t 2 Rt1h) ,

where Rt1h is a binary indicator indicating whether the economy is in a recession or 
expansion at time t 1 h, and Pt1h 0t is the probability of recession/expansion at time 
t 1 h based on the leading indicator using information up to time t. The lower the 
quadratic probability score, the better the forecast; a value close to zero indicates 
perfect forecasts.
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Marcellino (2009) compares the success of several leading indicators at the one and 
six months ahead forecast horizon in an out- of- sample forecast exercise over the period 
1989 to 2003, which includes two recessions.

Stock and Watson (1999a) examine co- movements across many series and real GDP, 
which they think of as a proxy for the overall business cycle. They find large correlations 
between several variables and real GDP growth at a variety of leads and lags. Variables 
that Granger- cause output can be thought of as leading indicators for the business cycle, 
although the predictive ability of several such indicators is unstable over time, according 
to parameter stability tests in the Granger- causality regressions. For example, housing 
starts and new orders lead output growth.

Rossi and Sekhposyan (2010) evaluate various economic models’ relative performance 
in forecasting future US output growth. They show that the models’ relative perform-
ance has, in fact, changed dramatically over time, both for revised and real- time data. In 
addition, they find that most predictors for output growth lost their predictive ability in 
the mid- 1970s, and became essentially useless in the last two decades.

More recent developments focus on developing better methods to handle data irregu-
larities and improve nowcasts of macroeconomic variables in real time. Nowcasts are the 
current period forecasts of unobserved macroeconomic variables which will be revealed 
or revised subsequently. Giannone et al. (2008) develop a formal methodology to evalu-
ate the information content of intra- monthly data releases for nowcasts of GDP growth. 
They show that their method can handle large data sets with staggered data- release dates 
and successfully tracks the information in real time.

5 Forecasting Inflation

In a classic paper, Stock and Watson (1999b) investigated one- year ahead forecasts of 
US inflation. They focused on predicting inflation using the unemployment rate, accord-
ing to the Phillips curve. In a sample of monthly data from 1959 to 1997, they found that 
the latter produces more accurate forecasts than other macroeconomic variables, includ-
ing commodity prices and monetary aggregates. They also found statistical evidence of 
instabilities in the parameters of the Phillips curve. In addition, they showed that, by 
including index measures of real activity, it is possible to improve inflation forecasts 
beyond those based on unemployment.

Rossi and Sekhposyan (2010) evaluate various economic models’ relative performance 
in forecasting inflation by taking into account the possibility that the models’ relative 
performance can be varying over time. They show that fewer predictors are significant 
for forecasting inflation than forecasting output growth, and their predictive ability sig-
nificantly worsened around the time of the Great Moderation.

Faust and Wright (2011) investigate subjective forecasts, which empirically appear 
to have an advantage over traditional model- based forecasts. They attempt to incor-
porate subjective forecast’s information into model- based forecasts. They argue that, 
by exploiting boundary values provided by subjective forecasts (for example where 
inflation will be in the medium and long run), it might be possible to improve model- 
based forecasts. However, they find that, given good boundary values, models cannot 
improve much on trivial paths between the boundaries and, overall, perform equally 
well.
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6 Forecasting with Real- time Data

When conducting a forecasting exercise, typically researchers utilize data that they have 
collected at the time of the analysis for the macroeconomic variables of interest from the 
beginning of the sample up to the most recent data available. Then, using these data, 
they mimic what a forecaster would have done in the past to obtain a series of pseudo 
out- of- sample forecasts over time. However, these data are not necessarily the same as 
the data that were available at the time forecasters were actually producing a forecast. In 
fact, data are constantly subject to data revisions, changes and updates, which not only 
change the contemporaneous value of the variables but also their past values. To avoid 
this problem, Croushore and Stark (2001, 2003) introduced a database (the ‘Real- time 
data set for macroeconomists’) that is available free at the Federal Reserve Bank of 
Philadelphia. The database consists of a series of datasets of macroeconomic variables 
collected at each point in time (vintage); at each time, the dataset contains data of macro-
economic variables as they existed at that point in time, starting from the first datapoint 
up to the time of collection. Each dataset is a snapshot of the data that a forecaster would 
have been able to observe and use at each point in time. Using real- time data effectively 
allows the actual forecasting ability of models or predictors to be evaluated.

Using real- time data is important in practice. Orphanides (2001) has shown that impli-
cations of macroeconomic models for studying the effects of monetary policy in- sample 
might change if one uses real- time as opposed to revised data. Similarly, the empirical 
results of forecasting exercises might differ depending on whether the researcher uses 
real- time as opposed to revised data. In fact, Orphanides and Van Norden (2005) show 
that, although ex- post measures of the output gap are useful for predicting inflation, in 
real time the predictive content disappears. Edge et al. (2007) also find the same result 
when forecasting long- run productivity growth. Similarly, Faust et al. (2003) show that 
exchange rates are much more difficult to forecast using real- time data. Swanson (1996) 
finds that Granger causality test results change depending on whether one uses the first 
release of the data or the latest available data. Finally, Amato and Swanson (2001) show 
that money supply has predictive content for output only when using fully revised data 
rather than real- time data.

There are three main reasons why forecasts may be affected by revisions (Croushore, 
2006). First, the data are different: real time databases provide vintages of data; thus, 
the data to be forecasted are different. In contrast, typical forecasting exercises are 
implemented and evaluated using the last revised data available at the time the data are 
collected. Secondly, the estimated coefficients change. In fact, the forecasting exercise 
can be implemented by either using the data available in the latest vintage of data (that 
is, what the forecaster would have had available at that point in time) or by using for 
each time the data that were immediately released at that time. Again, this is different 
from estimating coefficients using data that are available at the time the data are col-
lected (fully revised data). Koenig et al. (2003) find that it is best to use the first release of 
the data in forecasting rather than real- time data. Third, the model used for forecasting 
may be different as well (for example, the number of lags estimated using real- time data 
might differ from that estimated in fully revised data). See Croushore (2006) for more 
details.

Finally, the fact that data are revised might be exploited to improve forecasts as well. 
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For example, one might optimally take into account data revisions by using a Kalman 
filter or a state- space model. See Howrey (1978) for how to do so in practice.

7 Economic Theory and Forecasting

Can economic theory help us produce better forecasts? This is a fundamental question 
that has received little attention in the literature. In fact, a general picture that emerges 
from the recent literature on forecasting methodology is the almost exclusive focus on 
‘a- theoretical’ econometric models. This may be partly due to the fact that some of these 
methods have proven to be quite successful, in particular those that provide a way to 
extract the information contained in large datasets while at the same time controlling the 
dimensionality of the problem, such as factor models (Stock and Watson, 2002; Forni 
et al., 2000), Bayesian VARs (BVARs, for example, Litterman, 1986; Giannone et al., 
2010) and forecast combination methods such as Bayesian model averaging (Raftery et 
al., 1997; Aiolfi et al., 2010) and bagging (Inoue and Kilian, 2008). On the other hand, 
there has been some call in the literature (particularly from researchers at central banks 
and policy institutions) for forecasts that are based on models that can ‘tell a story’ (Edge 
et al., 2010). As a response, a small amount of literature has investigated the forecasting 
performance of the new generation of dynamic stochastic general equilibrium (DSGE) 
models that are large- scale theoretical models built on microfoundations with optimizing 
agents (for example, Smets and Wouters, 2003). See, for example, Adolfson et al. (2007), 
Wang (2009), Lees et al. (2011) and Edge et al. (2010). The evidence from this literature 
is, however, still limited and the conclusions should be taken with caution as they are 
typically based on short evaluation samples that moreover do not include the most 
recent periods of recession. A more thorough evaluation of the forecasting performance 
of DSGE models is clearly needed.

In particular, Gurkaynak and Edge (2010) empirically assess the forecasting perform-
ance of the Smets and Wouters DSGE model. They explore how this model would 
have forecasted, from 1 to 8 quarters ahead, movements in inflation, output growth 
and interest rates between 1997 and 2006 and evaluate how good forecasts based on 
DSGE models are using real- time data. They find that their forecasts are not worse than 
those based on several competing alternatives, including official forecasts such as the 
Greenbook and Blue Chip Consensus forecasts. Greenbook forecasts are judgemental 
forecasts produced by the Board of Governors of the Federal Reserve System; they are 
produced before each FOMC meeting, approximately eight times a year, and are made 
available to the public with a five- year delay. Importantly, Greenbook forecasts are 
produced conditional on expected paths for financial variables such as the policy inter-
est rate. The Blue Chip Consensus forecasts are forecasts of several important macro-
economic variables (such as output growth, inflation and interest rates) made monthly 
by a sample of approximately 50 banks and consulting firms; the average forecast across 
the sample is called the Consensus forecast. However, their absolute performance is very 
poor, especially during the Great Moderation period, since there was basically nothing 
to be forecasted. Similarly, Edge et al. (2010) compared the forecasts from the Federal 
Reserve Board’s DSGE model with alternative forecasts based on time series models as 
well as Greenbook forecasts.

A further branch of the literature has looked for a middle ground and proposed 
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‘hybrid’ approaches. One example in the context of model estimation is the use of theo-
retical models to construct priors for the parameters of econometric models (An and 
Schorfheide, 2007; Schorfheide, 2000), or the idea of constructing an optimal combina-
tion of the theoretical and econometric models (Del Negro and Schorfheide, 2004).

We will next discuss two different hybrid approaches applied to the specific case of 
out- of- sample forecasting.

7.1 Carriero and Giacomini (2011)
The idea of optimally combining the theoretical and the econometric model can be 
easily extended to the context of out- of- sample forecasting, as shown by Carriero and 
Giacomini (2011). The basic idea is to first acknowledge that the theoretical model can 
often be viewed as an econometric model with theory- based parameter restrictions. This is 
the case of the DSGE models considered in the literature mentioned above, since they are 
linearized DSGE models that can therefore be written as vector ARMA models subject 
to cross- equation restrictions implied by theory. The problem is therefore that of com-
bining two forecasts in a non- standard framework in which there is only one model, but 
the forecaster has the option of either imposing the parameter restrictions implied by the 
theoretical model or of forecasting with the unrestricted model. The forecast combination 
problem is non- standard because the combination is between forecasts based on the same 
model but that use different estimators, which may yield perfectly correlated forecasts in 
large samples. This problem can be overcome by adopting the asymptotic framework of 
Giacomini and White (2006), where the estimation uncertainty is non- vanishing.

Carriero and Giacomini (2011) propose estimating the optimal combination weight 
out- of- sample and constructing an out- of- sample encompassing test. Let the forecast 
combination be f*t 5 fR

t 1 (1 2 l) ( fU
t 2 fR

t ) , and define the optimal weight l* as the 
one that minimizes a general expected out- of- sample loss

 l* 5 arg min
l[R

E c 1
P a

T2h

t5R
L(yt1h, f*t ) d

 5 arg min
l[R

E [QP (l) ], (17.26)

which can be estimated by

 l̂ 5 arg min
l[R

1
P a

T2h

t5R
L(yt1h, f*t )

 5 arg min
l[R

QP (l) . (17.27)

Under suitable assumptions, Carriero and Giacomini (2011) show that a test of the 
‘usefulness’ of the parameter restrictions for out- of- sample forecasting can be obtained 
by first constructing

 tU 5
"n(l̂ 2 1)

ŝ
 and

 tR 5
"n l̂

ŝ
, (17.28)
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where ŝ is given by

 ŝ 5" Ĥ21ŴĤ21;

 Ĥ 5 �llQn ( l̂) ;

 Ŵ 5 a
p21

j52p11
a1 2 0 j

p
0 bn21 a

T2h

t5R1 j
st( l̂)st2 j(l̂) ;

 st( l̂) 5 �lL(yt1h, fR
t 1 (12 l̂) ( fU

t 2 fR
t )) , (17.29)

where p is a bandwidth that increases with the sample size (Newey and West, 1987). 
Then the hypotheses HU

0   :  l* 51 (the unrestricted forecast is useless) and HR
0   :  l* 5 0 

(the restricted forecast is useless) are rejected at a significance level a  respectively when 0tU 0 . ca/2 and 0tR 0 . ca/2, with ca/2 indicating the 1 2 a/2 quantile of an N(0,1)  distribu-
tion. If both hypotheses are rejected, the estimated weight l̂ yields the forecast combi-
nation that optimally exploits the theoretical restrictions, given the user- defined loss 
function.

Note that the same test can be used to combine forecasts based on any two compet-
ing estimators, and it is not necessary that the forecast fU

t  be based on the unrestricted 
models (in other words, fU

t  could be a forecast based on any other estimator, for example, 
a- theoretical restrictions such as a BVAR or a random walk).

7.2 Giacomini and Ragusa (2011)
The approach discussed in the previous section requires one being able to construct 
forecasts based on the theoretical model. A model that fully specifies a likelihood for 
all the variables of interest (for example, in the multivariate case) is not, however, 
always available, and there might be a concern that a fully- fledged DSGE is misspeci-
fied. One may for example be interested in asking whether the restrictions embedded in, 
say, a Euler equation are useful for forecasting, which is a difficult question to answer 
as the Euler equation does not provide a conditional likelihood that can be used for 
forecasting.

Giacomini and Ragusa (2011) propose adopting a hybrid approach to forecasting that 
starts from a forecast based on the econometric model (for example, a BVAR or a factor 
model) and modifies it in a way that results in a forecast that satisfies theoretical restric-
tions written in the form of non- linear moment conditions, such as, for example, Euler 
equations or moment conditions implied by Taylor rules.

This is obtained by projection methods as follows. Suppose the theory- based moment 
restrictions for the vector yt1h are

 Et [g(yt1h,q0) ] 5 0, (17.30)

where the subscript t indicates conditioning on the information set at time t and q0 is 
assumed to be known, calibrated, or estimated on a different data set from the one used 
for forecasting (note that the moment conditions could possibly only involve a subset of 
yt1h) . One proceeds as follows:
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1. Produce a sequence of h- step ahead density forecasts from an econometric model, 
ft(yt1h)  for t 5 R,. . .,T 2 h.

2. Project each ft(yt1h)  onto the space of distributions that satisfy the moment condi-
tion Et [g(yt1h,q0) ] 5 0. This yields a new density f

|

t(yt1h)  given by:

 f
|

t(yt1h) 5 ft(yt1h) exp{ht 1 lrtg(yt1h,q0) }. (17.31)

 The new density by construction satisfies the moment condition (17.30).
3. For each t, estimate ht and lt by (numerically) solving:

 lt 5 min
l
3 ft (x) exp{lrg(x,q0)}dx

 ht 5 log e 3ft (x) exp{ltrg(x,q0) }dx f21

 (17.32)

The new forecast f
|

t(yt1h)  can be interpreted as the density which, out of all the densities 
that satisfy the moment condition, is the closest to the initial density ft(yt1h)  according 
to a Kullback–Leibler measure of divergence. The paper shows that the theory- coherent 
density forecast f

|

t(yt1h)  is weakly more accurate than the initial, a- theoretical forecast, 
when accuracy is measured by a logarithmic scoring rule, provided the moment restric-
tions are true at all time periods.

The method is an alternative to forecasting with fully- fledged DSGE models and 
can be used to investigate the role of theory in forecasting in a variety of empirical 
applications. Because of the possibility of accommodating non- linearity in the moment 
conditions (a task that may be difficult to accomplish in a likelihood- based context) the 
method can also be used to ask whether incorporating the non- linearity suggested by 
theory into forecasts can lead to improvements in accuracy in practice.

8 Conclusions

This chapter provides an overview of forecast methodologies and empirical results that 
are useful for macroeconomists and practitioners interested in forecasting using macro-
economic databases. A more detailed exposition of these techniques as well as other 
available techniques that we did not include due to space constraints is provided in 
Elliott et al. (2009) and Elliott and Timmermann (2011).

NOTES

1. For ease of notation we stack the parameters of the two models in q̂t.
2. From a technical point of view, the reason why things work is that the assumption of a finite estimation 

window means that DLt1h (q̂t)  can be viewed as a function of the finite history of the predictor and pre-
dictands, and as such it inherits their time series properties, which makes it easy to derive the test.

3. Rossi (2005) also considers the general case of testing possibly non- linear restrictions in models estimated 
with Generalized Method of Moments (GMM). She also considers the case of tests on subsets of param-
eters, that is, in the case of Granger- causality regressions, tests on whether xt Granger- causes yt in the 
model yt1h 5 x rt bt 1 z rt g 1 et,h.

4. They also derive critical values for one- sided tests.
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5. The fundamental difference between these approaches and Giacomini and White (2006) is that they test 
two different null hypotheses: the null hypothesis in West (1996) and Clark and West (2006, 2007) concerns 
forecast losses that are evaluated at the population parameters, whereas in Giacomini and White (2006) the 
losses depend on estimated in- sample parameters. This reflects the different focus of the two approaches on 
comparing forecasting models (West, 1996, and Clark and West, 2006, 2007) versus comparing forecasting 
methods (Giacomini and White, 2006).

6. West and McCracken (1998) have shown that it is necessary to correct (17.20) for parameter estimation 
error in order to obtain test statistics that have good size properties in small samples, and proposed a 
general variance estimator as well as adjustment procedures that take into account estimation uncertainty.

7. Rossi and Sekhposyan (2011b) also note that a simple, two- sided t- ratio test on the sth parameter, a(s), can 
be obtained as â(s)

t V̂21/2
a(s),t, where V̂a(s),t is element in the sth row and sth column of V̂a, t; then, reject the null 

hypothesis H0  :  E(â(s)
t ) 5 a(s)

0  for all t 5 m/2, . . . , P 2 m/2 1 1 at the 100a per cent significance level if 
maxt 0â(s)

t V̂21/2
a(s),t 0. kGR

a , where kGR
a  are the critical values provided by Giacomini and Rossi (2010).

8. See West (1996) for consistent variance estimates in (17.23), Clark and McCracken (2001) for (17.24) and 
West and McCracken (1998) for (17.25).
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18 The science and art of DSGE modelling: 
I – construction and Bayesian estimation*
Cristiano Cantore, Vasco J. Gabriel, Paul Levine,
Joseph Pearlman and Bo Yang

1 INTRODUCTION

The past forty years or so have seen a remarkable transformation in macro- models used 
by central banks, policymakers and forecasting bodies. In this chapter and the next, we 
discuss how the different elements of modern macroeconomic models can be seamlessly 
integrated in a framework encompassing the different stages of model building, estima-
tion and policy analysis. We describe the development of the building blocks of such 
models, showing that the main features of New Keynesian (NK) Dynamic Stochastic 
General Equilibrium (DSGE) models consist of a ‘Real Business Cycle’ (RBC) core, with 
an outer shell that includes nominal rigidities and other frictions. We then discuss how to 
take these models to the data, focusing on empirical implementations based on Bayesian 
system estimation methods.

The road of macroeconomic modelling is full of twists and turns, but the different 
directions taken seem to have converged to what is still, to a large extent, the consensual 
synthesis. Indeed, the models that are now the mainstay for policy analysis and forecast-
ing depart significantly from previous approaches in that they strike a balance between 
internal consistency, empirical adherence and adequacy for policy analysis.

In contrast, in the 1960s–1970s econometric models were mostly based on equation- 
by- equation estimation of what were essentially Keynesian reduced form behavioural 
equations, without explicit expectations. Large models were then constructed using these 
behavioural relationships as building blocks, alongside identities defining aggregate 
demand, trade balances and the government budget constraint.

The introduction of first adaptive and then rational expectations led to what proved to 
be a fatal blow for this generation of models –  the Lucas Critique (Lucas,1976, seconded 
by Sims, 1980 and Sargent, 1981). As Pesaran and Smith (1995) suggest, these models 
‘did not represent the data. . . did not represent the theory . . . [and] . . . were ineffec-
tive for practical purposes of forecasting and policy’. In the context of forward- looking 
agents with rational expectations, this critique showed that apparently stable empirical 
backward- looking relationship between, for example, consumption, post- tax income 
and real consumption, were not independent of the policy rule in place. The implication 
of this finding is that these (apparently structural) models were at best suitable for fore-
casting on the basis of a continuation of an existing policy and were, therefore, unfit for 
the purpose of examining the consequences of different policies.1

Early models certainly lacked coherence in that different behavioural relationships 
involving the same optimizing agent often led an independent existence. Within what is 
often termed the new classical macroeconomics approach, the seminal paper by Kydland 
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and Prescott (1982) produced the first small coherent dynamic general equilibrium macro 
model built from solid micro- foundations with expected utility optimizing forward- 
looking agents. This first RBC model was stochastic and therefore of DSGE form, with 
only one exogenous shock to technology. Despite this simple structure, the model was 
remarkably successful at reproducing the volatilities of some observed variables.

RBC models provided a fundamental methodological shift, but it soon became appar-
ent that their contribution in terms of policy analysis in central banks and policy institu-
tions was of limited impact and usefulness. Indeed, their very stylized, frictionless nature, 
implied that any change in the monetary policy instrument induced immediate changes 
in inflation and, in consequence, little or no impact on real variables, which runs counter 
to empirical evidence (see Bernanke and Mihov, 1998 and Christiano et al., 1999, for 
example).

Although there were many other dimensions along which the RBC framework failed 
on its own terms (notably in reproducing observed output persistence and the volatility 
of hours), subsequent developments did not abandon what is an otherwise intellectually 
sound approach. Indeed, the so- called New Keynesian (NK) macroeconomics attempted 
to address the shortcomings of RBC models, relying on rigorous micro- foundations. A 
crucial distinction of the Keynesian perspective, though, is the view that real economies 
are not perfectly flexible nor perfectly competitive, thus providing a powerful cause for 
(inefficient) business cycle fluctuations and the non- neutrality of money. This, conse-
quently, implies that economic policy has a significant role in minimizing welfare distor-
tions caused by these imperfections and rigidities.

Thus, much of the research from the mid- 1980s onwards was devoted to developing 
mechanisms that provide a rationale for price stickiness. These include models of imper-
fect competition, imperfect information and nominal price rigidities, which eventually 
made their way into current NK DSGE models.2 In fact, incorporating price stickiness 
in a rigorous way requires that firms are price setters, as opposed to price takers in a per-
fectly competitive world. This can be achieved in a tractable way by using the monopo-
listic competition approach of Dixit and Stiglitz (1977), in which firms produce (and set 
prices for) differentiated goods.

Nominal price inertia then requires some form of staggered pricing, so that only a 
proportion of firms adjust prices at a given time. While different formulations are pos-
sible, the Calvo (1983) formulation has become standard, as it greatly simplifies aggrega-
tion.3 An extension with similar persistence mechanisms to wage setting was suggested 
by Erceg et al. (2000), which, while playing an important role in explaining output and 
inflation dynamics, has also important implications for optimal monetary policy, as 
now a welfare- maximizing central bank should be concerned with both price and wage 
stability.

In the quest for increased theoretical and empirical adequacy, additional frictions have 
been suggested in order to further capture the observed inertial behaviour of inflation 
and other aggregate variables. Carlstrom and Fuerst (1997) and Bernanke et al. (1999), 
for example, propose the introduction of financial frictions, while Christiano et al. (2005) 
stress the role played by habit persistence in consumption preferences, adjustment costs 
in investment and variable capital utilization.

The endeavours on the theoretical front have greatly benefited from major advances 
in the econometric techniques that are used to estimate and assess DSGE models. 
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Interestingly, a synthesis of apparently divergent approaches has also been gathering 
pace as the dominant paradigm in the empirical analysis of DSGE models. The initial 
response to the Lucas critique was radical in both directions. On one hand, the Vector 
Autoregression (VAR) approach of Sims (1980) circumvented the ‘incredible’ exogene-
ity identification assumptions of the 1970s by (initially, at least) abandoning them alto-
gether, that is, a VAR model should provide an a- theoretical, non- structural empirical 
account of macroeconomic relationships.

On the other hand, Kydland and Prescott (1982) suggested an alternative methodol-
ogy of evaluating dynamic macroeconomic models.4 Given that empirical macro models 
were merely capturing reduced- form relationships, rather than deep parameters arising 
from agents’ inter- temporal optimization, Kydland and Prescott (1982) propose drop-
ping any attempts to estimate these models, focusing instead on quantitative exercises 
based on calibrated parameters. Thus, having selected a metric for model evaluation 
(usually involving comparisons of model moments and their data counterparts), the 
parametrization of the structural parameters is obtained by weighing information sug-
gested by economic theory and previous evidence taken from microeconometric studies, 
so that the model replicates particular ‘stylized facts’ of the actual economy.

Some alternatives have sought to find a middle ground, between the a- theoretical 
VAR approach and the a- statistical calibration methodology. These include the use 
of the Generalized Method of Moments (see Christiano and Eichenbaum, 1992, 
for example, and Chapter 20 by Francisco Ruge- Murcia in this Handbook) or the 
Matching Moments method of Christiano et al. (2005), whereby parameters are 
estimated so that the difference between the impulse response functions (IRF) of a 
VAR and those of a DSGE model is minimized. However, these (mostly) limited- 
information methods have been superseded by full- information methods. Given 
a chosen probabilistic structure, a likelihood function can be constructed so that 
the DSGE model provides a full statistical characterization of the observed data. 
Different choices for parameters will lead to different values of the likelihood function 
(that is, the probability of observing the data given the model’s parameters), so the 
practitioner is interested in finding the parametrization that maximizes the ‘likelihood’ 
of the model originating the data at hand.

Classical maximum likelihood estimation (MLE) treats parameters as unknown, but 
fixed, and these are chosen so that the likelihood function is maximized, given a realiza-
tion of the observables. On the other hand, a Bayesian framework assumes that param-
eters are random variables, about which the researcher may have prior information (for 
example theoretical ranges for the parameters, previous studies, and so on). Combined 
with the likelihood function, this then forms the posterior density, from which one can 
draw inferences about the parameters. Notice that, on one hand, this approach con-
strains the parameter space, thus reducing the possibility of obtaining ‘absurd’ estimates 
that may occur when classical MLE is used (see An and Schorfheide, 2007). On the other 
hand, it provides a more sophisticated and flexible form of calibration, whereby several, 
rather than just one, potential values of the parameter are considered, weighted by the 
relevant prior density.

There is now a substantial body of literature devoted to understanding business cycle 
dynamics, in which empirical DSGE models have been found to provide good empirical 
fit and forecasting performance (see Smets and Wouters, 2003; Fernandez- Villaverde 
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and Rubio- Ramirez, 2004; Smets and Wouters, 2007; Adolfson et al., 2007; Del Negro 
et al., 2007; Gabriel et al., 2010, to name a few). Given its advantages, the Bayesian 
approach has become particularly popular with policy institutions, as it encapsulates 
the idea that good policy making requires utilizing formal models alongside judgement. 
Indeed, as demonstrated in Levine et al. (2012), it is also very important to design policy 
rules that are ‘robust’ to model uncertainty.

In section 2 we describe the RBC core, while in section 3 we introduce the main NK 
features found in modern DSGE models. Their impulse response functions are addressed 
in section 4. The models are increasingly estimated by systems estimation using Bayesian- 
Maximum Likelihood Estimation, which is described in section 5. Section 6 summarizes 
this chapter.

2 RBC MODEL WITHOUT INVESTMENT COSTS

The construction of a DSGE model requires the specification of agents’ preferences, 
the economy’s technological constraints and the set of exogenous shocks to which the 
economy is subject. The agents’ decision rules are derived from the first order condi-
tions of the dynamic optimization problem for each agent. Aggregating over agents 
and assuming that markets clear allow us to derive a system of non- linear stochastic 
difference equations, involving the endogenous variables, the parameters and a set of 
shocks. The purpose is then to find a stable and unique solution to the model, which 
requires an additional set of procedures. The model should be written in stationary 
form, so that the variables are written as deviations from a balanced- growth steady- 
state. Often DSGE models are log- linearized and written in state- space form. Standard 
methods then result in a linear Rational Expectations solution of the model. We dem-
onstrate this procedure for the NK model that follows, but using the software package 
Dynare5 the modeller can simply set up the non- linear model and either compute the 
steady state or in the RBC model write down an analytical solution. Dynare then 
performs the linearization to produce a first- order solution. These different stages are 
detailed next.

First we consider a simple RBC model with a wholesale and monopolistic retail sector, 
but no costs of investment (see Lucas, 1987; Wickens, 2008; Lim and McNelis, 2008, 
chapter 6). This lies at the core of the NK model that follows later. We include a retail 
sector with monopolistic competition that is usually omitted in the standard RBC model 
that assumes perfect competition. However, it is convenient to include it at this stage in 
order to allow a seamless progression to the New Keynesian model with staggered price 
setting.

2.1 RBC Model without Investment Costs

First for the household we have

 Utility  :  Lt 5 L (Ct, Lt)  (18.1)

 Euler Consumption  :  LC,t 5 bRtEt [LC,t11 ] (18.2)
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 Labour Supply  :   
Lh,t

LC,t
5 2

Wt

Pt
 (18.3)

 Leisure and Hours  :  Lt ; 1 2 ht (18.4)

where Ct is real consumption, Lt is leisure, Rt is the gross real interest rate set in period 
t to pay out interest in period t 1 1, ht are hours worked and Wt

Pt
 is the real wage. The 

Euler consumption equation, (18.2), where Et [ # ] denotes rational expectations based on 
agents observing all current macroeconomic variables (that is, ‘complete information’), 
describes the optimal consumption–savings decisions of the household and is derived 
in Appendix A. It equates the marginal utility from consuming one unit of income in 
period t with the discounted marginal utility from consuming the gross income acquired, 
Rt, by saving the income. For later use it is convenient to write the Euler consumption 
equation as

 1 5 RtEt [Dt,t11 ] (18.5)

where Dt,t11 ; b
LC,t 1 1

LC,t
 is the real stochastic discount factor over the interval [t,t 1 1]. 

Equation (18.3) equates the real wage with the marginal rate of substitution between 
consumption and leisure.

Output and the firm’s behaviour is summarized by:

 Wholesale Output  :  YW
t 5 F(At,ht,Kt21)  (18.6)

 Retail Output  :  Yt 5 (1 2 c)YW
i  (18.7)

 Labour Demand   :  
PW

t

Pt
Fh,t 5

Wt

Pt
 (18.8)

 Capital Demand  :  Et cPW
t11

Pt11
FK,t d 5 Rt 2 1 1 d (18.9)

 Price Mark Up  :  Pt 5
1

1 2
1
z

PW
t  (18.10)

Equation (18.6) is a production function for the wholesale sector that is converted 
into differentiated goods in (18.7) at a cost cYW

t . Note here Kt is end- of- period t capital 
stock. Equation (18.8) equates the marginal product of labour with the real wage. 
Equation (18.9) equates the marginal product of capital with the cost of capital. Pt 
and PW

t  are the aggregate price indices in the retail and wholesale sectors respectively 
and the mark- up in (18.10) is simply the flexi- price case of the monopolistic competi-
tion set- up described in the NK model below. The model is completed with an output 
equilibrium, law of the motion for capital and a balanced budget constraint with 
lump- sum taxes.

 Yt 5 Ct 1 Gt 1 It

 It 5 Kt 2 (1 2 d)Kt21
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 Gt 5 Tt

We now specify functional forms for production and utility and we assume AR(1) 
processes for exogenous variables At and Gt. For production we assume a Cobb–
Douglas function. The utility function is non- separable and consistent with a balanced 
growth path when the inter- temporal elasticity of substitution, 1/sc, is not unitary 
(see Barro and Sala- i- Martin, 2004, Chapter 9, section 9.4). These functional forms, 
the  associated marginal utilities and marginal products, and exogenous processes are 
given by

 F(At, ht, Kt21) 5 (Atht)aK12a
t21  (18.11)

 Fh (At, ht,Kt21) 5
aYW

t

ht
 (18.12)

 FK (At, ht,Kt21) 5
(1 2 a)YW

t

Kt21
 (18.13)

 logAt 2 logAt 5 rA (logAt21 2 log At21) 1 eA,t (18.14)

 logGt 2 logGt 5 rG (Gt21 2 Gt21) 1 eG,t (18.15)

 Lt 5
(C (12r- )

t L 
r-t ) 12sc 2 1

1 2 sc
 (18.16)

 LC,t 5 (1 2 r- )C (12r-)(12sc) 21
t (1 2 ht) r- (12sc) (18.17)

 Lh,t 5 2 ϱC (12r- )(12sc)
t (1 2 ht) r- (12sc) 21 (18.18)

Equation (18.1)–(18.18) describe an equilibrium in Lt, Ct, 
Wt
Pt

, Yt, YW
t , Lt, hi, 

PW
t

Pt
 Kt, It, Rt, 

Tt, given At and Gt where for the latter we assume AR1 processes about possibly trending 
steady states At,Gt driven by zero mean iid shocks eA,t and eG,t. Figure 18.1 illustrates the 
model.

2.2 Investment Costs

A common form of investment costs makes the convenient assumption that they disap-
pear in the long run (see, for example, Smet and Wouters, 2007). With their form of 
investment costs the model becomes

 Kt 5 (1 2 d)Kt21 1 (1 2 S(Xt))It ;   S r, Ss $ 0 ;  S(1 1 g) 5 S r (1 1 g) 5 0

 Xt ;
It

It21

It is convenient to introduce capital- producing firms that at time t convert It of output 
into (1 2 S(Xt))It of new capital sold at a real price Qt. They then maximize with respect 
to {It} expected discounted profits
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 Eta
`

k50
Dt,t1k [Qt1k (1 2 S(It1k/It1k21) )It1k 2 It1k ]

where Dt,t1k 5 bk (LC,t 1 1

LC,t
)  is the real stochastic discount rate over the interval [t,t 1 k ].

This results in the first- order condition (see Appendix B).

 Qt(1 2 S(Xt) 2 XtS r (Xt))1 Et [Dt,t11 Qt11S r (Xt11)X 2
t11 ] 5 1

Demand for capital by firms must satisfy

 Rt 5
Et [ (1 2 a)PW

t 1 1YW
t 1 1

Pt 1 1Kt
1 (1 2 d)Qt11 ]

Qt
 (18.19)

In (18.19) the right- hand side is the gross return to holding a unit of capital from t to 
t 1 1. The left- hand side is the gross return from holding bonds, the opportunity cost of 
capital. Note that without investment costs, S 5 0, Qt 5 1 and (18.19) reduces to (18.9). 
We complete this set- up with the functional form

 S(X) 5 �X (Xt 2 (1 1 g)) 2

PRODUCTION

Entrepreneurs
(Perfect competition)

Capital
and
labour

Wages
and
return on
capital

Wholesale good

(Monopolistic competition)

Taxes

Government

Retailers

Consumption goods

H
O
U
S
E
H
O
L
D
S

Figure 18.1 RBC model with retail sector
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where g is the balanced growth rate. Note that along a balanced growth path 
Xt 5 1 1 g and investment costs disappear. This is a convenient property because 
then the steady state to which we now turn is unchanged from introducing investment 
costs.

2.3 The Steady State

The balanced growth steady state path (bgp) driven by labour- augmenting technical 
change growing at a rate g of the model economy (with or without investment costs) is 
given by Q 5 1 and

 
LC, t11

LC, t

; 1 1 gLC
5 cCt11

Ct

d ((12r-)(12sc)21)

5 (1 1 g) ((12r- )(12sc)21) (18.20)

using (18.17). Thus from (18.12)

 R 5
(1 1 g) 11 (sc 21)(12r- )

b
 (18.21)

To set up a bgp steady state we must stationarize the bgp by defining stationary vari-
ables such as C ; Ct /At, Y ; Yt /At, K ; Kt /At, 

Wt
Pt

 and so on. We must also stationarize 
LC,t by defining LC ; LC,t/LC,t. Then the bgp is given by

 Y 5 (1 2 c)haK12a

 
r-C

(1 2 r- ) (1 2 h) 5
W
P

 
aPWYW

Ph
5

W
P

 
K

YW 5
1 2 a

R 2 1 1 d

 I 5 (d 1 g)K

 Y 5 C 1 I 1 G

 G 5 T

 1 5
1

1 2
1
z

PW

P

where consumption, labour augmenting productivity, the real wage and tax rates, and 
government spending are growing at the common growth rate g. We can impose a free 
entry condition on retail firms in this steady state which drives monopolistic profits to 
zero. This implies that costs of converting wholesale to retail goods are given by

 c 5 1/z
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Given exogenous trends for At and Gt, this gives us nine relationships in nine stationary 
variables R, PW

P , C,  Y,  W,  h, I, K, T  describing the exogenous balanced- growth steady- 
state equilibrium.

Our RBC and subsequent NK models are all special cases of the following general 
set- up recognized by Dynare in non- linear form

 Zt 5 J(Zt21,Xt,et11)

 EtXt11 5 K(Zt,Xt,et11)

where Zt21,Xt are (n 2 m) 3 1 and m 3 1 vectors of backward and forward- looking 
variables, respectively, and et is a , 3 1 shock variable of zero mean iid stochastic 
processes.

2.4 Calibration

We have carefully set out the steady state of the RBC (and NK) models because it is 
needed to calibrate a number of parameters. The idea is to assume an observed base-
line steady state equilibrium. We then use this observed equilibrium to solve for model 
parameters consistent with this observation. In general terms, our baseline steady 
state can be described in terms of a vector X 5 f(q)  of outcomes where q is a vector of 
parameters. The calibration strategy is to choose a subset X1 of n observed outcomes to 
calibrate a subset q1 of n parameters. Partition X 5 [X1, X2 ] and q 5 [q1,q2 ]. Then q1 is 
found by solving

 [X1, X2 ] 5 f( [q1,q2 ])  (18.22)

for X2 and q1, given X1 and q2. If such a solution exists for economically meaningful 
parameter values for q1 then a successful calibration has been achieved.

To illustrate this, suppose we have data for factor shares in the wholesale sector, the 
price mark- up, hours (h), growth (g), the real interest rate (R) and expenditure shares 
cy ;

C
Y, iy ;

I
Y  and gy ;

G
Y. First we calibrate z and c using data on the price mark- up in 

the retail sector. This mark- up is given by 1
12 1

z

, so z 5 1/c 5 7 corresponds to a mark- up 
of 17 per cent. Next, a is the wage share in the wholesale sector and is therefore deter-
mined. Then write the Cobb–Douglas production function as

 YW 5 Ah(K/YW)1 2 a
a

where K/YW is the capital–labour ratio in the wholesale sector. We can choose units of 
output and capital stock so that A 5 1. Then using K/YW 5

1 2 a
R 2 1 1 d from the RBC 

steady state we can now write

 iy ;
I
Y

5
(d 1 g)K
(1 2 c)YW 5

(d 1 g) (1 2 a)
(1 2 c) (R 2 1 1 d)

from which d can be calibrated and both YW and K  are now determined.
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From the steady state equation r-C
(1 2 r-) (1 2 h) 5

W
P  we have

 
r-

(1 2 r- ) (1 2 h) 5
W
C

5
(Wh/Y)

C/Yh
5

a

cyh

from which ϱ is obtained. Having calibrated ϱ, from observations of R and g we can 
calibrate either sc or b from

 R 5
(1 1 g) 11 (sc 21)(12r- )

b

Since there is a sizeable body of literature on the microeconometric estimation of 
the latter risk aversion parameter, it is usual to use this and calibrate b. This completes 
the calibration – typical US observations and calibrated parameters are illustrated in 
Table 18.1.

3 NEW KEYNESIAN MODEL

The NK model with investment costs and monopolistic competition has the RBC 
model at its core. Monopolistic competition plays a minor role until we come to 
the feature that makes the model Keynesian, namely price stickiness in the form of 
staggered price setting in the retail sector. These are the aspects on which we now 
concentrate.

 Table 18.1 Calibration with imposed sc 5 2

Observed Equilibrium Value

hobs 45/100
wage share 5 a 0.6
cy 0.70
iy 0.15
gy 0.15
R 1.01
g 0.025/4

mark- up 5 
1

1 2
1
z

 0.17

�x 1.24

Calibrated Parameters Value

ϱ 0.69
d 0.025
b 0.998
z 7.0
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3.1 The Retail Sector and Price Stickiness

This uses a homogeneous wholesale good to produce a basket of differentiated goods for 
consumption

 Ct 5 a31

0
Ct(m) (z21)/zdmbz/(z21)

 (18.23)

where z is the elasticity of substitution. For each m, the consumer chooses Ct(m)  at a 
price Pt(m)  to maximize (18.23) given total expenditure e1

0Pt(m)Ct(m)dm. This results 
in a set of demand equations for each differentiated good m with price Pt(m)  of the form

 Ct(m) 5 aPt(m)
Pt

b2z

Ct (18.24)

where Pt 5 [ e1
0Pt(m) 12zdm ] 1

1 2 z. Pt is the aggregate price index. Ct and Pt are Dixit–
Stiglitz aggregates – see Dixit and Stiglitz (1977).

Now we assume that there is a probability of 1 2 x at each period that the price of 
each retail good m is set optimally to P0

t (m). If the price is not re- optimized, then it is 
held fixed.6 For each retail producer m, given its real marginal cost MCt, the objective is 
at time t to choose {P0

t (m) } to maximize discounted profits

 Eta
`

k50
xkDt,t1kYt1k (m) [P0

t (m) 2 Pt1kMCt1k ] (18.25)

subject to (18.24), where Dt,t1k ; b
LC,t 1 k/Pt 1 k

LC,t/Pt
 is now the nominal stochastic discount factor 

over the interval [t,t 1 k ]. The solution to this is

 Eta
`

k50
xkDt,t1kYt1k (m) cP0

t (m) 2
1

(1 2 1/z) Pt1kMCt1k d 5 0 (18.26)

and by the law of large numbers the evolution of the price index is given by

 P12z
t11 5 xP12z

t 1 (1 2 x) (P0
t11) 12z (18.27)

In order to set up the model in non- linear form as a set of difference equations, 
required for software packages such as Dynare, we need to represent the price dynamics 
as difference equations. Both sides of the first- order condition for pricing, (18.26), are of 
the form considered in Appendix C. Using the Lemma inflation dynamics are given by

 
P0

t

Pt
5

Jt

Ht
 (18.28)

 Ht 2 xbEt [Pz21
t11Ht11 ] 5 YtLC,t (18.29)

 Jt 2 xbEt [Pz
t11Jt11 ] 5 a 1

1 2
1
z

bYtLC,tMCtMSt (18.30)
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 Pt  :   1 5 xPz21
t 1 (1 2 x) a Jt

Ht
b12z

 (18.31)

 MCt 5
PW

t

Pt
 (18.32)

where we have introduced a mark- up shock MSt. Notice that the real marginal cost, 
MCt, is no longer fixed as it was in the RBC model. With a nominal side of the model we 
need to distinguish between the ex ante nominal gross interest rate Rn,t set at time t and 
the ex post real interest rate, Rex

t . These are related by the Fischer equation

 Rex
t 5

Rn,t21

Pt
 (18.33)

The nominal interest rate is a policy variable, typically given by a simple Taylor- type 
rule:

 logaRn,t

Rn
b 5 r log aRn,t21

Rn
b 1 qp log aPt

P
b 1 qy log aYt

Y
b 1 logee,t (18.34)

where ee,t is a monetary policy shock.
The stochastic Euler equation must now take the form

 LC,t 5 Et c Rn,t

Pt11
LC,t11 d 5 Et [Rex

t11LC,t11 ] (18.35)

Demand for capital is now given by

 Et [Rex
t11 ] 5

Et [ (1 2 a)PW
t 1 1

Pt 1 1

YW
t 1 1

Kt 1 1
1 (1 2 d)Qt11 ]

Qt

The final change is that price dispersion Dt reduces output which, as shown in 
Appendix D, is now given by

 Yt 5 (1 2 c)
(Atht)aK12a

t21

Dt
 (18.36)

 Dt ;
1
na

n

j51

(Pt(j) /Pt)2z 5 xPz
tDt21 1 (1 2 x) a Jt

Ht
b2z

 (18.37)

However, Dt is of second order so for a first- order approximation we can put D 5 1, its 
steady state value.

To summarize, the NK model consists of the RBC model of real variables with a 
time- varying real marginal cost (18.32) and price dynamics given by (18.29)–(18.31). 
The expected ex post real interest rate Et [Rex

t11 ] over the interval [t, t 1 1] replaces Rt in 
the RBC model and price dispersion given by (18.37) reduces output as in (18.36). By 
proceeding from the RBC to the NK model in this fashion we see how price stickiness 
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introduces an inefficiency through the price dispersion mechanism. Figure 18.2 illus-
trates the NK model.

3.2 Steady State

For a particular steady state inflation rate P the NK features of the steady state are

 
J
H

5 a1 2 xPz21

1 2 x
b 1

1 2 z

 MC 5 a1 2
1
z
b J(1 2 bxPz)

H(1 2 bxPz21)

 D 5
(1 2 x) 1

1 2 z (1 2 xPz21) z

1 2 z

1 2 xPz

For a zero- inflation steady state P 5 1 we arrive at J
H 5 D 5 1 and MC 5 (1 2

1
z)  but in 

general there is a long- run inflation–output trade- off in the choice of the steady- state infla-
tion rate. We return to this issue later in this section and in Chapter 19 when we discuss 
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Figure 18.2 NK model
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optimal monetary policy. The implications of introducing a non- zero inflation steady state 
into the standard NK model are explored by Ascari and Ropele (2007).

3.3 Linearization

To solve the model it is usual to linearize about the steady state. In fact this is the easiest 
way to set up a model in Dynare for estimation, simulation and policy analysis. It is also 
useful as the linearized form can be used for some partial analysis providing insights into 
the workings of the model. That said, in Dynare it is not  necessary to go through this 
step, which becomes more arduous as models become larger.

The technique of linearization uses a Taylor series expansion. Consider a general func-
tion of two variables F(Xt,Yt) . Then up to first- order terms we have

 F(Xt,Yt) < F(X,Y) 1
0F
0Xt

(Xt 2 X) 1
0F
0Yt

(Yt 2 Y)  (18.38)

where partial derivatives are evaluated at the steady- state values X,Y. Now use the fol-
lowing notation

 
Xt 2 X

X
5 x (18.39)

Then (18.38) becomes

 f <
X
F

0F
0Xt

x 1
Y
F

0F
0Yt

y (18.40)

Note that

 log cXt

X
d 5 log c1 1

Xt 2 X
X

d < x (18.41)

which is why this technique is referred to as ‘log- linearization’.
Define lower case variables xt 5 log Xt

Xt
< x if Xt has a long- run trend or xt 5 logXt

X  
otherwise where X  is the steady state value of a non- trended variable. For the variable ht 
define x̂t 5 logxt

x . Then using this technique for the case of a zero- inflation steady state, 
P 5 1, the complete state space representation is given by

 at 5 rAat21 1 ea,t

 gt 5 rGgt21 1 eg,t

 mst 5 rMS mst21 1 ems,t

 kt 5
1 2 d

1 1 g
kt21 1

d 1 g
1 1 g

it

 Et [lC,t11 ] 5 lC,t 2 Et [rt11 ]

 bEt [pt11 ] 5 pt 2
(1 2 x) (1 2 xb)

x
(mct 1 mst)
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 Et [xt11 ] 5 Et [rt11 ] 1 rrpsrpst 1 qt

 a1 1
1 1 g

R
bit 5

1 1 g
R

Etit11 1 it21 1
1

(1 1 g) 2Ss (1 1 g) qt

with outputs of interest defined by

 rt 5 rn,t21 2 pt

 lC,t 5 2(1 1 (sc 2 1) (1 2 ϱ))ct 1 (sc 2 1)ϱ 
h

1 2 h
ĥt

 lL,t 5 lC,t 1 ct 1
h

1 2 h
ĥt

 wt 2 pt 5 lL,t 2 lC,t

 yt 5 a (at 1 ĥt) 1 (1 2 a)kt21

 yt 5 cyct 1 iyit 1 gy gt

 gt 5 tt

 Rxt ; (R 2 1 1 d) (mct 1 yt 2 kt21) 1 (1 2 d)qt

 mct 5 wt 2 pt 2 (yw
t 2 ĥt)

 yw
t 5 yt

 rn,t 5 rrn,t21 1 (1 2 r) (qppt 1 qyyt) 1 ee,t

This provides the basis for some insightful partial analysis, but before proceeding with 
this we now add two more features, namely external habit and indexing, to arrive at what 
can be regarded as a ‘workhorse NK model’.

3.4 Persistence Mechanisms: Habit and Indexation

Both habit and indexation are motivated by the need to introduce mechanisms to repro-
duce the persistence seen in the data for output and inflation. Whereas indexation is an 
ad hoc feature vulnerable to the Lucas critique, the existence of habit by contrast is a 
plausible formulation of utility that addresses issues examined in the recent ‘happiness’ 
literature.7

First, introducing external habit (‘keeping up with the Joneses’) for household j we 
replace, (18.16), (18.17) and (18.18) with

 Lj
t 5

((Cj
t 2 cCt21) (12r-)L -rt ) 12sc 2 1

1 2 sc
 (18.42)

 Lj
C,t 5 (1 2 ϱ) (Cj

t 2 cCt21) (12r- ) (12sc)21 ( (1 2 ht)r-(12sc))

 Lj
L,t 5 ϱ(Cj

t 2 cCt21) (12r- )(12sc)(1 2 ht) r- (12sc)21
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where aggregate per capita consumption Ct21 is taken as given. The exter-
nal  habit  parameter c [ [0,1]. Then in an equilibrium of identical households, 
Cj

t 5 Ct.
With indexing by an amount g [ [0,1] and an exogenous mark- up shock MSt as 

before, the optimal price- setting first- order condition for a firm j setting a new optimized 
price P0

t ( j)  is now given by

 P0
t ( j)Et ca`

k50
xkDt,t1kYt1k ( j) aPt1k21

Pt21
bgd5 1

(121/z) Et ca`
k50

xkDt,t1kPt1kMCt1kMSt1kYt1k (j)d
Price dynamics are now given by

 
P0

t

Pt
5

Jt

Ht

 Ht 2 xbEt [P
| z21

t11Ht11 ] 5 YtMUC
t

 Jt 2 xbEt [P
| z

t11Jt11 ] 5
1

1 2
1
z

MCtMStYtMUC
t

 P
|

t ;
Pt

Pg
t21

The linearized NK model about a zero inflation steady state with habit and indexing 
is as before with the following changes:

 lC,t 5 2(1 1 (sc 2 1) (1 2 ϱ))
(ct 2 cct21)

1 2 c
1 (sc 2 1)ϱ 

h
1 2 h

ĥt

 lL,t 5 lC,t 1
ct 2 cct21

1 2 c
1

h
1 2 h

ĥt

 pt 5
b

1 1 bg
Etpt11 1

g

1 1 bg
pt21 1

(1 2 bx) (1 2 x)
(1 1 bg)x

(mct 1 mst)

For the special case of no capital (a 5 1) and government con-
sumption fixed at the steady state (gt 5 0) then ct 5 gt. Substituting 
mct 5 wt 2 pt 2 yt 1 ĥt 5

1
1 2 h ĥt 1

c
1 2 c (yt 2 yt21)  and putting yt 5 ĥt 1 at for this 

special case, we arrive at the Phillips curve

 pt 5
b

1 1 bg
Etpt11 1

g

1 1 bg
pt21 1

(1 2 bx) (1 2 x)
(1 1 bg)x

a 1
1 2 h

(yt 2 at)

 1
c

1 2 c
(yt 2 yt21) 1 mstb

Thus both habit (c . 0) and indexation (l . 0) introduce persistence effects for infla-
tion and output. In the space of (yt,pt)  given expectations Etpt11 and lagged variables 
pt21 and yt21, the short- run Phillips curve is upward sloping and shifts to the right as 
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Etpt11, pt21 or mst increase, and to the left if yt21 or at increase. In the long run with 
yt 5 yt21 5 y and pt 5 pt21 and no shocks the Phillips curve is given by

 p 5
(1 2 bx) (1 2 x)y

(1 2 b) (1 2 g) (1 2 h)x

so we can see that there is a long- run output–inflation trade- off as long as b,g, h , 1.

4 IMPULSE RESPONSES TO A TECHNOLOGY SHOCK

We are now in a position to compare the RBC and NK models. For the RBC model we 
adopt the calibration set out in Table 18.1. The additional parameters in the NK model 
are set as x 5 0.75, h 5 0 and g 5 0, r 5 0.75, qpi 5 1.5 and qy 5 0.15 so we leave out 
habit and indexation for this comparison. x 5 0.75 corresponds to an average price con-
tract length of four quarters.

We compare the impulse response functions (IRFs), as percentage deviations about 
the steady state, for two AR(1) shocks with persistence parameters 0.7 (as with the policy 
rule). The first is a 1 per cent supply- side shock to total factor productivity, eA,t and the 
second is a 1 per cent demand- side shock to government expenditure eG,t. Figures 18.3 
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Figure 18.3  RBC model with investment costs and NK model: IRFs to eA,t shock
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and 18.4 show the IRFs as proportional deviations about the steady state for RBC vari-
ables: real output, consumption, investment, hours, the real wage, the real interest rate 
and the real price of capital and the same for the NK model with, in addition, inflation 
and the nominal interest rate (set to zero in the RBC model). In the NK model the ex post 
real interest rate replaces the ex ante rate of the RBC model.

Consider first a positive technology shock. For both RBC and NK models output, 
consumption and investment rise and then fall back to the steady state as the shock 
fades away. The increase in the supply of capital reduces its cost, the real interest 
rate. Thus the discounted sum of future profits rises, bringing about a rise in the price 
of capital. Real wage increases because labour supply increases less than propor-
tionally with output, the substitution effect outweighs the income effect and hours 
worked increase. In the NK model inflation falls sharply at first then quickly returns 
and slightly overshoots the steady state. With our chosen Taylor rule this calls for a 
reduction in the nominal interest rate, a lower immediate increase in output and con-
sumption and an initial decline in the real wage that is now affected by the increase 
in marginal costs and the reduction of labour supply. In the long run the real wage 
increases as soon as hours worked overshoot their steady state value. There are rather 
small differences between the IRFs of real variables except for hours worked and the 
real wage in the short run. Whereas in the short- run, hours and the real wage increase 
in the RBC model,8 the opposite is the case in the NK model. For the latter case 
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Figure 18.4  RBC model with investment costs and NK model: IRFs to eG,t shock
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sticky prices result in an hours–technology debate which is probably one of the most 
 controversial issues in business cycle theory and, as shown by our simulations, the 
major point of distinction between these two models. The reason is that the sign and 
response of hours to a productivity shock can have important consequences for policy 
analysis. For comprehensive reviews about the hours– technology debate see Gali and 
Rabanal (2005) and Whelan (2009).

Turning to the demand shock (in effect a fiscal stimulus), we now observe significant 
differences between the two models. The response of a shock to government spending 
is to crowd out consumption and investment in both RBC and NK worlds, the latter 
occurring through an increase in the real interest rate. The fall in consumption increases 
the marginal utility of consumption and induces the household to switch from consump-
tion and leisure. Hours therefore increase and with capital only able to change gradually 
we see output increase in both the RBC and NK models. However, in the NK model 
with sticky prices firms respond to an increase in demand by raising output and there is 
an additional demand effect on aggregate output. In both cases there is an increase in 
hours supplied which, in the RBC model, leads to a reduction in the real wage. In the 
NK model demand for labour increases, offsetting the decrease in the real wage which 
in fact now increases.

So sticky prices in the NK model lead to important differences in the response to 
both supply but especially demand shocks. It is interesting to compare the impact on 
fiscal multipliers at t 5 0 in the two models. The IRFs are elasticities which for output 
is GDY

YDG 5 gy
DY
DG. With gy 5 0.2, the multiplier DY

DG as a percentage is therefore 5 3 100 3  
the values shown; so for the RBC model the fiscal multiplier is around 0.38 and rises to 
about twice that in the NK model.

5 BAYESIAN ESTIMATION OF DSGE MODELS

In the preceding sections, we showed how to construct a small- scale NK DSGE model. 
This section focuses on the empirical implementation of such models, through the use 
of Bayesian methods for direct estimation and comparison of structural DSGE models.9 
First, distributional assumptions for the shock processes are needed, so that the Kalman 
filter is used to compute the likelihood function. In addition, the researcher can specify 
prior assumptions about the model parameters (say q) to be estimated, which then allows 
us to evaluate their posterior distribution conditional on the data. Using Bayes’ theorem, 
the posterior density is obtained as:

 p(q 0y) 5
L(y 0q)p(q)
eL(y 0q)p(q)dq

 (18.43)

where p(q)  denotes the prior density of the parameter vector q, L(y 0q)  is the likeli-
hood of the sample y [ Y  with T  observations (evaluated with the Kalman filter) and 
eL(y 0q)p(q)dq is the marginal likelihood. However, an additional technical difficulty arises 
in Bayesian inference, in that the objects of interest are integrals for which, in general, 
no closed- form analytical is available. This is overcome by the use of computationally 
intensive numerical integration methods, which entail generating draws of the set of 
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parameters from the posterior density and then computing statistics of interest based 
on the simulations. One can then perform sensitivity analysis, model evaluation and 
model comparisons. The discussion below largely bypasses the technical details (we refer 
the interested reader to the relevant literature), focusing instead on the perspective of a 
potential user.

We favour using a Bayesian approach for several reasons. First, these procedures, 
unlike full information maximum likelihood, for example, allow us to use prior 
information to identify key structural parameters. In addition, the Bayesian methods 
employed here utilize all the cross- equation restrictions implied by the general equi-
librium set- up, which makes estimation more efficient when compared to partial 
equilibrium approaches. Moreover, Bayesian estimation and model comparison are 
consistent even when the models are misspecified, as shown by Fernandez- Villaverde 
and Rubio- Ramirez (2004). Finally, this framework provides a straightforward 
method of evaluating the ability of the models to capture the cyclical features of 
the data, while allowing for a fully structural approach to analyse the sources of 
fluctuations.

5.1 Implementation

5.1.1 Prior selection
As noted above, (18.43) requires the specification of a prior density p(q) . In general, 
we can distinguish between non- informative priors (representing the subjective beliefs 
a researcher has in the occurrence of an event) and informative priors (which reflect an 
objective evaluation. The former, employed in the Bayesain approach, are invariant in 
location and scale, or invariant to parametrization (if one wants to minimize the influ-
ence of priors on the posterior). Objective priors are data- based, formulated using the 
predictive density of the data since, according to the Bayes theorem.

In defining appropriate priors for the parameters, the researcher should consider the 
theoretical domain of each parameter (whether or not the parameter is bounded, strictly 
positive, larger than a specific value, and so on) and the shape of the prior distribution. 
Usually, inverse gamma distributions are used for parameters constrained to be positive 
(such as variances, standard deviations and so on), the beta distribution for parameters 
constrained to be between 0 and 1 (probabilities, fractions, and so on), while the normal 
distribution is employed for non- bounded parameters.

5.1.2 Posterior computation and simulation
In general, the objective of Bayesian inference can be expressed as E [g(q) 0y ] where g(q)  
is a function of interest (for example, the posterior mean/mode, the marginal density and 
so on):

 E [g(q) 0y ] 5 3  g(q)p(q 0y)dq 5
eg(q)p*(q 0y)dq

ep*(q 0y)dq
5
eg(q)L(y 0q)p(q)dq

eL(y 0q)p(q)dq
 (18.44)

where p*(q 0y) ~ p(q 0y) ~ L(y 0q)p(q)  is any posterior density kernel for q. Given that 
these integrals do not normally allow a closed- form analytical solution, one resorts to 
simulation methods such as the Markov Chain Monte Carlo (MCMC) Metropolis–
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Hastings (MH) Algorithm) in order to obtain random draws from the posterior 
density.

The general simulation strategy is: (1) choose a starting value q0; (2) run MCMC simu-
lation; (3) check convergence; (4) summarize inference. The MCMC specifies a transi-
tion kernel for a Markov Chain such that, starting from some initial value and iterating 
a number of times, one produces a limiting distribution which is the target distribution 
from which one needs to sample (see Geweke, 1999 for details).

The (Random Walk) Metropolis–Hastings (RWMH), in turn, allows sampling from 
the region with highest probability, while visiting the whole parameter space as much as 
possible. The algorithm starts from an arbitrary candidate density a (q*i ,qi21) , given that 
the latest value of q is qi21. A draw from a (q*i ,qi21)  is accepted with a certain probability 
that depends on p (q*i ) L (y 0q*i ) a (q*i , qi 2 1)

p (q*i 2 1) L (y 0q*i 2 1) a (qi 2 1, q*i ) , so that there is sufficient variability in the sampling. 
If a candidate is rejected, then qi 5 qi21. By changing the acceptance rate, one can ensure 
that the chain moves in an appropriate direction, that is, it is more likely that a draw in 
a state of high probability is accepted.

5.2 Estimating the Linear NK Model

5.2.1 Preparing the data
We estimate the NK model with habit and indexation set out in section 3.4 around a zero 
steady state inflation using Bayesian methods. We use the same data set as in Smets and 
Wouters (2007) in first differences at quarterly frequency. The observable variables are 
the log difference of real GDP, the log difference of the GDP deflator and the federal 
funds rate. All series are seasonally adjusted. Since the variables in the model state space 
are measured as deviations from a trending steady state, we take the first difference of the 
real GDP in order to obtain stationary processes. The raw data consists of real variables 
and for GDP we take the log of the original data. Inflation and nominal interest rates 
are used directly as they are in percentage terms. The original data are taken from the 
FRED Database available through the Federal Reserve Bank of St. Louis. The sample 
period is 1984:1 to 2004:4. A full description of the data used can be found in Smets and 
Wouters (2007).10

The corresponding measurement equations for the three observables are:11

 £ D(logGDPt)
log(GDPDEFt/GDPDEFt21)

FEDFUNDSt/4
§ 5 £ log(Y t

Yt
) 2 log(Yt 2 1

Yt 2 1
) 1 trend growth

log(Pt
P) 1 constantP

log(1 1 Rn,t

1 1 Rn
) 1 constantRn

§  (18.45)

where we introduce an observation trend (constant) to the real variable (real GDP) 
and a specific one to inflation and nominal interest rate instead of demeaning the 
series.

5.2.2 Estimation
This section presents an empirical example of Bayesian estimation using the lin-
earized NK model in section 4.12 A few structural parameters are kept fixed in the 
estimation procedure, in accordance with the usual practice in the literature (see 
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Table 18.2). The choice of priors for the estimated parameters is usually determined 
by the theoretical implications of the model, stylized facts and evidence from other 
microeconometric studies. In general, inverse gamma distributions are used as priors 
when non- negativity constraints are necessary, and beta distributions for fractions or 
probabilities. Normal distributions are used when more informative priors seem to be 
necessary.

In order to avoid a stochastic singularity when evaluating the likelihood function, 
Dynare requires at least as many shocks (or measurement errors) in the models as 
observable variables (that is, it requires the covariance matrix of endogenous variables to 
be non- singular). In this estimation an additional structural shock is included to capture 
to some extent aggregation effects (for example monetary policy shock) and there are no 
measurement errors in the data set.

In the process of parameter estimation, the mode of the posterior is first estimated 
using Chris Sims’ csminwel13 after the models’ log- prior densities and log- likelihood 
functions have been obtained by running the Kalman recursion and maximized. Then a 
sample from the posterior distribution is obtained with the Metropolis–Hastings (MH) 
algorithm using the inverse Hessian at the estimated posterior mode as the covariance 
matrix of the jumping distribution. The covariance matrix needs to be adjusted in order 
to obtain reasonable acceptance rates. Thus the scale used for the jumping distribution 
in the MH is set to 0.40, allowing good acceptance rates (around 20–30 per cent). Two 
parallel Markov chains of 100 000 runs each are run from the posterior kernel for the 
MH.14 The first 25 per cent of iterations (initial burn- in period) are discarded in order 
to remove any dependence of the chain from its starting values (use mh_drop: sets the 
percentage of discarded draws).

The estimation outputs report the Bayesian inference which summarizes the prior 
 distribution – posterior mean and 95 per cent confident interval. The marginal data 
density of the model is computed using the Geweke (1999) modified harmonic- mean 
estimator. The outputs are displayed on the MATLAB Command Window:

ESTIMATION RESULTS
Log marginal likelihood is - 68.263710.
parameters

Table 18.2 Calibrated parameters

Calibrated parameter Symbol Value

Discount factor b 0.987
Depreciation rate d 0.025
Growth rate g 0
Substitution elasticity of goods z 7
Fixed cost c 1

z 5 0.143
Implied steady state relationship
Government expenditure–output ratio gy 0.2
Consumption–output ratio cy 0.64
Investment–output ratio iy 1−gy−cy
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prior 
mean

post. 
mean

conf. inter-
val

prior pstdev

rho_A 0.500 0.9306 0.8870 0.9768 beta 0.2000
rho_G 0.500 0.9622 0.9242 0.9982 beta 0.2000
phi_X 2.000 4.1235 2.4401 5.7525 norm 1.5000
sigma_c 1.500 1.5710 0.9533 2.1905 norm 0.3750
chi 0.700 0.8999 0.7413 0.9896 beta 0.1000
varrho 0.500 0.4128 0.0987 0.7284 beta 0.2000
xi 0.500 0.6797 0.5755 0.7913 beta 0.1000
gamma 0.500 0.2216 0.0681 0.3699 beta 0.1500
alp 0.700 0.7485 0.6731 0.8216 norm 0.0500
alpha_pi 1.500 1.7398 1.3671 2.1517 norm 0.2500
alpha_r 0.750 0.8204 0.7734 0.8689 beta 0.1000
alpha_y 0.125 0.1445 0.0716 0.2184 norm 0.0500
average pi 0.625 0.5827 0.5208 0.6444 gamm 0.1000
trend 0.400 0.4141 0.2905 0.5343 norm 0.1000
standard deviation of shocks

prior 
mean

post. 
mean

conf. inter-
val

prior pstdev

eps_A 0.100 1.1543 0.5793 1.6989 invg 2.0000
eps_G 0.500 2.8338 2.3745 3.2691 invg 2.0000
eps_MS 0.100 0.1594 0.1361 0.1843 invg 2.0000

All the estimates are plausible. Noticeably habit is strong with an estimated parameter 
c 5 0.90 whereas the indexation effect is rather small at g 5 0.2. The estimated sticky- 
price parameter x 5 0.68 corresponds to a contract length 1

1 2 x 5 3.12 quarters, a value 
within the range of those found in surveys for the US. The posterior means are for the 
most part away from the priors, suggesting that the data is informative, but one excep-
tion is the parameter sc, which appears to be weakly identified. We discuss the identifica-
tion issue and how to deal with it formally at the end of Chapter 19.

The output shows the log of the posterior marginal likelihoods which facilitates a 
formal comparison of different models through their posterior marginal likelihoods 
through likelihood race. But such an assessment of model fit is only relative to its other 
rivals with different restrictions. The outperforming model in the space of competing 
models may still be poor (potentially misspecified) in capturing the important dynamics 
in the data. To further evaluate the absolute performance of one particular model against 
data, it is necessary to compare the model’s implied characteristics with those of the actual 
data and with a benchmark model, a DSGE- VAR that by construction must outperform 
both a structural VAR and the DSGE model. These issues are pursued in Chapter 19.

6 CONCLUSION

This chapter has taken the first steps in the construction and estimation of a DSGE 
model suitable for monetary policy experiments. We have shown how the New 
Keynesian model builds on the Real Business Cycle Model and how it can be calibrated 
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to observed outcomes using the steady state. Impulse response functions to a supply and 
demand shock demonstrate the important differences between the two models. We have 
argued for and demonstrated a Bayesian approach to the estimation of the NK model. 
The next chapter will show how model comparisons can be made and how the model fit 
can be assessed by comparing second moments and by a comparison with a benchmark 
DSGE- VAR. We then proceed to using the estimated model for computing optimal 
monetary policy.

NOTES

 * We acknowledge financial support for the preparation of this chapter from the Foreign & Commonwealth 
Office as a contribution to the project ‘Building Capacity and Consensus for Monetary and Financial 
Reform’ led by the National Institute of Public Finance and Policy, from the EU Framework Programme 
7 in support of the project ‘MONFISPOL’ led by Michel Juillard, CEPREMAP and from the ESRC, 
project no. RES- 000- 23- 1126.

 1. A notable example is what has been labelled the ‘case of missing money’ in the 1970s, in which economic 
analysts were surprised by sudden surges in the velocity of money circulation and therefore conventional 
money demand functions over- predicted actual money growth.

 2. See Mankiw and Romer (1991), which contains a collection of the most influential articles in the early 
New Keynesian tradition.

 3. See Rotemberg (1982) for an alternative and equally convenient specification of price stickiness.
 4. See also the special issues of the Journal of Applied Econometrics (1994, vol. 9, December), the Economic 

Journal (1995, vol. 105, November) and Cooley (1997).
 5. Dynare is a software platform that carries out all the computational aspects of these two chapters. It 

handles a wide class of dynamic economic models and, in particular, those of a DSGE variety. See 
Adjemian et al. (2011) for full details.

 6. Thus we can interpret 1
1 2 x as the average duration for which prices are left unchanged.

 7. In particular the ‘Easterlin paradox’, Easterlin (2003). See also Layard (2006) and Choudhary et al. (2012) 
for the role of external habit in the explanation of the paradox.

 8. The actual reduction in hours on impact for the RBC model showed in the simulations is due to the pres-
ence of investment adjustment costs. In this case it is costly to adjust capital so firms respond to a TFP 
shock by reducing hours worked in the first period. From the second quarter on the usual result that 
hours increase in RBC models still applies.

 9. Bayesian methods have also been employed in the study of reduced- form VAR models, giving rise to the 
literature on Bayesian VAR (BVAR) models; see Canova (2007) for a review.

10. An alternative to this two- step procedure of first filtering the data and then estimating the model in 
deviation form is a hybrid framework (one- step method) where the cyclical fluctuations of the data are 
represented by the solution of the DSGE model and the non- cyclical fluctuations are captured by a flex-
ible reduced form representation. We discuss this in Chapter 19.

11. Yt 5 GDPt, Yt 5  trend and trend growth = logYt 2 logYt21 = constant.
12. The terminology, commands and theory used in the Estimation/Validation sections of these notes closely 

follow the Dynare Reference Manual and Dynare User Guide, distributed with Dynare and also available 
from the official Dynare website.

13. See, for more details, Chris Sims’ homepage: http://www.princeton.edu/sims/.
14. In this example, the univariate diagnostic statistics produced by Dynare indicate convergence by compar-

ing between and within moments of multiple chains (Brooks and Gelman, 1998).
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APPENDIX

A The Euler Consumption Equation

Households choose between work and leisure and therefore how much labour they 
supply. Let Lt be the proportion of the total time available for work (say 16 hours per 
day) that consists of leisure time and ht the proportion of this time spent at work. Then 
clearly Lt 1 ht 5 1. The single- period utility is

 L 5 L (Ct,Lt)  (18A.1)

and we assume that1

 LC . 0, LL . 0 LCC # 0, LLL # 0 (18A.2)

In a stochastic environment, the value function of the representative household at time 
t is given by

 Ht 5 Ht(Bt) 5 Et ca`
s50

bsL (Ct1s, Lt1s) d  (18A.3)

For the household’s problem at time t is to choose paths for consumption {Ct}, leisure, 
{Lt}, labour supply {ht 5 12Lt} and holdings of financial savings to maximize Ht given 
by (18A.3) given its budget constraint in period t

 Bt11 5 (1 1 Rt)Bt 1Wtht 2Ct (18A.4)

where Bt is the given net stock of financial assets at the beginning of period t, Wt is the 
wage rate and Rt is the interest rate paid on assets held at the beginning of period t. All 
variables are expressed in real terms relative to the price of output.

There are two ways of solving this optimization problem, by dynamic programming or 
by Lagrangian methods. Here we present the former. The Bellman equation is given by

 HtBt 5 max
Ct,Lt,Bt

[L (Ct, Lt) 1 bEt [Ht11 (Bt11) ]

 5 max
Ct,Lt

[L (Ct, Lt) 1 bEt [Ht11 ( (1 1 Rt)Bt 1Wt(1 2 Lt) 2 Ct) ] ] (18A.5)

We seek a solution of the form Ct 5 Ct(Bt)  and Lt 5 Lt(Bt) . The first- order conditions 
for consumption and leisure are

 LC,t 2 bEt [H rt11 (Bt11) ] 5 0 (18A.6)

 LL,t 2 bWtEt [H rt11 (Bt11) ]5 0 (18A.7)

Hence we arrive at the standard result that equates the MRS with the real wage:

 
LL,t

LC,t
5 Wt (18A.8)

HASHIMZADE 9780857931016 CHS. 18-21 (M3110).indd   437HASHIMZADE 9780857931016 CHS. 18-21 (M3110).indd   437 01/07/2013   10:2201/07/2013   10:22



438  Handbook of research methods and applications in empirical macroeconomics

To obtain the Euler consumption equation put Ct 5 Ct(Bt)  and Lt 5 Lt(Bt)  at the 
optimal holding of assets and differentiate (18A.5) with respect to Bt. By the envelope 
theorem we can drop all terms involving C rt(Bt)  and L rt(Bt)  to obtain2

 H rt(Bt) 5 b(1 1 Rt)Et [H rt11 (Bt11) ] (18A.9)

Therefore using (18A.6) we have H rt (Bt) 5 (1 1 Rt)LC,t. Substituting back into (18A.9) 
we arrive at the Euler consumption equation

 LC,t 5 bEt [ (1 1 Rt)LC,t11 ] 5 b(1 1 Rt)Et [LC,t11 ] (18A.10)

B Optimal Investment with Investment Costs

Firms maximize with respect to {It} expected discounted profits

 Eta
`

k50
Dt,t1k [Qt1k (1 2 S(It1k/It1k21) )It1k 2 It1k ] (18A.11)

where Dt,t1k 5 bk (LC,t 1 1

LC,t
)  is the real stochastic discount rate over the interval [t, t 1 k ].

 Consider the first two terms of this summation in (18A.11)

 Et [Dt,t [Qt(1 2 S(It/It21) )It 2 It ] 1 Dt,t11 [Qt11 (1 2 S(It11/It))It11 2 It11 ] ]

Noting that Dt,t 5 1, the first order condition with respect to It is then

 Et cQt(1 2 S(It/It21) ) 2 1 2 QtS r (It/It21)
It

It21
2 Dt,t11Qt11S r (It/It21) 3 a2 It11

I2
t

It11b d
Putting Xt ;

It
It 2 1

 results in the first- order condition in the main text:

 Qt(1 2 S(Xt) 2 XtS r (Xt)) 1 Et [Dt,t11Qt11S r (Xt11)X2
t11 ] 5 1

C Expressing Summations as Difference Equations

In the first order conditions for Calvo contracts and expressions for value functions we 
are confronted with expected discounted sums of the general form

 Wt 5 Et ca`
k50

bkXt,t1kYt1k d  (18A.12)

where Xt,t1k has the property Xt,t1k 5 Xt,t11Xt11,t1k (for example an inflation, interest or 
discount rate over the interval [t, t 1 k ]).

Lemma
Wt can be expressed as

 Wt 5 Xt,tYt 1 bEt [Xt,t11Wt11 ] (18A.13)
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Proof

 Wt 5 Xt,tYt 1 Et ca`
k51

bkXt,t1kYt1k d
 5 Xt,tYt 1 Et ca`

kr50
bkr11Xt,t1kr11Yt1kr11 d

 5 Xt,tYt 1 bEt ca`
kr50

bkrXt,t11Xt11,t1kr11Yt1kr11 d
 5 Xt,tYt 1 bEt [Xt,t11Wt11 ]    h

D Dynamics of Price Dispersion

Price dispersion lowers aggregate output as follows. As with consumption goods, the 
demand equations for each differentiated good m with price Pt(m)  forming aggregate 
investment and public services takes the form

 It(m) 5 aPt(m)
Pt

b2ß

 It;  Gt(m) 5 aPt(m)
Pt

b2ß

Gt (18A.14)

Hence equilibrium for good m gives

 Yt(m)w 5 Atht(m) aKt(m)
Yt(m)

b 12a
a

5
1

1 2 c
(Ct 1 It 1 Gt) aPt(m)

Pt
b2ß

 (18A.15)

where Yt(m) , ht(m)  and Kt(m)  are the quantities of output, hours and capital needed in 
the wholesale sector to produce good m in the retail sector. Since the capital–labour ratio 
is constant integrating over m, and using ht 5 e1

0ht(m)dm we obtain

 Yt 5
(1 2 c)Yt

w

Dt
5

(1 2 c)F(At,ht,Kt)
Dt

 (18A.16)

as in (18.36)
Price dispersion is linked to inflation as follows. Assuming as before that the number 

of firms is large we obtain the following dynamic relationship:

 Dt 5 xPß
tDt21 1 (1 2 x) a Jt

Ht
b2ß

 (18A.17)

Proof
In the next period, x of these firms will keep their old prices, and (1 2 x)  will change 
their prices to PO

t11. By the law of large numbers, we assume that the distribution of prices 
among those firms that do not change their prices is the same as the overall distribution 
in period t. It follows that we may write
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 Dt11 5 x a
jno change

aPt( j)
Pt11

b2ß

1 (1 2 x) a Jt11

Ht11
b2ß

 5 xa Pt

Pt11
b2ß

a
jno change

aPt( j)
Pt

b2ß

1 (1 2 x) a Jt11

Ht11
b2ß

 5 xa Pt

Pt11
b2ß

a
j
aPt(j)

Pt
b2ß

1 (1 2 x) a Jt11

Ht11
b2ß

 5 xPß
t11Dt 1 (1 2 x) a Jt11

Ht11
b2ß

    h

Notes

1. Our notation is Lc ;
0L
0C, Lcc ;

02L
0C2 etc

2. This can be verified by retaining such terms which then cancel out.
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19 The science and art of DSGE modelling: II – model 
comparisons, model validation, policy analysis and 
general discussion*
Cristiano Cantore, Vasco J. Gabriel, Paul Levine,
Joseph Pearlman and Bo Yang

1 INTRODUCTION

The previous chapter described the construction, calibration and the Bayesian estima-
tion of DSGE models with a particular focus on the New Keynesian model. This chapter 
shows how model comparisons can be made and how the model’s success in fitting data 
can be assessed by comparing second moments and by a comparison with a benchmark 
DSGE- VAR. We then demonstrate how the estimated model can be used for computing 
optimal monetary policy.

Our two chapters as a whole will then describe a seamless construction, estimation and 
policy analysis methodology for macroeconomics summarized by the following steps.

1. The construction of a DSGE model describing the first- order conditions for eco-
nomic agents in the form of a set of non- linear difference equations;

2. the solution of the steady state to be used for both solution and calibration;
3. Bayesian estimation of the linearized model;
4. model comparisons between different models or variants of the same model;
5. model validation by comparison with second moments and a benchmark DSGE- VAR;
6. optimal policy analysis with
 a) optimal commitment (the ‘Ramsey problem’)
 b) optimal policy under discretion
 c) optimized simple commitment Taylor- type rules.

The previous chapter has covered steps 1 to 3. This chapter proceeds from step 4 
through to step 6 in sections 2 to 4. The final two sections of this chapter switch from a 
practical to a more reflective mode. Although we have claimed that the DSGE approach 
to macroeconomic modelling enjoys a reasonable consensus at the moment, there is a 
growing debate that is either demanding new types of DSGE model or a totally different 
approach. The final two sections 5 and 6 join this debate.

2 MODEL COMPARISONS

One of the main advantages of adopting a Bayesian approach is that it facilitates a formal 
comparison of different models through their posterior marginal likelihoods, computed 
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using the Geweke (1999) modified harmonic- mean estimator. For a given model mi [ M 
and common data set, the marginal likelihood is obtained by integrating out vector q,

 L(y 0mi) 5 3
Q

L(y 0q, mi)p(q 0mi)dq (19.1)

where pi(q 0mi) is the prior density for model mi, and L(y 0q, mi)  is the likelihood of the 
sample y [ Y  given the parameter vector q and the model mi. To compare models (say, 
mi and mj) we calculate the posterior odds ratio which is the ratio of their posterior model 
probabilities, or the Bayes Factor when the prior odds ratio, p (mi)

p (mj) , is set to unity:

 POi, j 5
p(mi 0y)
p(mj 0y) 5

L(y 0mi)p(mi)
L(y 0mj)p(mj)

 (19.2)

 BFi, j 5
L(y 0mi)
L(y 0mj)

5
exp(LL(y 0mi))
exp(LL(y 0mj))

 (19.3)

in terms of the log- likelihoods. Components (19.2) and (19.3) provide a framework for 
comparing alternative and potentially misspecified models based on their marginal likeli-
hood. Such comparisons are important in the assessment of rival models, as the model 
which attains the highest odds outperforms its rivals and is therefore favoured.

Given Bayes factors, we can easily compute the model probabilities p1, p2, . . ., pn for n 
models. Since gn

i51 pi 5 1 we have that 1
p1

5 gn
i52BFi, 1, from which p1 is obtained. Then 

pi 5 p1BF(i,1) gives the remaining model probabilities.
We now use these results to compare three variants of our estimated NK model: 

‘Model GH’ is the full model with both indexation (g . 0) and habit (c . 0). In ‘Model 
H’ we shut down indexation by putting g 5 0. In ‘Model Z’ there are zero extra persist-
ence mechanisms and g 5 c 5 0.

Table 19.1 provides a formal Bayesian comparison of models GH, H and Z. To inter-
pret the marginal log- likelihood (LL) differences we appeal to Jeffries (1996) who judges 
that a BF of 3–10 is ‘slight evidence’ in favour of model i over j. This corresponds to a 
LL difference in the range [ln 3, ln 10] = [1.10,2.30]. A BF of 10–100 or a LL range of 
[2.30, 4.61] is ‘strong to very strong evidence’; a BF over 100 (LL over 4.61) is ‘decisive 
evidence’.1 Thus according to this assessment, our model comparison analysis provides 
‘decisive evidence’ against the inclusion of price indexation. The poor performance of 
indexation is in a sense encouraging as this feature of the NK is ad hoc and vulnerable to 
the Lucas critique. The existence of habit by contrast is a plausible formulation of utility 
that addresses issues examined in the recent literature.2 However, there is no evidence 

Table 19.1  Marginal log- likelihood values and posterior model odds across model 
variants

Model GH Model H Model Z

LLs −68.26 −62.75 −61.33
prob. 0.0008 0.1945 0.8047
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that habit improves upon model Z with neither habit nor indexation. The most basic NK 
then comes out of this exercise well and it appears that the other persistence mechanisms 
in the model associated with investment costs and interest rate smoothing are sufficient 
to render indexation and habit irrelevant, at least for fitting the model to only output, 
inflation and the nominal interest rate.3

3 MODEL VALIDATION

A limitation of the likelihood race methodology is that the assessment of model fit is 
only relative to its other rivals with different restrictions. The outperforming model in 
the space of competing models may still be poor (potentially misspecified) in capturing 
the important dynamics in the data. Summary statistics consisting of second moments 
have been commonly used for model validation in the RBC literature. To further evalu-
ate the absolute performance of one particular model against data, in a later section 
we compare the model’s implied characteristics with those of the actual data and with 
a benchmark DSGE- VAR model. But first we carry out a traditional RBC second 
moments comparison.

3.1 Second Moments Comparisons with Data

For the simulation and computation of moments, Dynare assumes that the shocks 
follow a normal distribution. In a stochastic set- up, shocks are only allowed to be tem-
porary. A permanent shock cannot be accommodated because of the need to stationarize 
the model. Also the expectations of future shocks in a stochastic model must be zero. 
Table 19.2 presents some selected second moments implied by the above estimations and 

Table 19.2 Selected second moments of the model variants

Standard Deviation

Model Output Inflation Interest rate

Data 0.59 0.25 0.64
Model GH 0.58 0.31 0.38
Model H 0.57 0.28 0.37
Model Z 0.64 0.26 0.32

Cross- correlation with Output
Data 1.00 −0.14 0.15
Model GH 1.00 −0.13 −0.26
Model H 1.00 −0.09 −0.24
Model Z 1.00 −0.003 −0.16

Autocorrelations (Order 5 1)
Data 0.31 0.53 0.96
Model GH 0.14 0.63 0.91
Model H 0.13 0.57 0.91
Model Z 0.01 0.52 0.89
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compares with those in the actual data. In particular, we compute these model- implied 
statistics by solving the models at the posterior means obtained from estimation. The 
results of the model’s second moments are compared with the second moments in the 
actual data to evaluate the models’ empirical performance.

We can see that model Z performs best in some dimensions, such as capturing the 
standard deviation of inflation, but worse in others, such as the standard deviation of 
output. This applies also to models GH versus H and it is not obvious from Table 19.2 in 
terms of volatility and co- movement with output that GH is outperformed by H.

We have so far considered autocorrelation only up to order 1. To further illustrate 
how the estimated models capture the data statistics and persistence in particular, we 
now plot the autocorrelations up to order 10 of the actual data and those of the endog-
enous variables generated by the model variants in Figure 19.1. Here we can see that 
habit does improve the ability of the models to fit the persistence seen in output data, 
but not in inflation where model Z performs best. Again there is only a slight indication 
that model GH is outperformed by H as indicated by the LL comparison. Perhaps the 
main message to emerge from this RBC type of model validity exercise is that it can be 
misleading to assess model fit using a selective choice of second moment comparisons. 
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Figure 19.1  Autocorrelations of observables in the actual data and in the estimated 
models
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LL comparisons provide the most comprehensive form of assessment that will still leave 
trade- offs in terms of fitting some second moments well, at the expense of others.

3.2 The DSGE- VAR Benchmark

An alternative way of validating the model performance is to follow Del Negro and 
Schorfheide (2004) and Del Negro et al. (2007) and to compare it with a hybrid model 
that is a combination of an unrestricted VAR and the VAR implied by the estimated 
DSGE model. Levine et al. (2012b) show that under weak conditions the solution to the 
DSGE model can be approximated by a finite VAR approximation to

 Y(L)Yt 5 ht 5 D|et; Et [etert ] 5 I

where Yt is a vector of observables and the shocks have been suitably normalized. The 
DSGE- VAR approach uses the DSGE model itself to construct a prior distribution 
for the VAR coefficients so that DSGE- VAR estimates are tilted toward DSGE model 
restriction, thus identifying the shocks for the IRFs. To see how this differs from stand-
ard identification, we first perform a Cholesky decomposition Sh ; Et [hthrt ] 5 StrSrtr, 
D| 5 StrW where Str is lower triangular and W (the ‘rotation matrix’) is an orthonormal 
matrix. Then we can set priors for the VAR and identify shocks (that is, choose W) by 
putting

 D| 5 StrW
DSGE (q)

where WDSGE (q)  is obtained from the DSGE model (see Del Negro and Schorfheide, 2004).4
This method constructs the DSGE prior by generating dummy observations from the 

DSGE model, and adding them to the actual data and leads to an estimation of the VAR 
based on a mixed sample of artificial and actual observations. The ratio of dummy over 
actual observations (called the hyper- parameter l) controls the variance and therefore 
the weight of the DSGE prior relative to the sample. For extreme values of this param-
eter (0 or `) either an unrestricted VAR or the DSGE is estimated. If l is small the prior 
is diffuse. When l 5 `, we obtain a VAR approximation of the log- linearized DSGE 
model. As l becomes small the cross- equation restrictions implied by the DSGE model 
are gradually relaxed. The empirical performance of a DSGE- VAR will depend on the 
tightness of the DSGE prior. Details on the algorithm used to implement this DSGE- 
VAR are to be found in Del Negro and Schorfheide (2004) and Del Negro et al. (2007).

We fit our VAR to the same data set used to estimate the DSGE model. We consider 
a VAR with 4 lags.5 We use a data- driven procedure to determine the tightness of prior 
endogenously based on the marginal data density. Our choice of the optimal l is 0.5 and 
this is found by comparing different VAR models using the estimates of the marginal 
data density (Figure 19.2). In particular, we iterate over a grid that contains the values 
of l 5 [0.2; 0.5; 1; 1.2; 1.5; 5; ` ], we find that l 5 0.5 has the highest posterior prob-
ability for both models. Note that 0.2 is the smallest l value for which we have a proper 
prior. This implies that the mixed sample that is used to estimate the VAR has relatively 
lower weight on the DSGE model (artificial observations) than on the VAR (actual 
observations).
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The optimum l̂ represents how much the economic model (DSGE) is able to explain 
the real data. Figure 19.2 applies this procedure to models H and GH. We see that both 
models with the optimal l clearly dominate VARs with very diffuse priors since the 
marginal likelihood values increase sharply as l moves from 0.2 to the optimal values. 
This suggests that the cross- equation restrictions imposed by our DSGE models are 
important in fitting the data. More importantly, the results from comparing across dif-
ferent models H and GH show that Model H generally outperforms Model GH when 
the weight on the DSGE model becomes higher (when l tends to ̀ ). Overall the LL plots 
then confirm the fact that model H is less misspecified.

4 OPTIMAL MONETARY POLICY IN THE NK MODEL

The welfare- optimal policy problem at time t 5 0 is to choose policy instruments over 
time to maximize the household’s inter- temporal utility function

 W0 5 E0 c (1 2 b)a
`

t50
btU(Ct, Lt) d

subject to constraints described by the model. The latter consists of the models RBC 
with government spending Gt chosen as the fiscal policy instrument, rather than imposed 
as an exogenous process, and the NK model with, in addition, the nominal interest rate 
Rn, t as the monetary instrument. For the latter, optimal policy then replaces the ad hoc 
Taylor rule we have used up to now.

We adopt a linear- quadratic (LQ) approximation approach to this non- linear dynamic 
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optimization problem in macroeconomics for a number of reasons. First, for LQ prob-
lems the characterization of time- consistent and commitment equilibria for a single 
policymaker, and even more so for many interacting policymakers, are well understood. 
Second, the certainty equivalence property results in optimal rules that are robust 
in the sense that they are independent of the variance–covariance matrix of additive 
disturbances. Third, policy can be decomposed into deterministic and stochastic com-
ponents. This is a very convenient property since it enables the stochastic stabilization 
component to be pursued using simple Taylor- type feedback rules rather than the 
exceedingly complex optimal counterpart. Fourth, in an imperfect information context 
the conditional welfare loss (in deviation form about the deterministic steady state) con-
veniently decomposes into a deterministic component and two stochastic components, 
one of which describes the effect of imperfect information. Finally for sufficiently simple 
models, LQ approximation allows analytical rather than numerical solution.

The solution to linear rational expectations models goes back to Blanchard and Kahn 
(1980) and has since been generalized in various dimensions by Pearlman et al. (1986), 
Klein (2000) and Sims (2003). The early literature on optimal policy with commitment 
developed LQ infinite time horizon control theory for engineering, non- forward- looking 
models into a rational expectations (RE) forward- looking context (Driffill, 1982; Calvo, 
1978; Miller and Salmon, 1985; Levine and Currie, 1987).

In a stochastic environment the feedback representation of policy is crucial. For the 
standard infinite time horizon LQ engineering problem, optimal policy can be repre-
sented as a linear time- invariant feedback rule on the state variables; but this is no longer 
the case when rational expectations are introduced. Then as is shown in the literature the 
optimal policy can only be implemented as very complicated rules, even in the ‘timeless’ 
form advocated by Woodford (2003). The added complexity of such a rule adds force 
to the case for designing policy in the form of simple optimized, but sub- optimal rules. 
The normative case for such rules was first put forward by Vines et al. (1983), Levine and 
Currie (1985), Currie and Levine (1985) and (1993). This early literature considered both 
monetary and fiscal policy and, in the case of Vines et al. (1983), incomes and exchange 
rate targeting policies. The positive case for a particular form of monetary policy interest 
rate rule feeding back on current inflation and the output gap was advocated by Taylor 
(1999), so simple ‘Maciejowski–Meade–Vines–Currie–Levine Rules’ eventually became 
known as ‘Taylor Rules’. More recently, in the context of DSGE models, we have seen 
a renewed interest in simple rules in general (referred to by Woodford, 2003 as ‘explicit 
instrument rules’) and interest rate rules in particular.

Following the pioneering contributions of Kydland and Prescott (1977) and Barro 
and Gordon (1983), the credibility problem associated with monetary policy has 
stimulated a huge academic literature that has been influential with policymakers. The 
central message underlying these contributions is the existence of significant macro-
economic gains, in some sense, from ‘enhancing credibility’ through formal commit-
ment to a policy rule or through institutional arrangements for central banks such as 
independence, transparency, and forward- looking inflation targets, that achieve the 
same outcome. The technical reason for this result is that optimal policy formulated 
by Pontryagin’s maximum principle is time- inconsistent – the simple passage of time, 
even in a deterministic environment, leads to an incentive to re- optimize and renege on 
the initial optimal plan. Appreciation of this problem has motivated the examination 
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of  policies that are optimal within the constraint of being time consistent (Levine and 
Currie, 1985; Miller and Salmon, 1985; Currie and Levine, 1987; Cohen and Michel, 
1988; and Söderlind, 1999). Comparing optimal policy with and without commitment 
enables us then to quantify the stabilization gains from commitment.

A further important consideration when considering monetary policy is the existence 
of a nominal interest rate zero lower bound. A number of papers have studied optimal 
commitment policy with this constraint (for example, Coenen and Wieland, 2003; 
Eggertsson and Woodford, 2003; Woodford, 2003, Chapter 6). In an important contri-
bution to the credibility literature, Adam and Billi (2007) show that ignoring the zero 
lower bound constraint for the setting of the nominal interest rate can result in consider-
ably underestimating the stabilization gain from commitment. The reason for this is that 
under discretion the monetary authority cannot make credible promises about future 
policy. For a given setting of future interest rates the volatility of inflation is driven up 
by the expectations of the private sector that the monetary authority will re- optimize in 
the future. This means that to achieve a given low volatility of inflation the lower bound 
is reached more often under discretion than under commitment. All these authors study 
a simple New Keynesian model and are able to employ non- linear techniques. In a more 
developed model such as Smets and Wouters (2003), Levine et al. (2008b) adopt the more 
tractable linear- quadratic (LQ) framework adopted here.

4.1 State- space Set- up

Following the LQ approach to optimal policy we consider linearized forms of the models 
expressed in a general linear minimal6 state- space form

 czt11

Etxt11
d 5 A czt

xt
d 1 Brn, t 1 Cet11 ;      ot 5 E czt

xt
d (19.4)

where zt is an (n 2 m) 3 1 vector of predetermined variables at time t with z0 given, 
xt is an m 3 1 vector of non- predetermined variables and ot is a vector of outputs. All 
variables are expressed as absolute or proportional deviations about a steady state. A, 
B, C and E are fixed matrices and et is a vector of random zero- mean shocks. Rational 
expectations are formed assuming an information set {zs, xs, es}, s # t, the model and the 
monetary rule. For example the linearized NK model can be expressed in this form where 
zt consists of exogenous shocks, lags in non- predetermined and output variables and 
capital stock; xt consists of current inflation, investment, Tobin’s Q, consumption and 
flexi- price outcomes for the latter two variables, and outputs ot consist of marginal costs, 
the marginal rate of substitution between consumption and leisure, the cost of capital, 
labour supply, output, flexi- price outcomes, the output gap and other target variables for 
the monetary authority.

4.2 LQ Approximation of the Optimization Problem

In our models there are many sets of distortions that result in the steady state output 
being below the social optimum: these are from monopolistic competition, external 
habit and labour and credit market frictions. We cannot assume that these distortions 
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are small in the steady state and use the ‘small distortions’ (Woodford, 2003), quadratic 
approximation to the household’s single period utility which is accurate in the vicinity of 
the steady state.7

In Woodford (2003) and many other recent papers a separable household utility of the 
form

 Lj
t 5 c (Cj

t 2 cCt21)12sc

1 2 sc
2 k

(hj
t )11�

1 1 �
d (19.5)

replaces the non- separable utility utilized up to now. This form of utility is actually incon-
sistent with a balanced growth path unless sc 5 1. Nonetheless we proceed to consider 
the NK model with habit (but no indexing), with only one shock At. To make the analysis 
tractable we consider a special case of the NK model and no capital (a 5 1). Then fol-
lowing the procedure set out in the Appendix, the large distortions approximation to this 
welfare function is given by

 Lt 5 2
k

2.
h11� c sc

1 2 c
(yt 2 cyt21) 2 1 �(. 1 l5 (1 1 �))y2

t

 2 2(1 1 �)(. 1 l5 (1 1 �))ytat 1 2l5

sc

1 2 c
(yt 2 cyt21)yt

 2 l5

sc(sc 1 1)
(1 2 c) 2

(yt 2 cyt21)2 1
xz

(1 2 x) (1 2 bx)
(. 1 (1 1 �)l5)p2

t d  (19.6)

where we define . 5 (1 2 1/z) which is 1 for the efficient steady state case, z S ` and

 l5 5
1 2 bc 2 .
sc (1 2 cb)

1 2 c 1 �
 (19.7)

The small distortion case assumes that the zero- inflation steady state about which 
we have linearized is approximately efficient. We are now in a position to examine the 
nature of the small distortions approximation by examining the correctly quadratified 
single- period utility (19.6). From (19.6) we can see that this means that l5 must be small 
and that the small distortion case, which would omit all terms involving l5, is valid only 
if 0l5 (1 1 �) 0 ,, . or, using the definition of l5, only if

 (1 1 �)
01 2 bc 2 . 0
sc (1 2 cb)

1 2 c
1 �

,, . (19.8)

Typical estimated parameter values are sc 5 2, � 5 1.3. With c at the mid- point of 
the range of estimates at c 5 0.7 this gives the left- hand side of (19.8) as 0.22 and the 
right- hand side as 0.69. Neglected terms are therefore of the order of one third of those 
retained.

Finally consider the case without habit (c 5 0). After some further effort (and 
 subtracting an appropriate term in a2

t ), (19.6) then reduces to

HASHIMZADE 9780857931016 CHS. 18-21 (M3110).indd   449HASHIMZADE 9780857931016 CHS. 18-21 (M3110).indd   449 01/07/2013   10:2201/07/2013   10:22



450  Handbook of research methods and applications in empirical macroeconomics

 
2kh11�

2.
(� 1 sc. 1 1 2 .) cayt 2

1 1 �

sc 1 �
atb2

1
zx

(1 2 x)(1 2 bx)(sc 1 �) p2
t d (19.9)

This is a loss function with a stochastic output target y*t 5
1 1 �
sc 1 �at and inflation target of 

zero (the steady state about which we have formed the LQ approximation). In fact y*t  is 
the solution in the flexi- price case, so y*t 2 yt is the output gap and (19.9) now becomes 
the familiar ‘welfare- based’ loss function that appears in much of the literature using a 
NK model to evaluate optimal policy. It should be stressed that this is only welfare based 
under the extreme restrictions that NK model has no capital, no habit, no indexing, has only 
one shock At and uses a separable utility function. Generally then the numerical procedure 
set out in the Appendix must be used for welfare- based optimal policy.

4.3 Optimal Policy with Commitment

For both ad hoc and welfare- based loss function the inter- temporal loss function can be 
expressed in quadratic form:

 W0 5 E0 c (1 2 b)a
`

t50
btLt d

where the single- period loss function is given by a quadratic form Lt 5 yT
t Qyt, where Q 

is a fixed matrix.
To derive the ex ante optimal policy with commitment (OP) following Currie and 

Levine (1993) we maximize the Lagrangian

 L0 5 E0 c (1 2 b)a
`

t50
bt [yT

t Qyt 1 wrr2
n, t 1 pt11 (Ayt 1 Brn, t 2 yt11) ]d

with respect to {rn, t}, {yt} and the row vector of co- state variables, pt, given z0. From 
Currie and Levine (1993) where more details are provided, this leads to an optimal rule

 rn, t 5 D czt

p2t
d  (19.10)

where

 czt11

p2t11
d 5 F czt

p2t
d

and the optimality condition8 at time t 5 0 imposes p20 5 0. In (19.10) pT
t 5 [pT

1t pT
2t ] 

is partitioned so that p1t, the co- state vector associated with the predetermined vari-
ables, is of dimension (n 2 m) 3 1 and p2t, the co- state vector associated with the non- 
predetermined variables, is of dimension m 3 1. The (conditional) loss function is then 
given by

 WOP
t 5 2(1 2 b)traN11aZt 1

b

1 2 b
Sb 1 N22p2tpT

2tb
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where Zt 5 ztzT
t , S 5 cov(Cet),

 N 5 cS11 2 S12S21
22 S21 S12S21

22

2S21
22 S21 S21

22
d 5 cN11 N12

N21 N22
d (19.11)

and n 3 n matrix S is the solution to the steady- state Ricatti equation. In (19.11) matri-
ces S and N are partitioned conformably with yt 5 [zT

t xT
t ]T so that S11 for instance has 

dimensions (n 2 m) 3 (n 2 m).
Note that in order to achieve optimality, the policymaker sets p20 5 0 at time t 5 0. 

At time t . 0 there then exists a gain from reneging by resetting p2t 5 0. It can be shown 
that matrices N11 and N22 are negative definite, so the loss in W is positive and an incen-
tive to renege exists at all points along the trajectory of the optimal policy by resetting 
p2t 5 0. This essentially is the time- inconsistency problem facing stabilization policy in a 
model with structural dynamics.

4.4 Discretion

To evaluate the discretionary (time- consistent) policy we write the expected loss Wt at 
time t as

 Wt 5 Et c (1 2 b)a
`

t5t
bt2tLt d 5 (1 2 b)(yT

t Qyt 1 wrr2
n, t) 1 bWt11

The dynamic programming solution then seeks a stationary solution of the form 
rn, t 5 2Fzt, Wt 5 zTSz and x 5 2Nz where matrices S and N are different matrices from 
those under commitment (unless there is no forward- looking behaviour), now of lower 
dimensions (n 2 m) 3 (n 2 m)  and m 3 (n 2 m)  respectively. The value function Wt is 
minimized at time t, subject to (19.4), in the knowledge that a similar procedure will be 
used to minimize Wt11 at time t 1 1.9 Both the instrument rn, t and the forward- looking 
variables xt are now proportional to the predetermined component of the state- vector zt 
and the equilibrium we seek is therefore Markov Perfect. In Currie and Levine (1993) an 
iterative process for Ft, Nt and St starting with some initial values is set out. If the process 
converges to stationary values independent of these initial values,10 F, N and S say, then 
the time- consistent (TC) feedback rule is rn, t 5 2Fzt with loss at time t given by

 WTC
t 5 (1 2 b)traS aZt 1

b

1 2 b
Sbb

4.5 Optimized Simple Commitment Rules

We now address a problem with the optimal commitment rule (19.10): in all but very 
simple models it is extremely complex, with the interest rate feeding back at time t on the 
full state vector zt and all past realizations of zt back to the initiation of the rule at t 5 0. 
We therefore seek to mimic the optimal commitment rule with simpler rules of the form

 rn, t 5 Dyt 5 D czt

xt
d  (19.12)
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where D is constrained to be sparse in some specified way. In Currie and Levine (1993) 
we show that the loss at time t is given by

 WSIM
t 5 (1 2 b)traV aZt 1

b

1 2 b
Sbb

where V 5 V(D) satisfies a Lyapunov equation. WSIM
t  can now be minimized with 

respect to D to give an optimized simple rule of the form (19.12) with D 5 D*. A very 
important feature of optimized simple rules is that unlike their optimal commitment 
or optimal discretionary counterparts they are not certainty equivalent. In fact if the 
rule is designed at time t 5 0 then D* 5 f *(Z0 1

b
1 2 bS) and so depends on the dis-

placement z0 at time t 5 0 and on the covariance matrix of innovations S 5 cov(et). 
From non- certainty equivalence it follows that if the simple rule were to be redesigned 
at any time t . 0, since the re- optimized D* will then depend on Zt the new rule 
will differ from that at t 5 0. This feature is true in models with or without rational 
forward- looking behaviour and it implies that simple rules are time- inconsistent even 
in non- RE models.

4.6 Stability and Indeterminacy

Substituting (19.12) into (19.4), the condition for a stable and unique equilibrium 
depends on the magnitude of the eigenvalues of the matrix A 1 BD. If the number 
of eigenvalues outside the unit circle is equal to the number of non- predetermined 
variables, the system has a unique equilibrium which is also stable with saddle- path 
xt 5 2Nzt where N 5 N(D)  (see Blanchard and Kahn, 1980; Currie and Levine, 1993). 
In our model NK under a Taylor rule with forward horizons j 5 0, 1, there are 2 non- 
predetermined variables. Instability occurs when the number of eigenvalues of A 1 BD 
outside the unit circle is larger than the number of non- predetermined variables. This 
implies that when the economy is pushed off its steady state following a shock, it cannot 
ever converge back to it, but rather finishes up with explosive inflation dynamics (hyper-
inflation or hyper- deflation).

By contrast, indeterminacy occurs when the number of eigenvalues of A 1 BD outside 
the unit circle is smaller than the number of non- predetermined variables. Put simply, 
this implies that when a shock displaces the economy from its steady state, there are 
many possible paths leading back to equilibrium, that is there are multiple well- behaved 
rational expectations solutions to the model economy. With forward- looking rules this 
can happen when policymakers respond to the private sector’s inflation expectations 
and these in turn are driven by non- fundamental exogenous random shocks (that is they 
are not based on preferences or technology), usually being referred to as ‘sunspots’. If 
policymakers set the coefficients of the rule so that this accommodates such expecta-
tions, the latter become self- fulfilling. Then the rule is unable to uniquely pin down the 
behaviour of one or more real and/or nominal variables, making many different paths 
compatible with equilibrium (see Chari et al., 1998; Clarida et al., 2000; Carlstrom and 
Fuerst, 1999; 2000; Benhabib et al., 2001 and Woodford, 2003). The fact that the rule 
itself may introduce indeterminacy and generate so- called ‘sunspot equilibria’ is of inter-
est because sunspot fluctuations – that is, persistent movements in inflation and output 

HASHIMZADE 9780857931016 CHS. 18-21 (M3110).indd   452HASHIMZADE 9780857931016 CHS. 18-21 (M3110).indd   452 01/07/2013   10:2201/07/2013   10:22



The science and art of DSGE modelling: II   453

that materialize even in the absence of shocks to preferences or technology – are typically 
welfare- reducing and can potentially be quite large.

4.7 Results for Optimal Monetary Policy

The optimal policy results for the linearized NK model using Dynare are set out in 
Table 19.3. The loss function is of the ad hoc form

 W0 5 (1 2 b)E0 ca`
t50

bt(p2
t 1 l1y2

t 1 l2r2
n, t) d

 . var(pt) 1 l1var(yt) 1 l2var(rn, t)  as b S 1

where the variances are conditional variances at the steady state. Dynare currently 
computes the Ramsey policy (optimal commitment) and optimized simple rules.11 The 
following forward- looking simple rules are investigated:

 rn, t 5 rrn, t21 1 qpEt [pt1 j ] 1 qyEt [yt1 j ]   j 5 0, 1, 2, 3, 4

Thus we see that two simple rules, j 5 0, 1 can closely mimic the optimal policy. 
Otherwise rules that are very forward- looking give rise to substantial losses, a familiar 
result in the literature (see Batini et al., 2006).

5 CRITIQUE OF DSGE MODELS

There are a number of criticisms levelled at DSGE models. The first is fundamental and 
common to RBC and NK models alike – problems with rationality and Expected Utility 
Maximization (EUM). The second is that DSGE models examine fluctuations about 
an exogenous balanced growth path and there is no role for endogenous growth. The 
third consists of a number of empirical concerns. The fourth is the rudimentary nature 
of earlier models that lacked unemployment and a banking sector. We discuss this in 
the final section of this chapter. Finally there is another fundamental problem with any 
micro- founded macro- model – that of heterogeneity and aggregation. We consider these 
in turn.

Table 19.3 Optimal policy and optimized rules

Rule Loss r qp qy

Ramsey 5 0 0.0596 n.a. n.a. n.a.
Simple: j 5 0 0.0679 0.955 1.017 0.015
Simple: j 5 1 0.0677 0.970 8.198 0.0617
Simple: j 5 2 0.0820 0.962 7.380 0.125
Simple: j 5 3 0.2792 0.953 1.134 −0.119
Simple: j 5 4 0.5760 1.000 1.107 0.088
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5.1 Rationality

The assumption of rationality in general and that of rational expectations in particular 
has naturally generated a lively debate in economics and the social sciences. The assump-
tion of perfect rationality has come under scrutiny since the 1950s when Herbert A. 
Simon claimed that agents are not realistically so rational so as to aspire to pay- off maxi-
mization. Instead he proposed ‘bounded rationality’ as a more realistic alternative to the 
assumption of rationality, incorporating players’ inductive reasoning processes. This is 
the route that the Agent- based Computational Economics (ACE) models take (see, for 
example, LeBaron Tesfatsion, 2008). Certainly, experimental studies of decision- making 
show human behaviour to be regularly inconsistent and contradictory to the assump-
tion of perfect rationality. That said, experiments using people and ACE models suggest 
agents can learn to be rational so that rationality may well be a reasonable empirical 
postulate to describe behaviour near a long- run steady state. This view is supported by 
statistical learning in theoretical macro- models which converges to rational expectations 
equilibria (see Evans and Honkapohja, 2001)

Models can only be beaten by alternative models. A model of irrationality has to 
pin down why one decision is preferred to another and here we observe that ana-
lytically tractable theories of the inconsistency and irrationality in human behaviour 
simply have not yet been developed. Hence our best analytical models are based on the 
rationality assumption as we unfortunately have nothing superior on offer. However, 
we can be more positive than that at least when it comes to competitive behaviour. 
Darwinian selection helps rational (that is, profit- maximizing) firms to succeed in 
competition.

Perhaps the most convincing argument for adopting the rationality assumption is pro-
vided by Myerson (1999. If we view the aim of social sciences to be not only to predict 
human behaviour in the abstract, but also, crucially, to analyse social institutions and 
assess proposals for their reform, it is useful to evaluate these institutions under the 
assumption of perfect rationality. In this way, we can solve for flaws as either defects in 
the institutional structure (and thereby institutional reform is the required solution) or 
as flaws in the rationality of the agents (which begs for improved education and/or pro-
vision of information for individuals). Accordingly this has become a logical and useful 
assumption for economists in order to see with more clarity when social problems must 
be solved by institutional reform. This argument can be refined to illustrate why this 
individual perfection assumption should be one of intelligent rational maximization, as 
in the models of non- cooperative game theory. Thus an argument for reform of social 
institutions (rather than for re- education of individuals) is most persuasive when it is 
based on a model which assumes that individuals intelligently understand their environ-
ment and rationally act to maximize their own welfare.12

Even if we accept utility maximization, there still is an issue of whether it should 
be expected utility maximization (EUM). An alternative supported by experiments is 
Prospect Theory which takes into account that people behave as if extremely improb-
able events are impossible and extremely probable events are certain (see Shiller, 1999). 
Prospect theory can explain phenomena such as the equity premium puzzle. However, it 
is extremely difficult to incorporate into general equilibrium modelling; in the words of 
Shiller, ‘EUM can be a workhorse for some sensible research’.
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5.2 Integrating Endogenous Growth and Business Cycles

Turning to our second limitation – the lack of a role for endogenous growth. As Lucas 
(1987) pointed out, the welfare gains from eliminating business cycle fluctuations in the 
standard RBC model are very small and are dwarfed by the gains from increased growth. 
It is true that adding New Keynesian frictions significantly increases the gains from sta-
bilization policy, but they still remain small compared with those from increased growth.

Recently a number of papers have introduced long- run growth into DSGE models. 
Wang and Wen (2008) and Annicchiarico et al. (2010) do so within the simple AK 
approach. Examples of R&D- led endogenous growth are Comin and Gertler (2006), 
Comin et al. (2009a), (2009b) and Holden (2011). Comin et al. (2009b) introduce new 
layers of differentiated goods into wholesale output and capital goods sectors with 
expanding varieties that lead to endogenous growth. Crucial variables are the numbers 
of final and intermediate varieties in output and capital goods sectors pinned down 
by free entry. Efficiency of production then depends on exogenous productivity and 
numbers of adopted intermediate goods. New intermediate goods arrive exogenously in 
Comin et al. (2009b) but endogenously in Holden (2011) and Comin and Gertler (2006). 
For the latter two there are both innovators who develop new intermediate goods, and 
adopters in Comin et al. (or appropriators in Holden) who convert them into a usable 
input. Innovation depends on ‘news shocks’ about future growth prospects. These fea-
tures result in new endogenous persistence mechanisms as well as an endogenous growth 
path. These models allow for both exogenous and endogenous movements in total factor 
productivity and the empirical strategy is to let the data determine the importance of 
each. The R&D- led EG model can encompass the basic NK model and a likelihood 
race can assess the empirical relevance of the endogenous growth element of the DSGE 
model.

5.3 Empirical Concerns

Our third limitation centres on the empirical dimension. Although Bayesian Maximum- 
Likelihood estimation is a giant step forward from the calibration methods of earlier 
RBC models there are concerns associated with identification, ability to match VARs, 
too many shocks required, too little attention to priors and the parametric assumptions 
surrounding technology and consumer preferences. Identification issues are a very active 
area of research (see Canova and Sala, 2006; Iskrev, 2008; Ratto, 2008), for example, 
research that is feeding into toolboxes available in Dynare.

Another critique of Bayesian estimation is the method of pre- filtering the data. As we 
showed in Chapter 18, models are currently estimated with a two- step approach: data 
are first filtered and then structural parameters are estimated. This means that the choice 
of the statistical filter might be arbitrary and can affect the structural estimation. To 
bridge the models and the raw data an alternative is to implement a hybrid framework 
where the cyclical fluctuations of the data are seized by the solution of the DSGE model 
and the non- cyclical fluctuations are captured by a flexible reduced form representation. 
This approach links the observables to the model counterparts via a flexible specification 
which does not require that the cyclical component be solely located at business cycle fre-
quencies (see Canova, 2009), and allows the non- cyclical component to take various time 
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series patterns (see Ferroni, 2011 and Cantore et al., 2011). The critique by Chari et al. 
(2008) is essentially empirical and focuses mainly on ill- conceived shocks in a standard 
NK model that are not structural or consistent with microeconometric evidence or have 
plausible estimated standard errors. Many of the other empirical issues are discussed in 
an excellent recent review, Fernandez- Villaverde (2009).

Not all these empirical concerns can be addressed by better econometrics. Although 
asset prices make an appearance in the standard DSGE model they still do a terrible job 
at matching them with data. Our models cannot account for a range of financial obser-
vations ranging from the equity premium (Mehra and Prescott, 1985) to the slope of the 
yield curve (Campbell, 2003). As Smith (2008) points out these are first- order conflicts 
between data and theory about levels and not the second- order considerations about 
covariances considered up to now. One response is to compromise theoretical rigour 
for statistical fit by combining DSGE and VAR (or rather global VAR or GVAR) 
structures as Pesaran and Smith (2006) and (2011). Another response is to improve 
the models by exploring different utility functions (or ‘exotic preferences’) as in Barro 
(2007).

5.4 Heterogeneous Agents and Aggregation

Finally we turn to what is perhaps the most important issue in micro- founded macro-
economics – that of heterogeneous agents and aggregation. The first generation of DSGE 
models, the RBC models, stayed within the representative agent paradigm. The current 
wave of New Keynesian models have made only the slightest deviation from this frame-
work by assuming consumers have access to complete markets. Then although they may 
differ in their initial tastes, are subject to staggered wage contracts and to idiosyncratic 
shocks, they still face a common budget constraint and the economy in aggregate does 
not depend on the distribution of individual qualities. By contrast a recent body of lit-
erature is developing macroeconomics from the study of average consumption, output 
and inputs involving the interaction of these representative households and firms, to 
the study of the entire distribution of these variables. A recent insightful survey of these 
developments is provided by Heathcote et al. (2009).

Aggregation certainly matters! For example in a standard RBC model but with 
indivisible labour, An et al. (2008) show that a representative agent model can only 
explain the data if one assumes an implausible household utility function. However, 
progress in embracing heterogeneity has been confined to simple RBC models and 
still faces technical problems in solving for a rational expectations equilibrium. ACE 
models (again see LeBaron and Tesfatsion, 2008) certainly tackle aggregation head- 
on and dispense with the latter problem by ditching rational expectations. But should 
central banks go down this path for their models? To quote LeBaron and Tesfatsion 
they (ACE models) ‘raise some practical complications for the applied econometri-
cian . . . computational methods such as method of moments might be too compu-
tationally costly to undertake . . . Researchers at central banks might never decide 
to fit giant ACE macro models to data.’ Aggregation remains a difficult problem in 
macroeconomics. Economics cannot copy the success of statistical physics in tackling 
this problem because, unlike atoms and molecules in physics, economic agents are 
conscious and calculating!
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6 THE ‘ROAD AHEAD’?

‘All models are wrong, but some are useful.’ (Box, 1979).

These notes provide an indication of the ‘journey so far’ for DSGE macroeconomic mod-
elling. Where does that leave the ‘road ahead’? To organize our conclusions it is useful 
to view a macro- model as being constructed in two stages: first a model of the aggregate 
economy given a particular model of how expectations are formed by economic agents; 
and second, the model of expectations formation. We consider these two stages in turn:

6.1 Better Models Given Expectations Formation

There are a number of areas where DSGE models need developing, especially for emerg-
ing economies. Our NK model is of a closed economy. A large body of literature now 
extends the models to open economies; see Galí (2008) and Lim and McNelis (2008). 
Examples of some work on DSGE models for emerging economies are Batini et al. 
(2007), (2009) and Gabriel et al. (2010).

Until recently, as with their RBC antecedents, the New Keynesian forms still omitted 
involuntary unemployment. We are now seeing labour market models with unemploy-
ment in both RBC and DSGE models (for the latter, see for example Blanchard and 
Galí, 2007; Thomas, 2008; and Cantore et al., 2013). Another major lacuna in the NK 
models has been the absence of a banking sector. The monetary transmission mecha-
nism existed simply through one nominal interest on a riskless bond, ‘set’ by the central 
bank. The seminal work on financial frictions by Bernanke et al. (1999) introduced a 
risk premium paid by firms with an implicit intermediary financial institution. But it is 
only very recently that a comprehensive banking sector has appeared – see Gertler and 
Kiyotaki (2010) as a representative example of this development on which our banking 
model is based. In general, to move toward more heterogeneous models rather than 
attempting to model the full distribution of agents, it makes sense to first work on more 
disaggregated models by introducing multi sectors, credit- constrained non- Ricardian 
(poor) households alongside Ricardian (well- off) households, entrepreneurs, workers 
and so on.

6.2 Better Models of Expectations Formation

Staying broadly within the rational expectations paradigm a number of refinements are 
on offer that assume that agents are not able to perfectly observe states that define the 
economy. The ‘rational inattention’ literature (Sims, 2005; Luo and Young, 2009; Luo, 
2006) fits into this agenda, as does the ‘sticky information’ approach of Reis (2009). The 
basic idea is that agents can process information subject to a constraint that places an 
upper bound on the information flow. Borrowing from information theory (which in 
turn borrows from statistical physics) the idea is formalized by an upper bound on the 
decrease in entropy that ensues as agents proceed from a prior to a posterior of a signal. 
Levine et al. (2007) and (2012b) propose a general framework for introducing informa-
tion limitations at the point at which agents form expectations.13

A more drastic deviation from rational expectations is provided by the statistical 
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rational learning literature already mentioned when discussing rationality. This intro-
duces a specific form of bounded rationality in which utility- maximizing agents make 
forecasts in each period based on standard econometric techniques such as least squares. 
In many cases this converges to a rational expectations equilibrium. All these refine-
ments contrast with the drastic alternative offered by the very recent ‘Animal Spirits’ 
approach (Akerlof and Shiller, 2009; DeGrauwe, 2009). The latter paper is particularly 
apposite as it proposes a radical alternative to a standard New Keynesian model with 
rational expectations. Some agents are optimists and some are pessimists and use ad hoc 
simple rules to forecast future output. There are shifts from optimism to pessimism that 
are driven by a form of adaptive expectations which drive endogenous cycles and inertia 
without inertial mechanisms such as habit and indexing. This framework provides an 
interesting challenge to the existing paradigm which needs to show that, with the refine-
ments set out here, it can also explain the same stylized facts without recourse to these 
inertial mechanisms.

DSGE models estimated by Bayesian- Maximum- Likelihood methods can be consid-
ered as probability models in the sense described by Sims (2007) and be used for risk 
assessment and policy design. This is true for any one model, but with a range of models 
on offer it is possible also to design interest rate rules that are simple and robust across 
the rival models and across the distribution of parameter estimates for each of these 
rivals as in Levine et al. (2012a) and another forthcoming Dynare facility. After making 
models better in the sense described in the first part of this section, a possible road ahead 
is to consider rival models as being distinguished by the model of expectations. This 
would avoid becoming ‘a prisoner of a single system’ at least with respect to expectations 
formation where, as we have seen, there is relatively less consensus on the appropriate 
modelling strategy.

NOTES

 * We acknowledge financial support for the preparation of this chapter from the Foreign & Commonwealth 
Office as a contribution to the project ‘Building Capacity and Consensus for Monetary and Financial 
Reform’ led by the National Institute of Public Finance and Policy, from the EU Framework Programme 
7 in support of the project ‘MONFISPOL’ led by Michel Juillard, CEPREMAP and from the ESRC, 
project no. RES- 000- 23- 1126.

 1. These assertions belong to the art rather than science of DSGE modelling!
 2. In particular the ‘Easterlin paradox’, Easterlin (2003). See also Layard (2006) and Choudhary et al. (2012) 

for the role of external habit in the explanation of the paradox.
 3. For expositional reasons we have confined ourselves to a simple NK model without wage stickiness, 

capacity utilization and without shocks to preferences, investment and the wage mark- up as in Smets 
and Wouters (2007). The irrelevance of habit especially does not carry over to a richer model with these 
features and indeed other labour market and financial frictions.

 4. By contrast the standard way of identification is to put W 5 I  and order the variables to make some 
economic sense.

 5. Since we estimated the VAR in levels there is a potential problem of non- stationarity; however, tests on 
the residuals indicated stationarity. The choice of the lag length maximizes the marginal data density 
associated with the DSGE- VAR(l̂).

 6. See Levine and Pearlman (2011).
 7. In a forthcoming Dynare facility we employ a large distortions approximation to this welfare function as 

described in Levine et al. (2008a).
 8. Optimality from a ‘timeless perspective’ imposes a different condition at time t 5 0, but this has no 

bearing on the stochastic component of policy.
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 9. See Currie and Levine (1993) and Söderlind (1999).
10. Indeed we find this is usually the case.
11. The current version Dynare 4.2.3 computes a welfare- based Ramsey policy, but only optimized simple 

rules for ad hoc quadratic loss functions as in (19.13). To make comparisons between the two we therefore 
confine ourselves to an ad hoc loss function. Discretionary optimal policy is not yet available in Dynare, 
but will be in future versions, as will welfare- based optimized simple rules and the imposition of a ZLB on 
the nominal interest rate.

12. I am grateful to Mustapha Doukoure for this summary of the Myerson argument.
13. This is now a Dynare facility.
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APPENDIX

A The Hamiltonian Quadratic Approximation of Welfare

Consider the following general deterministic optimization problem

 maxa
`

t50
btU(Xt21,Wt)  s.t. Xt 5 f (Xt21,Wt) (19A.1)

where Xt21 is a vector of state variables and Wt21 a vector of instruments.1 There are 
given initial and the usual tranversality conditions. For our purposes, we consider this 
as including models with forward- looking expectations, so that the optimal solution to 
the latter set- up is the pre- commitment solution. Suppose the solution converges to a 
steady state X,W  as t S ` for the states Xt and the policies Wt. Define xt 5 Xt 2 X  and 
wt 5 Wt 2 W  as representing the first- order approximation to absolute deviations of 
states and policies from their steady states.2

The Lagrangian for the problem is defined as,

 a
`

t50
bt [U(Xt21,Wt) 2 lT

t (Xt 2 f (Xt21,Wt)) ] (19A.2)

so that a necessary condition for the solution to (19A.1) is that the Lagrangian is station-
ary at all {Xs},  {Ws}, that is

 UW 1 lT
t fW 5 0 UX 2

1
b
lT

t21 1 lT
t fX 5 0 (19A.3)

Assume a steady state l for the Lagrange multipliers exists as well. Now define the 
Hamiltonian Ht 5 U(Xt21,Wt) 1 lTf (Xt21,Wt). The following is the discrete time 
version of Magil (1977):

Theorem
If a steady state solution (X,W,l) to the optimization problem (19A.1) exists, then any 
perturbation (xt, wt) about this steady state can be expressed as the solution to

 max
1
2a

`

t50
bt [xt21 wt ] cHXX HXW

HWX HWW
d cxt21

wt
d  s.t. xt 5 fX xt21 1 fW wt (19A.4)

where HXX, etc. denote second- order derivatives evaluated at (X,W). This can be directly 
extended to the case incorporating disturbances.

Thus our general procedure is as follows:

1. Set out the deterministic non- linear problem for the Ramsey problem, to maximize 
the representative agents’ utility subject to non- linear dynamic constraints.

2. Write down the Lagrangian for the problem.
3. Calculate the first- order conditions. We do not require the initial conditions for 

an optimum since we ultimately only need the steady state of the Ramsey problem.
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4. Calculate the steady state of the first- order conditions. The terminal condition 
implied by this procedure is such that the system converges to this steady state.

5. Calculate a second- order Taylor series approximation, about the steady state, of the 
Hamiltonian associated with the Lagrangian in (2).

6. Calculate a first- order Taylor series approximation, about the steady state, of the 
first- order conditions and the original constraints.

7. Use (4) to eliminate the steady- state Lagrangian multipliers in (5). By appropriate 
elimination both the Hamiltonian and the constraints can be expressed in minimal 
form as described in Levine and Pearlman (2011). This then gives us the accurate 
LQ approximation of the original non- linear optimization problem in the form of a 
minimal linear state- space representation of the constraints and a quadratic form of 
the utility expressed in terms of the states.

B Dynare- based Software Available for Handbook Chapters

Three Dynare model (.mod) files are available on the website: http://surrey.ac.uk/ 
economics/research/groups/centreinternationalmacro/ for reproducing and building on 
the example in these chapters. They consist of:

● RBC model with investment costs
● NK model with habit and indexing
● NK linear model for estimation and DSGE- VAR

Notes

1. An alternative representation of the problem is U(Xt, Wt) and Et [Xt11 ] 5 f (Xt, Wt) where Xt includes 
forward- looking non- predetermined variables and Et [Xt11 ] 5 Xt11 for the deterministic problem where 
perfect foresight applies. Whichever one uses, it is easy to switch from one to the other by a simple re- 
definition. As we demonstrate in Levine et al. (2008b), although the inclusion of forward- looking variables 
significantly alters the nature of the optimization problem, these changes only affect the boundary condi-
tions and the second- order conditions, but not the steady state of the optimum which is all we require for 
LQ approximation.

2. Alternatively xt 5 (Xt 2 X ) /X  and wt 5 (Wt 2 W )/W, depending on the nature of the economic variable. 
Then the theorem follows in a similar way with an appropriate adjustment to the Jacobian matrix.
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20 Generalized Method of Moments estimation of 
DSGE models*
Francisco J. Ruge- Murcia

1 INTRODUCTION

This chapter examines the application of the Generalized Method of Moments (GMM) 
to the estimation of dynamic stochastic general equilibrium (DSGE) models. The goal is 
to present the use of GMM in a pedagogical manner and to provide evidence on its small 
sample properties. The version of GMM where the moment conditions are computed 
via simulation – that is, the Simulated Method of Moments (SMM) – is examined in this 
chapter as well.

The use of the method of moments for the estimation of DSGE models is attractive 
for several reasons. First, it delivers consistent and asymptotically normal parameter 
estimates under the hypothesis that the model is correctly specified. Of course, other 
estimators (for example, Maximum Likelihood (ML)) have these properties and, thus, 
the difference between them is statistical efficiency and computational ease. Second, 
GMM is relatively fast because the evaluation of the statistical objective function is 
cheap. Ruge- Murcia (2007) compares the computing time required by different methods 
used for the estimation of DSGE models and finds that GMM is the fastest, followed, 
in that order, by ML, SMM and indirect inference. Third, the method of moments is 
more robust than ML to the stochastic singularity of DSGE models. DSGE models 
are stochastically singular because they generate implications about a large number of 
observable variables using as input a relatively small number of structural shocks. Thus, 
the model predicts that certain linear combinations of observable variables should hold 
without noise. Needless to say, this prediction is not satisfied by actual economic data. 
For the purpose of estimation, stochastic singularity affects ML more severely than 
moment- based methods because the former requires  linearly   independent variables 
while the latter requires linearly independent moments. The latter is a weaker restriction 
because one can find independent moments that involve more variables than those which 
are linearly independent. Finally, more generally, the method of moments is more robust 
than ML to misspecification. See Ruge- Murcia (2007) for a detailed discussion of these 
issues and supporting Monte Carlo evidence.

The Generalized Method of Moments was first introduced in the literature by Lars 
Hansen (Hansen, 1982) and earlier applications (for example, Hansen and Singleton, 
1982) involved the estimation and testing of Euler equations derived from utility maxi-
mization. Regarding the estimation of DSGE models by GMM, one approach consists 
in estimating parameters by applying GMM to a subset of the model equations (for 
example, the first- order conditions). For an example of this strategy, see Braun (1994). 
This limited- information approach does not involve the solution of the DSGE model 
and, consequently, it does not exploit its cross- equation restrictions.
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The GMM approach studied here is closely related to the minimum distance estima-
tor in Malinvaud (1970). The GMM estimator is the value that minimizes the weighted 
distance between the empirical moments of the data and theoretical moments predicted 
by the model. This approach requires solving the model in each iteration of the minimi-
zation routine, which may be computationally demanding but also leads to efficiency 
improvements because it exploits the cross- equation restrictions. Earlier applications 
of this approach include Christiano and Eichenbaum (1992) and Burnside et al. (1993). 
More recent contributions include, among many others, Gorodnichenko and Ng (2010), 
who examine the implications of different detrending methods for the GMM estimation 
of DSGE models; Ruge- Murcia (2010), who studies the estimation of non- linear DGSE 
models by the method of moments; and Christiano et al. (2011), who study the use of 
DSGE models of monetary policy analysis. A nice presentation of GMM, including 
historical antecedents, a large bibliography and a discussion of practical issues, can be 
found in Hall (2005).

This chapter is organized as follows. Section 2 presents the DSGE model that will be 
used through this chapter. Section 3 describes the application of GMM and SMM to 
the estimation of DSGE models. Section 4 studies the small- sample properties of these 
estimators using Monte Carlo analysis. The Monte Carlo experiments complement the 
ones in my earlier work (Ruge- Murcia, 2007), where the focus was on the role of moment 
conditions involving different combinations of observable variables. Instead, the experi-
ments here study the role of different weighting matrices and sample sizes. Finally, 
section 5 concludes. Codes and replication material are made available separately on the 
Handbook’s web page.

2 A DSGE MODEL

In order to illustrate the application of the Generalized Method of Moments (GMM) 
to the estimation of DSGE models, it is convenient to focus on a specific model. 
I focus on the neoclassical growth model because it is simple, widely known, and 
 constitutes the core of more sophisticated DSGE models used by researchers in the 
field.

Consider an economy populated by identical agents with instantaneous utility 
function

 u(ct,nt) 5
(ct) 12g 2 1

1 2 g
1 b(1 2 nt), (20.1)

where ct is consumption, nt is hours worked, g and b are positive preference parameters, 
and the time endowment is normalized to 1. Under this specification, the disutility of 
labor is linear (see Hansen, 1985), and consumption preferences are isoelastic and char-
acterized by constant relative risk aversion. The population size is constant and normal-
ized to 1.

The only perishable good in this economy is produced using the technology

 f (kt, nt, zt) 5 ztka
t n12a

t , (20.2)
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where a [ (0,1) is a parameter, kt is the capital stock, and zt is an exogenous productiv-
ity shock. Technology is homogeneous of degree 1, and so it features constant returns to 
scale. The productivity shock follows the process

 ln(zt) 5 (1 2 r) ln(z) 1 r ln(zt21) 1 et, (20.3)

where r [ (21, 1), ln(z)  is the unconditional mean of ln(zt) , and et is an innovation 
assumed to be identically and independently distributed (i.i.d.) with mean zero and vari-
ance equal to s2. In what follows, I set z 5 1 and, thus, ln(z) 5 0. Since z is just a scaling 
factor, this normalization entails no loss of generality.

Economic decisions are made by a central planner who maximizes the expected life-
time utility of agents,

 Esa
`

t5s
bt2su(ct, nt), (20.4)

where b [ (0, 1) is the discount factor. The central planner takes as given the initial 
capital stock and is subject in every period to the resource constraint

 ct 1 kt11 2 (1 2 d)kt 5 ztka
t n12a

t , (20.5)

where d [ (0, 1)  is the depreciation rate. Notice that this specification implicitly assumes 
that there exists a technology to costlessly convert one unit of perishable consumption 
good into one unit of productive capital and vice versa.

In addition to the transversality condition, the first- order necessary conditions associ-
ated with the optimal choice of consumption and labor supply are

 (ct)2g 5 bEt((ct11)2g(1 1 azt11ka21
t11 n12a

t11 2 d)), (20.6)

 b/(ct)2g 5 (1 2 a)ztka
t n2a

t . (20.7)

Equation (20.6) is the Euler equation for consumption whereby the central planner is 
indifferent between allocating the marginal unit of good to current consumption or 
saving it in the form of capital. Equation (20.7) equates the marginal rate of substitution 
between leisure and consumption with the marginal productivity of labor.

2.1 A Special Case

It will be useful below to consider the version of the growth model due to Brock and 
Mirman (1972). This version is interesting because it has an exact, closed- form solution 
and, consequently, its exact unconditional moments can be derived analytically.

The Brock–Mirman model corresponds to the case where b 5 0 (leisure is not an argu-
ment of the utility function), g 5 1 (consumption preferences are logarithmic), d 5 1 
(depreciation is complete), and the productive technology is

 f (kt, zt) 5 ztka
t , (20.8)
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with all other notation as previously defined. The resource constraint is then

 ct 1 kt11 5 ztka
t , (20.9)

and the Euler equation for consumption becomes

 1/ct 5 bEt((1/ct11) (azt11ka21
t11 )). (20.10)

2.2 Solution

In the case of the Brock–Mirman model, it is easy to verify that the dynamic system of 
non- linear first- difference equations (20.9) and (20.10) is solved by the decision rules

 ct 5 c(kt, zt) 5 (1 2 ab)ztka
t , (20.11)

 kt11 5 k (kt, zt) 5 (ab)ztka
t . (20.12)

This solution is exact (that is, no approximation is involved) and holds regardless of the 
time- series properties of the productivity shock. Since ztka

t  is total output, this model 
implies that agents optimally consume a fixed proportion of their current income, just 
as in the celebrated Solow model (see Solow, 1956). These decision rules are non- linear 
in the level of the variables but by taking logs in both sides of (20.11) and (20.12), one 
obtains the linear relationships

 c ln(ct)
ln(kt11)

d 5 c ln(1 2 ab)
ln(ab) d 1 ca 1

a 1
d c ln(kt)

ln(zt)
d .

These log- linear decision rules will be used below to derive exact expressions for the 
second- order moments of consumption and investment in the Brock–Mirman economy.

More generally, however, the solution of DSGE models requires some degree of 
approximation. See Taylor and Uhlig (1990) and the papers therein for a survey of dif-
ferent approximate solution methods. In this chapter, I use a perturbation method that 
approximates the policy rules around the deterministic steady state with a first- order 
polynomial in the state variables and characterizes the local dynamics. For the neoclas-
sical growth model, this strategy delivers the (approximate) solution

 £ ln(ct)
ln(nt)

ln(kt11)
§ 5 £ ln(c)

ln(n)
ln(k)

§ 1 £�ck �cz

�nk �nz

�kk �kz

§ c ln(kt) 2 ln(k)
ln(zt)

d ,
where c, n and k respectively denote the levels of consumption, hours worked and 
capital in the deterministic steady state, the � coefficients are non- linear function of 
the structural parameters of the model, and I have used the normalization ln(z) 5 0. 
These log- linear decision rules will be used below to derive expressions for the second- 
order moments of the model variables in percentage deviation from their steady state 
values.
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3 THE GENERALIZED METHOD OF MOMENTS

Consider a DSGE model with unknown parameters q [ Q ( Rq, where q is a q 3 1 
vector and Q is a compact set. For example, in the case of the growth model q 5 {b, g, 
b, a, r, s, d}, while in the case of the Brock–Mirman model q 5 {b, a, r, s}. Denote 
by {xt} a sample of T  observations of data available to estimate the model. The data 
series in {xt} are assumed to be stationary and ergodic with these properties possibly the 
result of a prior transformation of the raw data (for example, by means of a detrending 
procedure.)

The key input in the GMM estimation of DSGE models is the set of p moment 
conditions

 M(q) 5 a (1/T)a
T

t51
m(xt) 2 E(m(q))b, (20.13)

which are collected here in a p 3 1 vector. The first term in the right- hand side of (20.13), 
(1/T) gT

t51
m(xt) , is statistics computed using the time average of some function of the data, 

while the second term, E(m(q)) , is the theoretical counterpart of the same statistics pre-
dicted by the economic model. The GMM estimator is

 q̂ 5 argmin
q[Q

M(q)rWM(q), (20.14)

with W a p 3 p positive- definite weighting matrix. In words, the GMM estimator is 
the value of q that makes the (weighted) distance between the empirical moments of 
the data and theoretical moments predicted by the model as small as possible, and, 
hence, the moment conditions in (20.13) as close to zero as possible. This formula-
tion  of GMM is closely related to the minimum distance estimator in Malinvaud 
(1970).

A necessary, but not sufficient, condition for identification is p $ q (that is, at least 
as many moment conditions as the number of parameters). Sufficient conditions for 
global identification are difficult to verify in practice, but local identification requires 
that

 rank e 0E(m(q))
0q

f 5 q, (20.15)

where (with some abuse of the notation) q is the point in the parameter space Q where 
the rank condition is evaluated. For an extensive discussion of identification issues 
in DSGE models, see Canova and Sala (2009), Iskrev (2010), and Komunjer and Ng 
(2011).

Under the regularity conditions in Hansen (1982), the GMM estimator is consistent 
and asymptotically normal:

 "T(q̂ 2 q0) S N(0, (DrWD)21DrWSWD(DrWD)21) , (20.16)

where D 5 0E(m(q))/0q is a p 3 q matrix of full column rank and

HASHIMZADE 9780857931016 CHS. 18-21 (M3110).indd   468HASHIMZADE 9780857931016 CHS. 18-21 (M3110).indd   468 01/07/2013   10:2201/07/2013   10:22



GMM estimation of DSGE models   469

 S 5 a
`

s52`

(m(xt) 2 E(m(xt))) (m(xt2s) 2 E(m(xt2s)))r. (20.17)

In the special case where W 5 S21, the GMM estimator has the smallest possible vari-
ance among all possible positive- definite weighting matrices and the asymptotic distribu-
tion simplifies to

 "T(q̂ 2 q0) S N(0, (DrS21D)21). (20.18)

Moreover, when the model is overidentified (meaning that p . q), a general specifica-
tion test of the model can be easily constructed using the chi- square statistic proposed 
by Hansen (1982):

 T(M(q̂)rWM(q̂)) S c2(p 2 q),

where M(q̂)rWM(q̂) is the value of the objective function at the optimum.

3.1 An Illustration

In order to help develop the reader’s intuition, this section illustrates the general 
 structure of GMM in the case of the Brock–Mirman model. Let us assume that the 
macroeconomist has at his or her disposal data series on log consumption and the 
log of the end- of- period capital stock (that is, ln(kt11) ). Thus xt 5 {ln(ct) ln(kt11)}. 
Define

 m(xt) 5 [ln(ct) ln(kt11) (ln(ct)) 2 (ln(kt11))2 ln(ct) ln(ct21)  ln(kt11) ln(kt) ]r

Then, the first part of M(q)  in equation (20.13) is

(1/T)a
T

t51
m(xt) 5 (1/T)a

T

t51

[ln(ct) ln(kt11) (ln(ct))2 (ln(kt11))2 ln(ct)ln(ct21)  ln(kt11)ln(kt)]r.

It is clear that the elements of this vector are just the sample mean, the variance, and the 
autocovariance of both consumption and capital. Note that latter two moments (that 
is, the variances and autocovariances) are defined around zero, rather than around the 
mean. This involves no loss of generality and one could specify instead the moments 
around the mean. However, for the purpose of this chapter, the notation is a bit cleaner if 
one specifies the moments around zero. Finally, recall that these moments are computed 
using the actual data series.

The second part of M(q)  contains the unconditional moments of consump-
tion and  capital predicted by the model. These moments depend on the structural 
 parameters q 5 {b, a, r, s} and are derived in the Appendix from the decision rules 
that (exactly)  solve the model and using the time series process of the productivity 
shock.

Then, the moment conditions for this model are
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 M(q) 5 (1/T)a
T

t51
G ln(ct)

ln(kt11)
(ln(ct))2

(ln(kt11) )2

ln(ct) ln(ct21)
ln(kt11) ln(kt)

W2 G ln(1 2 ab) 1 a ln(ab)/(1 2 a)
ln(ab)/(1 2 a)

s2 (1 1 ar)/l 1 (ln(1 2 ab) 1 a ln(ab)/(1 2 a))2

s2 (1 1 ar)/l 1 (ln(ab)/(1 2 a))2

s2 (a 1 r)/l 1 (ln(1 2 ab) 1 a ln(ab)/(1 2 a))2

s2 (a 1 r)/l 1 (ln(ab)/(1 2 a))2

W ,

where l 5 (1 2 r2) (1 2 a2) (1 2 ar) and the elements in the vector furthest to the 
right correspond to those in equations (20A.6), (20A.5), (20A.9), (20A.8), (20A.10) and 
(20A.11) in the Appendix. Estimates of q 5 {b, a, r, s} may obtained by the numerical 
minimization of the objective function (20.14).

3.2 Using Simulations to Compute the Moments

In the case of linearized DSGE models, it is straightforward to compute the theo-
retical moments using the decision rules that solve the model. However, this com-
putation requires matrix inversions that can be time consuming if the model has a 
large number of variables. In such situations, it may be more efficient to compute the 
theoretical moments via simulation. That is, instead of using E(m(q))  in (20.13) and, 
thus, in the objective function (20.14), one would use the simulation- based estimate 
(1/tT) gtT

i51
m(xi(q)) where t $ 1 is an integer, tT  is the length of the simulated sample, 

and m(xi (q))  is the p 3 1 vector of variables analogous to m(xt)  but based on data 
simulated from the model using parameter values q. In what follows, I denote this arti-
ficial sample by xi (q).

Under the assumption that {xi (q)} is geometrically ergodic and by the Law of large 
numbers (see Duffie and Singleton, 1993, p. 939)

 (1/tT)a
tT

i51
m(xi (q)) S E(m(xi (q))  almost surely, as tT S `.

Moreover, under the assumption that the model is correctly specified 
E(m(xi(q0)) 5 E(m(xt)). These assumptions and results underpin the substitution of 
E(m(q)) by (1/tT) gtT

i51
m(xi (q)) proposed above. Then, the moment conditions become

 M(q) 5 a (1/T)a
T

t51
m(xt) 2 (1/tT)a

tT

i51
m(xi(q))b,

and the simulated method moments (SMM) estimator is

 q̂ 5 argmin
q[Q

M(q)rWM(q), (20.19)

with W a positive- definite weighting matrix of dimension p 3 p. Intuitively, the SMM 
estimator is the value of q that minimizes the (weighted) distance between the moments 
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implied by the model and those computed from the observed data, where the former are 
obtained using artificial data simulated from the model. The application of SMM to the 
estimation of time series models was first examined by Lee and Ingram (1991) and Duffie 
and Singleton (1993).

Under the regularity conditions spelled out in Duffie and Singleton (1993), q̂ is consist-
ent for q0 and has asymptotic distribution

 "T(q̂ 2 q0) S N(0, (1 1 1/t) (JrWJ)21JrWSWJ(JrWJ)21), (20.20)

where J 5 E(0m(xi (q))/0q) is a finite matrix of full column rank and dimension p 3 q. 
In the special case where W 5 S21, the asymptotic distribution simplifies to

 "T(q̂ 2 q0) S N(0, (1 1 1/t) (JrWJ)21). (20.21)

As before, when p is strictly larger than q – that is, when the model is over- identified 
– it is possible to construct a general specification test using the chi- square statistic pro-
posed in Lee and Ingram (1991, p. 204) and based on Hansen (1982). The test statistic is 
easiest to compute in the case where W 5 S21. Then,

 T(1 1 1/t)(M(q̂)rWM(q̂)) S c2 (p 2 q), (20.22)

where M(q̂)rWM(q̂) is the value of the objective function at the optimum.
It is interesting to compare the asymptotic distributions of the GMM and SMM 

estimators in (20.16) and (20.20), respectively. The distributions differ primarily by 
the term (1 1 1/t)  in the SMM distribution, which captures the effect of simulation 
uncertainty on our confidence regarding the parameter estimates. Since (1 1 1/t) . 1, 
SMM asymptotic standard errors are generally larger than those obtained under GMM, 
meaning that SMM is less statistically efficient than GMM. However, in practice, this 
difference in efficiency can be controlled by the researcher through the choice of t. To see 
this, notice that (1 1 1/t)  decreases asymptotically towards 1 as t increases so that, for 
example, when t 5 5, 10 and 20, the asymptotic SMM standard errors are only 1.10, 1.05 
and 1.025 times larger than those implied by GMM.

4 SMALL- SAMPLE PROPERTIES

The asymptotic distributions in the previous section hold, by definition, in the theo-
retical case where the sample size increases without bound. On the other hand, macro-
economists have at their disposal only relatively short time series to estimate DSGE 
models. It is, therefore, important to ask whether asymptotic distributions constitute 
a good approximation in the latter, more realistic, case. To that effect, I carry out a 
limited number of Monte Carlo experiments. These Monte Carlo experiments comple-
ment the ones reported in my earlier work (Ruge- Murcia, 2007), where the focus was on 
the role of moment conditions involving different combinations of observable variables. 
Instead, the experiments here study the role of different weighting matrices and sample 
sizes.
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4.1 Monte Carlo Design

The neoclassical growth model has seven structural parameters. The parameters are the 
discount factor (b), the consumption curvature (g), the weight of leisure in the utility 
function (b), the autoregressive coefficient of the productivity shock (r), the standard 
deviation of the productivity innovation (s), the elasticity parameter in the production 
function (a), and the depreciation rate (d). In order to reduce the computational burden 
in the Monte Carlo experiments, I focus on four parameters so that q 5 {b, r, s, g} and 
fix a to 1/3, d to 0.02, and b to a value such that the time spent working in steady state 
is one third of the time endowment. The value a 5 1/3 is consistent with data from the 
National Income and Product Accounts (NIPA), which implies that the share of capital 
in total income is approximately one third. The value for d and the strategy for fixing b 
are standard in the literature.

The artificial data in all experiments is generated using b 5 0.96 and I consider two 
possible values for each of the parameters r, s, and g. The two values are r 5 0.5 and 
0.9; s 5 0.05 and 0.1; and g 5 1 and 5. In all experiments, the moments used to estimate 
the model are the variances of consumption and hours, their covariance, and their first- 
order autocovariances. That is, I use five moments to estimate four parameters, and so 
the model is over- identified with degrees of freedom equal to 1.

I study the small- sample properties of GMM using two possible sample sizes, T 5 200 
and T 5 600. Loosely speaking the former corresponds to, say, fifty years of quar-
terly observations, while the latter corresponds to fifty years of monthly observations. 
In order to study the role of the weighting matrix, I consider two possible weighting 
matrices. First, the optimal matrix W 5 S21, that is the inverse of the matrix with the 
long- run variance of the moments defined in (20.17). This weighting matrix is optimal 
in the sense that it delivers the smallest possible asymptotic variance among the class of 
positive- definite matrices. Second, the identity matrix W 5 I. By construction, the iden-
tity matrix gives equal weight to all moments in the objective function, which becomes 
simply (the square of) the Euclidean distance between the empirical and theoretical 
moments. One goal of this analysis is to examine the efficiency loss associated with 
using weighting matrices which are not asymptotically optimal but may have practical 
advantages in actual applications. For GMM, the combination of all possible parameter 
values, weighting matrices and sample sizes delivers a total of 32 configurations.

I also use this design to study the small- sample properties of SMM. In all SMM 
experiments I use the optimal matrix W 5 S21 and the value t 5 5, meaning that the 
simulated sample is five times longer than the original sample. In preliminary work, I 
also performed experiments using t 5 10 and 20 but conclusions are basically the same 
to those reported here. For SMM, the combination of all possible parameter values and 
sample sizes delivers a total of 16 configurations.

Finally, the matrix S is computed using the Newey–West estimator with a Bartlett 
kernel and bandwidth given by the integer of 4(T/100)2 /9, where T  is the sample size. 
Hence in the case where T 5 200, the bandwidth is 4 while in the case where T 5 600, 
the bandwidth is 5.

Results in each experiment are based on 500 replications. That is, for each configura-
tion, I generate artificial series and estimate the parameters 500 times. Various statistics 
are then computed using these 500 estimates (for example, the mean, average asymptotic 
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standard error, and so on). In all experiments the DGP is the linearized version of the 
neoclassical growth model.

4.2 Results

Results for GMM are reported in Tables 20.1 to 20.4. In all tables, Mean is the average 
of the estimated parameter values and A.S.E. is the average asymptotic standard error 
where averages are taken over the 500 replications in each experiment. Median and S.D. 
are the median and standard deviation of the empirical parameter distribution (that is, 
the distribution of the 500 observations of the parameters). Size is the proportion of 
times that the null hypothesis that the parameter takes its true value is rejected using 
a t- test with nominal size of 5 per cent. In other words, Size is the empirical size of this 
t- test. S.E. is the standard error of this empirical size and is computed as the standard 
deviation of a Bernoulli variable. Finally, O.I. is the empirical size of the chi- square test 
of the overidentification restrictions.

These tables support four conclusions. First, GMM estimates are numerically close to 
the true values used to generate the data: notice that in all tables, the mean and median 
of the estimated parameters are very close to the true values. This result is driven by the 
consistency of the GMM estimator, but it is useful to know that GMM yields accurate 
parameter estimates for the relatively small samples and regardless of the weighting 
matrix employed.

Second, asymptotic standard errors tend to overstate the actual variability of the 
parameter estimates: notice that in all tables, the A.S.E. is usually larger than the stand-
ard deviation of the estimates. This result suggests a discrepancy between the asymptotic 
and the small- sample distributions. Ruge- Murcia (2007, 2010) reports similar findings 
for other methods applied to both linear and non- linear DSGE models. Thus, this 
discrepancy is not specific to either the Generalized Method of Moments or to linear 
models. Figure 20.1 plots the empirical distribution of the parameters for experiments 
where b 5 0.96, r 5 0.90, s 5 0.1, and g 5 5 and using the optimal weighting matrix. 
(This configuration illustrates general results obtained in the Monte Carlo and so the 
same conclusions are drawn from plots based on other experiments.) The top and 
bottom rows respectively correspond to the sample sizes T 5 200 and T 5 600. These 
plots show an additional dimension in which the small- sample distributions differ from 
the asymptotic ones: while the latter are Normal and, hence, their skewness is zero, the 
former are skewed. Notice also that, as one would expect, the distributions are more 
tightly concentrated around the true value in the larger sample.

Third, the empirical size of the t- test of the null hypothesis that the parameter takes its 
true value is statistically different from the nominal size of 5 per cent: notice that in all 
tables, the size is quantitatively far from 0.05 and that the 95 per cent confidence interval 
around it seldom contains the nominal size. In particular, notice that since the empiri-
cal size is usually smaller than the nominal size, the t- test tends to under- reject the null 
hypothesis.

Finally, note in Tables 20.1 and 20.2 that the empirical size of the chi- square test of 
the over- identification restrictions is frequently below its nominal size of 5 per cent. The 
result that the chi- square test easily fails to detect a misspecified model is well known 
in the literature (see, for example, Newey, 1985) and has been previously reported by 
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Table 20.1 Small- sample properties: optimal weighting matrix T 5 200

Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. O.I.
Size S.E. Size S.E. Size S.E. Size S.E. S.E.

b 5 0.96 r 5 0.50 s 5 0.10 g 5 1

0.9600 0.9600 0.4892 0.4933 0.0987 0.0986 1.0008 0.9993
0.0054 0.0040 0.0546 0.0685 0.0047 0.0056 0.0971 0.0548 0.0320
0.0440 0.0092 0.1140 0.0142 0.1060 0.0138 0.0080 0.0040 0.0079

b 5 0.96 r 5 0.90 s 5 0.10 g 5 1

0.9594 0.9600 0.8922 0.9000 0.0978 0.0974 0.9926 0.9949
0.0127 0.0047 0.0222 0.0274 0.0089 0.0090 0.0593 0.0229 0.0320
0.0160 0.0056 0.1000 0.0134 0.0860 0.0125 0.0060 0.0035 0.0079

b 5 0.96 r 5 0.50 s 5 0.05 g 5 1

0.9604 0.9600 0.4883 0.4884 0.0492 0.0493 1.0052 1.0006
0.0054 0.0048 0.0543 0.0659 0.0023 0.0028 0.0972 0.0640 0.0220
0.0820 0.0123 0.1160 0.0143 0.1340 0.0152 0.0100 0.0044 0.0066

b 5 0.96 r 5 0.90 s 5 0.05 g 5 1

0.9599 0.9600 0.8920 0.9000 0.0489 0.0489 0.9911 0.9935
0.0128 0.0024 0.0226 0.0265 0.0045 0.0045 0.0596 0.0211 0.0340
0.0040 0.0028 0.0880 0.0127 0.0800 0.0121 0.0000 0.0000 0.0081

b 5 0.96 r 5 0.50 s 5 0.10 g 5 5

0.9600 0.9600 0.4885 0.4909 0.0987 0.0991 5.0047 5.0051
0.0051 0.0039 0.0574 0.0586 0.0045 0.0058 0.4851 0.2336 0.0400
0.0480 0.0096 0.0600 0.0106 0.1520 0.0161 0.0000 0.0000 0.0088

b 5 0.96 r 5 0.90 s 5 0.10 g 5 5

0.9601 0.9602 0.8956 0.8958 0.0975 0.0979 4.9560 4.9719
0.0230 0.0007 0.0440 0.0153 0.0155 0.0131 0.4506 0.1445 0.0180
0.0000 0.0000 0.0000 0.0000 0.0820 0.0123 0.0000 0.0000 0.0059

b 5 0.96 r 5 0.50 s 5 0.05 g 5 5

0.9600 0.9600 0.4895 0.4933 0.0494 0.0495 5.0014 5.0030
0.0051 0.0039 0.0571 0.0599 0.0023 0.0032 0.4856 0.2313 0.0500
0.0520 0.0099 0.0640 0.0109 0.1940 0.0177 0.0040 0.0028 0.0097

b 5 0.96 r 5 0.90 s 5 0.05 g 5 5

0.9601 0.9601 0.8962 0.8965 0.0491 0.0494 4.9662 4.9805
0.0232 0.0007 0.0442 0.0152 0.0078 0.0067 0.4521 0.1406 0.0220
0.0000 0.0000 0.0000 0.0000 0.0580 0.0105 0.0000 0.0000 0.0066

Notes: Mean is the average of the estimated parameter values; A.S.E. is the median asymptotic standard 
error; Median and S.D. are, respectively, the median and standard deviation of the empirical parameter 
distribution; Size is the empirical size of the t- test; O.I. is the empirical size of the chi- square test of the 
overidentification restrictions; and S.E. is the standard error of the empirical test size.
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Table 20.2 Small- sample properties: optimal weighting matrix T 5 600

Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. O.I.
Size S.E. Size S.E. Size S.E. Size S.E. S.E.

b 5 0.96 r 5 0.50 s 5 0.10 g 5 1

0.9601 0.9600 0.4933 0.4952 0.0995 0.0996 1.0015 1.0003
0.0032 0.0012 0.0325 0.0356 0.0028 0.0032 0.0569 0.0175 0.0840
0.0240 0.0068 0.0680 0.0113 0.1120 0.0141 0.0080 0.0040 0.0124

b 5 0.96 r 5 0.90 s 5 0.10 g 5 1

0.9599 0.9600 0.8978 0.9000 0.0996 0.0994 0.9994 0.9989
0.0076 0.0013 0.0127 0.0144 0.0052 0.0055 0.0350 0.0104 0.0580
0.0020 0.0020 0.0800 0.0121 0.0640 0.0109 0.0000 0.0000 0.0105

b 5 0.96 r 5 0.50 s 5 0.05 g 5 1

0.9601 0.9600 0.4960 0.4999 0.0498 0.0498 1.0008 1.0006
0.0032 0.0013 0.0325 0.0369 0.0014 0.0016 0.0573 0.0182 0.0780
0.0220 0.0066 0.0800 0.0121 0.1180 0.0144 0.0120 0.0049 0.0120

b 5 0.96 r 5 0.90 s 5 0.05 g 5 1

0.9600 0.9600 0.8967 0.9000 0.0495 0.0495 0.9980 0.9982
0.0077 0.0005 0.0128 0.0143 0.0026 0.0026 0.0352 0.0105 0.0920
0.0000 0.0000 0.0980 0.0133 0.0700 0.0114 0.0000 0.0000 0.0129

b 5 0.96 r 5 0.50 s 5 0.10 g 5 5

0.9600 0.9600 0.4956 0.4948 0.0995 0.0994 4.9996 5.0010
0.0030 0.0009 0.0336 0.0297 0.0027 0.0035 0.2811 0.0749 0.0740
0.0160 0.0056 0.0280 0.0074 0.1240 0.0147 0.0000 0.0000 0.0117

b 5 0.96 r 5 0.90 s 5 0.10 g 5 5

0.9600 0.9600 0.8983 0.8999 0.0989 0.0987 4.9859 4.9939
0.0144 0.0004 0.0274 0.0088 0.0097 0.0078 0.2806 0.0793 0.0060
0.0000 0.0000 0.0000 0.0000 0.0440 0.0092 0.0000 0.0000 0.0035

b 5 0.96 r 5 0.50 s 5 0.05 g 5 5

0.9600 0.9600 0.4955 0.4958 0.0497 0.0498 5.0013 5.0000
0.0030 0.0010 0.0333 0.0301 0.0014 0.0018 0.2807 0.0800 0.0800
0.0180 0.0059 0.0360 0.0083 0.1300 0.0150 0.0000 0.0000 0.0121

b 5 0.96 r 5 0.90 s 5 0.05 g 5 5

0.9600 0.9600 0.8993 0.9000 0.0498 0.0499 4.9909 4.9985
0.0144 0.0004 0.0273 0.0089 0.0049 0.0039 0.2787 0.0745 0.0040
0.0000 0.0000 0.0000 0.0000 0.0340 0.0081 0.0000 0.0000 0.0028

Notes: Mean is the average of the estimated parameter values; A.S.E. is the median asymptotic standard 
error; Median and S.D. are, respectively, the median and standard deviation of the empirical parameter 
distribution; Size is the empirical size of the t- test; O.I. is the empirical size of the chi- square test of the 
overidentification restrictions; and S.E. is the standard error of the empirical test size.
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Table 20.3 Small- sample properties: identity weighting matrix T 5 200

Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D.
Size S.E. Size S.E. Size S.E. Size S.E.

b 5 0.96 r 5 0.50 s 5 0.10 g 5 1

0.9640 0.9600 0.4879 0.4897 0.0974 0.0971 0.9283 0.9860
0.0262 0.0177 0.0708 0.0641 0.0175 0.0122 0.5123 0.2038
0.0100 0.0044 0.0680 0.0113 0.0100 0.0044 0.0000 0.0000

b 5 0.96 r 5 0.90 s 5 0.10 g 5 1

0.9616 0.9607 0.8785 0.8962 0.0945 0.0964 0.9267 0.9911
0.0138 0.0142 0.0259 0.0710 0.0126 0.0180 0.1147 0.2352
0.0640 0.0109 0.1920 0.0176 0.1000 0.0134 0.0640 0.0109

b 5 0.96 r 5 0.50 s 5 0.05 g 5 1

0.9597 0.9600 0.4972 0.4980 0.0501 0.0502 1.0393 1.0356
0.0193 0.0039 0.0563 0.0622 0.0071 0.0041 0.3238 0.2069
0.0040 0.0028 0.0800 0.0121 0.0040 0.0028 0.0080 0.0040

b 5 0.96 r 5 0.90 s 5 0.05 g 5 1

0.9605 0.9603 0.8763 0.8943 0.0482 0.0485 0.9358 0.9926
0.0142 0.0034 0.0340 0.0775 0.0068 0.0086 0.1358 0.2031
0.0080 0.0040 0.1460 0.0158 0.0980 0.0133 0.0360 0.0083

b 5 0.96 r 5 0.50 s 5 0.10 g 5 5

0.9601 0.9600 0.4944 0.4980 0.0996 0.0991 6.0963 4.9990
0.0227 0.0046 0.0752 0.0592 0.0161 0.0072 21.2870 8.1660
0.0020 0.0020 0.0420 0.0090 0.0120 0.0049 0.0000 0.0000

b 5 0.96 r 5 0.90 s 5 0.10 g 5 5

0.9602 0.9600 0.9005 0.9002 0.0961 0.0970 5.0734 5.0218
0.0538 0.0011 0.0915 0.0154 0.0915 0.0186 0.6003 0.3384
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

b 5 0.96 r 5 0.50 s 5 0.05 g 5 5

0.9600 0.9600 0.4947 0.5000 0.0500 0.0498 5.0003 5.0000
0.0178 0.0000 0.0635 0.0580 0.0064 0.0032 0.8836 0.0099
0.0000 0.0000 0.0400 0.0088 0.0000 0.0000 0.0000 0.0000

b 5 0.96 r 5 0.90 s 5 0.05 g 5 5

0.9599 0.9600 0.9011 0.9001 0.0483 0.0477 5.0246 5.0002
0.0518 0.0006 0.0915 0.0051 0.0198 0.0103 0.5777 0.1771
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Mean is the average of the estimated parameter values; A.S.E. is the median asymptotic standard 
error; Median and S.D. are, respectively, the median and standard deviation of the empirical parameter 
distribution; Size is the empirical size of the t- test; O.I. is the empirical size of the chi- square test of the 
overidentification restrictions; and S.E. is the standard error of the empirical test size.
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Table 20.4 Small- sample properties: identity weighting matrix T 5 600

Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D.
Size S.E. Size S.E. Size S.E. Size S.E.

b 5 0.96 r 5 0.50 s 5 0.10 g 5 1

0.9607 0.9600 0.4949 0.4966 0.0993 0.0992 0.9824 0.9968
0.0117 0.0101 0.0335 0.0377 0.0085 0.0070 0.1976 0.1107
0.0180 0.0059 0.0900 0.0128 0.0100 0.0044 0.0000 0.0000

b 5 0.96 r 5 0.90 s 5 0.10 g 5 1

0.9605 0.9602 0.8959 0.9000 0.0985 0.0989 0.9861 0.9972
0.0083 0.0082 0.0131 0.0350 0.0078 0.0087 0.0725 0.0877
0.0640 0.0109 0.1200 0.0145 0.0500 0.0097 0.0080 0.0040

b 5 0.96 r 5 0.50 s 5 0.05 g 5 1

0.9600 0.9600 0.4967 0.4965 0.0499 0.0498 1.0068 1.0034
0.0114 0.0000 0.0329 0.0359 0.0042 0.0021 0.1876 0.1153
0.0000 0.0000 0.0820 0.0123 0.0000 0.0000 0.0020 0.0020

b 5 0.96 r 5 0.90 s 5 0.05 g 5 1

0.9601 0.9601 0.8935 0.8972 0.0494 0.0495 0.9852 0.9953
0.0084 0.0011 0.0140 0.0299 0.0039 0.0043 0.0744 0.0742
0.0000 0.0000 0.1380 0.0154 0.0560 0.0103 0.0040 0.0028

b 5 0.96 r 5 0.50 s 5 0.10 g 5 5

0.9600 0.9600 0.4959 0.4976 0.0996 0.0994 5.0075 4.9994
0.0106 0.0001 0.0366 0.0328 0.0078 0.0035 0.5235 0.1792
0.0000 0.0000 0.0360 0.0083 0.0000 0.0000 0.0060 0.0035

b 5 0.96 r 5 0.90 s 5 0.10 g 5 5

0.9601 0.9600 0.8994 0.9001 0.0990 0.0987 4.9978 5.0000
0.0290 0.0005 0.0511 0.0093 0.0237 0.0098 0.3362 0.0829
0.0000 0.0000 0.0000 0.0000 0.0020 0.0020 0.0000 0.0000

b 5 0.96 r 5 0.50 s 5 0.05 g 5 5

0.9600 0.9600 0.4971 0.5000 0.0500 0.0500 4.9998 5.0000
0.0106 0.0000 0.0363 0.0319 0.0039 0.0018 0.5220 0.0053
0.0000 0.0000 0.0300 0.0076 0.0000 0.0000 0.0000 0.0000

b 5 0.96 r 5 0.90 s 5 0.05 g 5 5

0.9600 0.9600 0.9002 0.9000 0.0500 0.0499 4.9917 5.0000
0.0289 0.0001 0.0512 0.0015 0.0117 0.0064 0.3328 0.0603
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: Mean is the average of the estimated parameter values; A.S.E. is the median asymptotic standard 
error; Median and S.D. are, respectively, the median and standard deviation of the empirical parameter 
distribution; Size is the empirical size of the t- test; O.I. is the empirical size of the chi- square test of the 
overidentification restrictions; and S.E. is the standard error of the empirical test size.
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 Ruge- Murcia (2007) for the case of DSGE models. The discrepancy between the asymp-
totic and the sample- distribution of the test statistics can be seen in Figure 20.2, which 
shows the empirical distribution of the t-  and chi- square test statistics for the first experi-
ment in Table 20.1.

A possible strategy to construct accurate small- sample critical values and confidence 
intervals is to use bootstrap methods. Hall and Horowitz (1996) present theoretical 
results and some Monte Carlo evidence for the application of the bootstrap to tests 
based on GMM estimators. One possible concern regarding the use of the bootstrap 
is the numerically- intensive nature of this method. However, among the estimation 
methods available to estimate DSGE models, GMM is the fastest (see Ruge- Murcia, 
2007, p. 2633) and so it is probably the most promising avenue for both estimation 
and accurate small- sample inference. Alternatively, Racine and MacKinnon (2004) 
propose a bootstrap of the critical value of the t- test that is accurate even for a small 
number of simulations and, hence, it is very attractive in set- ups where simulation is 
expensive.

Finally, comparing asymptotic standard errors across different weighting matrices, 
notice that those obtained under W 5 I are larger than those under W 5 S21. This 
result, of course, was expected because the latter weighting matrix is the optimal one. 
The point is, however, that the quantitative difference between standard errors is moder-
ate. Thus, the efficiency loss of using weighting matrices other than the optimal may not 
be so large as to overcome other practical considerations. For example, Cochrane (2001, 
p. 215) argues that in certain circumstances a researcher may want to use a weighting 
matrix that pays more attention to economically, rather than statistically, important 
moments.

Results for SMM are reported in Tables 20.5 and 20.6. By comparing Table 20.5 and 
20.1 (and Tables 20.6 and 20.2), it is easy to see that the results for SMM are very similar 
to those for GMM. The main is difference is that, as discussed in section 3.2, asymptotic 
standard errors tend to be larger for former case as result of simulation uncertainty. 
Since (1) the loss of statistical efficiency is relatively small for reasonable values of t, and 
(2) computing the moments via simulation may be more computationally efficient in the 
case of models with a large number of variables, it follows that this ‘simulated’ version of 
GMM may be an attractive method for such cases.

5 CONCLUSIONS

This chapter examines the application of the methods of moments to the estimation of 
the DSGE models. In particular, this chapter explains GMM and SMM in a pedagogical 
manner, illustrates their use to estimate macro models, and examines their small- sample 
properties using a limited set of Monte Carlo experiments. Results show that GMM 
and SMM deliver accurate parameter estimates, even for the relatively small samples 
and regardless of the weighting matrix used. On the other hand, there are discrepancies 
between the small- sample and asymptotic distributions of the estimates which may be 
important for statistical inference. For example, the empirical size of the t- test of the null 
hypothesis that a parameter takes its true value is frequently different from the nominal 
size. However, it is important to point out that, as reported by Ruge- Murcia (2007), 
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Table 20.5 Small- sample properties: computing the moments using simulation T 5 200

Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. O.I.
Size S.E. Size S.E. Size S.E. Size S.E. S.E.

b 5 0.96 r 5 0.50 s 5 0.10 g 5 1

0.9583 0.9600 0.4870 0.4923 0.1004 0.1003 0.9774 0.9867
0.0054 0.0050 0.0602 0.0649 0.0052 0.0058 0.1091 0.0714 0.0240
0.0400 0.0088 0.0760 0.0119 0.0740 0.0117 0.0020 0.0020 0.0068

b 5 0.96 r 5 0.90 s 5 0.10 g 5 1

0.9564 0.9595 0.8924 0.9000 0.1015 0.1008 0.9891 0.9943
0.0149 0.0117 0.0259 0.0373 0.0100 0.0094 0.0688 0.0340 0.0100
0.0260 0.0071 0.1320 0.0151 0.0440 0.0092 0.0100 0.0044 0.0044

b 5 0.96 r 5 0.50 s 5 0.05 g 5 1

0.9582 0.9600 0.4813 0.4833 0.0504 0.0502 0.9760 0.9817
0.0054 0.0052 0.0604 0.0639 0.0026 0.0028 0.1087 0.0757 0.0200
0.0560 0.0103 0.0660 0.0111 0.0660 0.0111 0.0080 0.0040 0.0063

b 5 0.96 r 5 0.90 s 5 0.05 g 5 1

0.9577 0.9597 0.8963 0.9000 0.0507 0.0506 0.9937 0.9969
0.0147 0.0104 0.0254 0.0309 0.0049 0.0047 0.0691 0.0276 0.0000
0.0340 0.0081 0.0920 0.0129 0.0460 0.0094 0.0000 0.0000 0.0000

b 5 0.96 r 5 0.50 s 5 0.10 g 5 5

0.9585 0.9599 0.4858 0.4881 0.1004 0.1003 4.9297 4.9444
0.0052 0.0046 0.0628 0.0580 0.0050 0.0058 0.5450 0.2712 0.0600
0.0540 0.0101 0.0440 0.0092 0.0960 0.0132 0.0000 0.0000 0.0106

b 5 0.96 r 5 0.90 s 5 0.10 g 5 5

0.9594 0.9598 0.9017 0.9031 0.1019 0.1008 5.0173 5.0278
0.0257 0.0050 0.0469 0.0196 0.0159 0.0137 0.5129 0.1617 0.0140
0.0020 0.0020 0.0100 0.0044 0.0520 0.0099 0.0000 0.0000 0.0053

b 5 0.96 r 5 0.50 s 5 0.05 g 5 5

0.9585 0.9599 0.4836 0.4833 0.0502 0.0503 4.9279 4.9485
0.0051 0.0046 0.0631 0.0615 0.0025 0.0029 0.5445 0.2692 0.0420
0.0440 0.0092 0.0480 0.0096 0.1040 0.0137 0.0000 0.0000 0.0090

b 5 0.96 r 5 0.90 s 5 0.05 g 5 5

0.9593 0.9598 0.9002 0.9024 0.0508 0.0504 4.9845 5.0166
0.0254 0.0038 0.0469 0.0188 0.0079 0.0069 0.5005 0.1579 0.0180
0.0040 0.0028 0.0100 0.0044 0.0620 0.0108 0.0060 0.0035 0.0059

Notes: Mean is the average of the estimated parameter values; A.S.E. is the median asymptotic standard 
error; Median and S.D. are, respectively, the median and standard deviation of the empirical parameter 
distribution; Size is the empirical size of the t- test; O.I. is the empirical size of the chi- square test of the 
overidentification restrictions; and S.E. is the standard error of the empirical test size.

HASHIMZADE 9780857931016 CHS. 18-21 (M3110).indd   481HASHIMZADE 9780857931016 CHS. 18-21 (M3110).indd   481 01/07/2013   10:2201/07/2013   10:22



482  Handbook of research methods and applications in empirical macroeconomics

Table 20.6 Small- sample properties: computing the moments using simulation T5 600

Mean Median Mean Median Mean Median Mean Median
A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. A.S.E. S.D. O.I.
Size S.E. Size S.E. Size S.E. Size S.E. S.E.

b 5 0.96 r 5 0.50 s 5 0.10 g 5 1

0.9609 0.9600 0.5045 0.5080 0.1003 0.1002 1.0125 1.0022
0.0035 0.0031 0.0352 0.0351 0.0030 0.0031 0.0611 0.0412 0.0320
0.0440 0.0092 0.0540 0.0101 0.0620 0.0108 0.0140 0.0053 0.0079

b 5 0.96 r 5 0.90 s 5 0.10 g 5 1

0.9609 0.9600 0.5045 0.5080 0.1003 0.1002 1.0125 1.0022
0.0035 0.0031 0.0352 0.0351 0.0030 0.0031 0.0611 0.0412 0.0320
0.0440 0.0092 0.0540 0.0101 0.0620 0.0108 0.0140 0.0053 0.0079

b 5 0.96 r 5 0.50 s 5 0.05 g 5 1

0.9606 0.9600 0.4999 0.5000 0.0502 0.0502 1.0086 1.0017
0.0035 0.0029 0.0354 0.0346 0.0015 0.0016 0.0613 0.0386 0.0200
0.0260 0.0071 0.0480 0.0096 0.0840 0.0124 0.0040 0.0028 0.0063

b 5 0.96 r 5 0.90 s 5 0.05 g 5 1

0.9587 0.9600 0.8963 0.9000 0.0502 0.0503 0.9964 0.9978
0.0079 0.0053 0.0140 0.0167 0.0027 0.0026 0.0379 0.0113 0.0060
0.0320 0.0079 0.1000 0.0134 0.0480 0.0096 0.0000 0.0000 0.0035

b 5 0.96 r 5 0.50 s 5 0.10 g 5 5

0.9607 0.9600 0.5023 0.5016 0.1003 0.1003 5.0375 5.0150
0.0033 0.0027 0.0364 0.0317 0.0030 0.0035 0.3042 0.1506 0.0780
0.0220 0.0066 0.0280 0.0074 0.1000 0.0134 0.0000 0.0000 0.0120

b 5 0.96 r 5 0.90 s 5 0.10 g 5 5

0.9600 0.9600 0.8992 0.8999 0.0999 0.0996 4.9937 5.0003
0.0154 0.0004 0.0304 0.0091 0.0103 0.0078 0.3163 0.0783 0.0180
0.0000 0.0000 0.0000 0.0000 0.0220 0.0066 0.0000 0.0000 0.0059

b 5 0.96 r 5 0.50 s 5 0.05 g 5 5

0.9605 0.9600 0.5027 0.5044 0.0503 0.0503 5.0319 5.0089
0.0033 0.0026 0.0364 0.0324 0.0015 0.0018 0.3046 0.1451 0.0460
0.0220 0.0066 0.0280 0.0074 0.1020 0.0135 0.0000 0.0000 0.0094

b 5 0.96 r 5 0.90 s 5 0.05 g 5 5

0.9600 0.9600 0.8994 0.8999 0.0498 0.0496 5.0036 5.0077
0.0154 0.0004 0.0303 0.0086 0.0052 0.0039 0.3157 0.0807 0.0040
0.0000 0.0000 0.0000 0.0000 0.0100 0.0044 0.0000 0.0000 0.0028

Notes: Mean is the average of the estimated parameter values; A.S.E. is the median asymptotic standard 
error; Median and S.D. are, respectively, the median and standard deviation of the empirical parameter 
distribution; Size is the empirical size of the t- test; O.I. is the empirical size of the chi- square test of the 
overidentification restrictions; and S.E. is the standard error of the empirical test size.
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these discrepancies are not specific to the method of moments and also affect maximum 
likelihood and indirect inference. A possible strategy to address this issue may be to use 
bootstrap methods to construct accurate small- sample critical values and confidence 
intervals (on this, see Hall and Horowitz, 1996).

NOTE

* The financial support of the Social Sciences and Humanities Research Council of Canada is gratefully 
acknowledged.
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APPENDIX: MOMENTS OF THE BROCK–MIRMAN MODEL

The unconditional moments of the Brock–Mirman model are derived from

 ln(ct) 5 ln(1 2 ab) 1 a ln(kt) 1 ln(zt), (20A.1)

 ln(kt11) 5 ln(ab) 1 a ln(kt) 1 ln(zt), (20A.2)

 ln(zt) 5 r ln(zt21) 1 et, (20A.3)

where (20A.1) and (20A.2) are the decision rules and (20A.3) is the process of the produc-
tivity shock. Recall that ln(z) 5 0 and, thus, E(ln(zt)) 5 0 and

 E((ln(zt)) 2) 5 s2/(1 2 r2). (20A.4)

Taking unconditional expectations in both sides of (20A.2) delivers

 E(ln(kt11)) 5 ln(ab) 1 aE(ln(kt)).

Then

 E(ln(kt11)) 5 ln(ab)/(1 2 a). (20A.5)

Taking unconditional expectations in both sides of (20A.1) and using (20A.5) deliver

 E(ln(ct)) 5 ln(1 2 ab) 1 a ln(ab)/(1 2 a). (20A.6)

For next derivations, it will be useful to compute

 E(ln(zt) ln(kt)) 5 E((r ln(zt21) 1 et) (ln(ab) 1 a ln(kt21) 1 ln(zt21))),

 5 rE((ln(zt21))2) 1 arE(ln(zt21) ln(kt21))

where I have used the fact that et is an innovation with mean zero to obtain the second 
equality. Then

 E(ln(zt) ln(kt)) 5 rs2/(1 2 ar) (1 2 r2). (20A.7)

Consider now

 E((ln(kt11))2) 5 E((ln(ab) 1 a ln(kt) 1 ln(zt))2),

 5 (ln(ab)) 2 1 a2 E((ln(kt))2) 1 E((ln(zt))2) 1 2a ln(ab) E (ln(kt))

 1 2aE(ln(zt) ln(kt)).
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Substituting (20A.4), (20A.5) and (20A.7), and simplifying deliver

 E((ln(kt11))2) 5 s2 (1 1 ar)/l 1 (ln(ab)/(1 2 a))2. (20A.8)

where l 5 (1 2 r2) (1 2 a2) (1 2 ar). Similarly,

E((ln(ct)) 2) 5 E((ln(1 2 ab) 1 a ln(kt) 1 ln(zt))2) ,

 5 (ln(1 2 ab))2 1 a2 E((ln(kt))2) 1 E((ln(zt))2) 1 2a ln(1 2 ab)E(ln(kt))

 1 2aE(ln(zt) ln(kt)),

Substituting (20A.4), (20A.5), (20A.7) and (20A.8), and simplifying deliver

 E((ln(ct))2) 5 s2 (1 1 ar)/l 1 (ln(1 2 ab) 1 a ln(ab)/(1 2 a))2. (20A.9)

Consider now

 E(ln(kt11) ln(kt)) 5 E((ln(ab) 1 a ln(kt) 1 ln(zt)) ln(kt))

 5 ln(ab)E(kt) 1 aE((ln(kt)) 2) 1 E(ln(zt) ln(kt)).

Substituting (20A.5), (20A.7) and (20A.8), and simplifying deliver

 E(ln(kt11) ln(kt)) 5 s2 (a 1 r)/l 1 (ln(ab)/(1 2 a))2. (20A.10)

Finally, consider

E(ln(ct) ln(ct21) ) 5 E((ln(1 2 ab) 1 a ln(kt) 1 ln(zt)) (ln(1 2 ab)

 1 a ln(kt21) 1 ln(zt21) ) )

 5 E((ln(1 2 ab) 1 a ln(kt) 1 r ln(zt21) 1 et)(ln(1 2 ab) 1 a ln(kt21) 1 ln(zt21)))

 5 ln(1 2 ab) (ln(1 2 ab) 1 a ln(ab)) 1 a ((1 1 a) ln(1 2 ab)

 1 a ln(ab))E(ln(kt21) ) 1 (a 1 r)E((ln(zt))2) 1 a (2a 1 r)E(ln(zt21) ln(kt21) )

 1 a3E((ln(kt21))2)

Substituting (20A.4), (20A.5), (20A.7) and (20A.8), and simplifying deliver

 E(ln(ct) ln(ct21)) 5 s2 (a 1 r)/l 1 (ln(1 2 ab) 1 a ln(ab)/(1 2 a))2.
 (20A.11)
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21 Bayesian estimation of DSGE models*
Pablo A. Guerrón- Quintana and James M. Nason

1 INTRODUCTION

Macroeconomists have made substantial investments in Bayesian time series during the 
last 30 years. One reason is that Bayesian methods afford researchers the chance to esti-
mate and evaluate a wide variety of macro models that frequentist econometrics often 
find challenging. Bayesian vector autoregressions (BVARs) represent an early return 
on this research project manifested, for example, by Doan et al. (1984). They show that 
BVARs are useful forecasting tools.1 More recent work focuses on developing Bayesian 
methods capable of estimating time- varying parameter (TVP) VARs, associated with 
Cogley and Sargent (2005) and Primiceri (2005), and Markov- switching (MS) VARs 
initiated by Sims and Zha (2006).2 The complexity of TVP-  and MS- VARs underlines 
the efforts macroeconomists have put into developing useful Bayesian time series tools.3

Bayesian times series methods are also attractive for macroeconomists studying 
dynamic stochastic general equilibrium (DSGE) models. Although DSGE models can 
be estimated using classical optimization methods, macroeconomists often prefer to use 
Bayesian tools for these tasks. One reason is that advances in Bayesian theory are pro-
viding an expanding array of tools that researchers can employ to estimate and evaluate 
DSGE models. The popularity of the Bayesian approach is also explained by the increas-
ing computational power available to estimate and evaluate medium-  to large- scale 
DSGE models using Markov chain Monte Carlo (MCMC) simulators. These DSGE 
models can pose identification problems for frequentist estimators that no amount of 
data or computing power can overcome.

Macroeconomists are also drawn to the estimation and evaluation framework 
Bayesians have created because DSGE models are often seen as abstractions of actual 
economies. A frequentist econometrician might say that DSGE models are misspecified 
versions of the true model. This is not consistent with the beliefs often held about DSGE 
models. These beliefs are animated by the well known mantra that ‘all models are false’. 
Since Bayesians eschew the existence of a true model, employing Bayesian methods to 
study DSGE models dovetails with the views held by many macroeconomists.

This chapter presents an overview of Bayesian time series methods that have been 
developed to estimate and evaluate linearized DSGE models.4 We aim to bring the 
reader to the point where his or her priors and DSGE model can, subsequent to lineari-
zation, meet the data to be estimated and evaluated using Bayesian methods. The reader 
may wonder why this chapter puts aside non- linear estimation of DSGE models. Since 
these methods represent the frontier, which is being pushed out at an extraordinary rate, 
a review of Bayesian non- linear estimation of DSGE models waits for more consensus 
about the merits of the different approaches.5

We describe procedures for estimating a medium- scale New Keynesian (NK) DSGE 
model in this chapter. The NKDSGE model is a descendant of those analyzed by Smets 
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and Wouters (2003) and Christiano et al. (2005). As those authors do, we estimate a 
linearized approximation of the NKDSGE. The linearization is grounded in the sto-
chastically detrended optimality and equilibrium conditions because the growth rate of 
the technology shock is stationary. These optimality and equilibrium conditions yield 
a solution that is cast in state space form, which is the starting point for the Kalman 
filter. Since the Kalman filter generates predictions and updates of the state vector of 
the linearized NKDSGE model, we have a platform for computing its likelihood. This 
likelihood is used by Bayesian MCMC simulators to produce posterior distributions of 
NKDSGE model parameters given actual data and prior beliefs about these parameters. 
Posterior distributions represent confidence in an NKDSGE model conditional on the 
evidence provided by its likelihood. Marginal likelihoods are used to evaluate which 
member of a suite of NKDSGE models is most favored by the data.

A brief history of DSGE model estimation is presented in the next section. Our 
purpose is to give a framework for understanding the interaction between the need to 
connect macro theory to current data and the development of tools to achieve that task. 
Section 3 outlines the DSGE model we study. The NKDSGE model is prepared for 
estimation in section 4. This is followed by a discussion of Bayesian methods to estimate 
the linear approximate solution of the NKDSGE model described in section 5. Results 
appear in section 6. Section 7 concludes.

2 A BRIEF HISTORY OF DSGE MODEL ESTIMATION

Efforts to estimate and evaluate DSGE models using Bayesian methods began in earnest 
in the late 1990s. Previously, macroeconomists used classical optimization methods to 
estimate DSGE models. This section reviews these frequentist approaches to estimate 
DSGE models, covers the transition from frequentist to Bayesian methods, and ends by 
mentioning several issues at the frontier of Bayesian estimation of DSGE models.

Non- Bayesians have used maximum likelihood (ML), generalized method of moments 
(GMM), and indirect inference (II) to estimate DSGE models. These estimators rely on 
classical optimization either of a log likelihood function or of a GMM criterion.6

Early examples of frequentist ML estimation of DSGE models are Altuǧ (1989) and 
Bencivenga (1992). They apply classical optimization routines to the log likelihood of the 
restricted finite- order vector autoregressive- moving average (VARMA) implied by the 
linear approximate solutions of their real business cycle (RBC) models. The restrictions 
arise because the VARMA lag polynomials are non- linear functions of the DSGE model 
parameters.

A restricted VARMA engages an ML estimator that differs from the approach of 
Sargent (1989). He maps the linear solution of permanent income (PI) models with 
a serially correlated endowment shock into likelihoods that are built on Kalman 
filter innovations of the observed data and the associated covariance matrix. Sargent 
assumes that the data are ridden with measurement errors, which evolve as independ-
ent first- order autoregressions, AR(1)s.7 This aids in identification because serially 
correlated measurement errors add restrictions to the VARMA implied by the PI 
model solution. An extension of Sargent’s approach is Ireland (2001). He replaces the 
independent AR(1) measurement errors with an unrestricted VAR(1); see Curdia and 
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Reis (2011) for a Bayesian version of this method. Besides measurement error, this 
VAR(1) inherits the sample data dynamics left unexplained by the RBC model that 
Ireland studies.

The tools of classical optimization are also useful for GMM estimation of DSGE 
models. Christiano and Eichenbaum (1992) construct GMM estimates of a subset of the 
parameters of their RBC model using its steady state conditions and the relevant shock 
processes as moments. Since the moment conditions are outnumbered by RBC model 
parameters, only a subset of these parameters are identified by GMM.

Identification also matters for ML estimation of DSGE models. For example, 
Altuǧ, Bencivenga, and Ireland only identify a subset of RBC model parameters after 
pre- setting or calibrating several other parameters. Analysis by Hall (1996) suggests 
a reason for this practice. He shows that whether ML or GMM is being used, these 
estimators are relying on the same sample and theoretical information about first 
moments to identify DSGE model parameters. Although ML is a full information 
estimator, which engages all the moment conditions expressed by the DSGE model, 
GMM and ML rely on the same first moment information for identification. This 
suggests that problems identifying DSGE models are similar whether ML or GMM 
is the estimator of choice; see Fernández- Villaverde et al. (2009) for more discussion 
of these issues.

The frequentist assumption of a true model binds the identification problem to the 
issue of DSGE model misspecification. The question is whether any parameters of a 
DSGE model can be identified when it is misspecified. For example, frequentist ML loses 
its appeal when models are known to be misspecified.8 Thus, it seems that no amount of 
data or computing power will solve problems related to the identification and misspeci-
fication of DSGE models.

A frequentist response to these problems is II. The first application of II to DSGE 
models is Smith (1993). He and Gourieroux et al. (1993) note that II yields an estimator 
and specification tests whose asymptotic properties are standard even though the true 
likelihood of the DSGE model is not known.9 The II estimator minimizes a GMM- like 
criterion in the distance between a vector of theoretical and sample moments. These 
moments are readily observed in the actual data and predicted by the DSGE model. 
Estimating DSGE model parameters is ‘indirect’ because the objective of the GMM- like 
criterion is to match moments not related directly to the structure of the DSGE model.10 
Theoretical moments are produced by simulating synthetic data from the solution of the 
DSGE model. A classical optimizer moves the theoretical moments closer to the sample 
moments by updating the DSGE model parameters holding the structural shock innova-
tions fixed.11

Dridi et al. (2007) extend the II estimator by acknowledging that the DSGE 
model is false. They argue that the purpose of dividing the vector of DSGE model 
parameters, Q, into the parameters of interest, Q1, and the remaining nuisance or 
pseudo- parameters, Q2, is to separate the part of a DSGE model having economic 
content from the misspecified part. Thus, Q1 represents the part of a DSGE model 
that is economically relevant for the moments it aims to match. However, Q2 cannot 
be ignored because it is integral to the DSGE model. Fixing Q2 or calibrating it with 
sample information contributes to identifying Q1, but without polluting it with the 
misspecification of the DSGE model encapsulated by Q2. This insight is the basis for 
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Dridi, Guay, and Renault (DGR) to construct an asymptotic distribution of Q1 that 
accounts for  misspecification of the DSGE model. The sampling theory is useful for 
tests of the degree of misspecification of the DSGE model and to gauge its ability to 
match the data.

Whether identification of DSGE models is a problem for Bayesians is not clear. For 
many Bayesians all that is needed for identification is a well posed prior.12 Poirier (1998) 
points out that this position has potential costs in that prior and posterior distributions 
can be equivalent if the data are uninformative. This problem differs from identification 
problems frequentists face. Identification of a model is a problem that arises in popula-
tion for a frequentist estimator, while for a Bayesian the source of the equivalence is data 
interacting with the prior. Nonetheless, Poirier provides analysis suggesting that Q be 
split into those parameters for which the data are informative, Q1, given the priors from 
those, Q2, for which this is not possible.

Bayesians avoid having to assume there exists a true or correctly specified DSGE 
model because of the likelihood principle (LP). The LP is a foundation of Bayesian 
statistics and says that all evidence about a DSGE model is contained in its likelihood 
conditional on the data; see Berger and Wolpert (1998). Since the data’s probabilis-
tic assessment of a DSGE model is summarized by its likelihood, the likelihoods of a 
suite of DSGE models possess the evidence needed to judge which ‘best’ fit the data. 
Thus, Bayesian likelihood- based evaluation is consistent with the view that there is no 
true DSGE model because, for example, this class of models is afflicted with incurable 
misspecification.

There exist several Bayesian approaches to estimating DSGE models. Most of these 
methods are fully invested in the LP, which implies likelihood- based estimation. The 
goal of Bayesian estimation is construction of the posterior distribution, P (Q 0YT) , of 
DSGE model parameters conditional on sample data YT of length T. Bayesian estima-
tion exploits the fact that the posterior distribution equals the DSGE model likelihood, 
L (YT 0Q) , multiplied by the econometrician’s priors on the DSGE model parameters, 
P (Q) , up to a factor of proportionality

 P (Q 0YT) ~ L (YT 0Q)P (Q) . (21.1)

Bayesian estimation of DSGE models is confronted by posterior distributions too com-
plicated to evaluate analytically. The complication arises because the mapping from 
a DSGE model to its L (YT 0Q)  is non- linear in Q, which suggests using simulation to 
approximate P (Q 0YT) .

Among the earliest examples of Bayesian likelihood- based estimation of a DSGE 
model is DeJong et al. (2000a, 2000b). They engage importance sampling to compute 
posterior distributions of functions of Q, G(Q) .13 Importance sampling relies on a finite 
number N of IID random draws from an arbitrary density D (Q)  to approximate G(Q) . 
The approximation is computed with weights that smooth G(Q) . The weights, W (Qi) , 
i 5 1, . . ., N, smooth the approximation by giving less (greater) mass to posterior draws 
of G(Qi)  that occur frequently (infrequently).14 One drawback of importance sampling 
is that it is often unreliable when Q has large dimension. Another is that there is little 
guidance about updating P (Q 0Yt) , and therefore G(Q) , from one draw of D (Q)  to the 
next, given P (Q) .
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Otrok (2001) reports estimates of a DSGE model grounded on the Metropolis–
Hastings (MH) algorithm. This is, perhaps, the first instance of MH- MCMC simulation 
applied to DSGE model estimation. The MH algorithm proposes to update Q using a 
multivariate random walk, but first an initial draw of Q from P (Q)  is needed. The initial 
Q is updated by adding to it draws from a distribution of ‘shock innovations’. The deci-
sion to keep the initial Q or to move to the updated Q depends on whether the latter 
increases L (Yt 0Q) . This process is repeated by sampling from the multivariate random 
walk to update Q.

The MH- MCMC simulator is often preferred to importance sampling methods to 
estimate DSGE models. One reason is that the MH algorithm places less structure on 
the MCMC simulator. Thus, a wide class of time series models can be estimated by 
MH- MCMC simulation. Also MH- MCMC simulators generate serial correlation in the 
posterior distribution, which induces good asymptotic properties, especially compared 
to importance samplers. These properties reduce the computational burden of updating 
the prior. Another useful feature of MH- MCMC simulation is that its flexibility lessens 
the demands imposed by high dimensional Q. We postpone further discussion of the 
MH- MCMC simulator to section 5.3.

Bayesian estimation of NKDSGE models leans heavily on MH- MCMC simula-
tion. Smets and Wouters (2003, 2007), Del Negro and Schorfheide (2004), and Del 
Negro et al. (2007) estimate NKDSGE models similar to the one we estimate below. 
Open economy NKDSGE models are estimated using MH- MCMC simulators by, 
among others, Adolfson et al. (2007), Lubik and Schorfheide (2007), Kano (2009), 
Justiniano and Preston (2010), Rabanal and Tuesta (2010), and Guerrón- Quintana 
(2013). Evidence of the wide applicability of the MH- MCMC algorithm is its applica-
tions to NKDSGE models with labor market search by Sala et al. (2008), with fiscal 
and monetary policy interactions by Leeper et al. (2010), and that compare sticky 
price  monetary transmission to monetary search frictions by Aruoba and Schorfheide 
(2011).

Formal Bayesian evaluation of estimated DSGE models relies on Bayes factors or 
posterior odds ratios. The Bayes factor is

 Bj,s 0YT
 5 

L(YT 0Qj,Mj)

L(YT 0Qs,Ms)
, (21.2)

which measures the odds the data prefer DSGE model j, Mj (with parameter vector Qj ), 
over Ms.15 Multiply Bj,s 0YT

 by the prior odds to find the posterior odds ratio, which as the 
name suggests is Rj,s 0YT

5 Bj,s 0YT
P (Qj) /P (Qs) . Put another way, the log of the Bayes factor 

is the log of the posterior odds of Mj compared to Ms net of the log of the prior odds 
of these DSGE models. Geweke (1999, 2005) and Fernández- Villaverde and Rubio- 
Ramírez (2004) discuss the foundations of Bayesian evaluation of DSGE models, while 
Rabanal and Rubio- Ramírez (2005) calculate Bayes factors to gauge the fit of several 
NKDSGE models.

There are other Bayesian approaches to DSGE model evaluation. Schorfheide (2000) 
estimates DSGE models using the MH- MCMC simulator as well as a richly parameter-
ized structural BVAR, which serves as a ‘reference’ model. The fit of the DSGE and refer-
ence models to the data is judged within a Bayesian decision problem using a few selected 
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moments under symmetric and asymmetric loss functions. The moments are structural 
IRFs that have economic meaning within the context of the DSGE models. Problems of 
DSGE model misspecification are sidestepped in this non- LP- based Bayesian evaluation 
process because, according to Schorfheide, the moments on which the DSGE models are 
evaluated are identified by the structural BVAR. He also argues that this approach yields 
valid DSGE model evaluation when no DSGE model fits the model well, which is not 
true of the Bayes factor; also see Geweke (2010). This argument is similar to arguments 
DGR make for parsimony (that is, do not rely on all the moments inherent in the likeli-
hood), when selecting moments to bind the DSGE model to the data for II estimation.16 
DGR are guided to choose moments most economically meaningful for the DSGE 
model, which is a frequentist analogue to Schorfheide’s Bayesian approach.

Another interesting approach to these issues is Guerrón- Quintana (2010). He con-
fronts a NKDSGE model with different sets of observed aggregate variables to ask 
which data set is most informative for estimating DSGE model parameters. Fixing 
the NKDSGE models and changing the observed data rules out using the posterior 
odds ratio to conduct model evaluation. Instead, Guerrón- Quintana engages impulse 
response functions and out- of- sample forecast exercises to choose among the competing 
data sets. These evaluation tools reveal that the posterior of a DSGE model is affected by 
the composition and size of the information sets used in Bayesian MH- MCMC estima-
tion, which is a signal of misspecification.

Identification of DSGE models has become a research frontier for Bayesian econo-
metrics. We briefly mention several here. One approach is Müller (2010). He constructs 
statistics that unwind the relative contributions of the prior and the likelihood to the pos-
terior. These statistics measure the ‘identification strength’ of DSGE model parameters 
with respect to a specific prior. Koop et al. (2011) describe two methods that depend on 
computing conditional and marginal posterior distributions for checking identification 
of DSGE models. Another useful approach is found in Guerrón- Quintana et al. (2013). 
When DSGE models are weakly identified (that is, Bayesian posterior distribution 
cannot be viewed as frequentist confidence sets), they advocate inverting the Bayes factor 
to construct confidence intervals with good small sample properties. We return to these 
issues at the end of this chapter.

3 A CANONICAL NEW KEYNESIAN DSGE MODEL

This section builds a canonical NKDSGE model inspired by the recent literature. The 
specification of this NKDSGE model is similar to those estimated by Del Negro et al. 
(2007), Smets and Wouters (2007) and Del Negro and Schorfheide (2008), who in turn 
build on Smets and Wouters (2003) and Christiano et al. (2005).17 The main features of 
the NKDSGE model are: (a)  the economy grows along a stochastic path; (b)  prices and 
wages are assumed to be sticky à la Calvo; (c)  preferences display internal habit forma-
tion in consumption; (d)  investment is costly; and (e)  there are five exogenous shocks. 
There are shocks to the monopoly power of the final good firm, the disutility of work, 
government spending and a shock to the growth rate of labor- neutral total factor pro-
ductivity (TFP). All of these shocks are stationary AR(1)s. The fifth is a monetary policy 
shock embedded in a Taylor rule.
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3.1 Firms

There is a continuum of monopolistically competitive firms indexed by j [ [0,1]. A 
firm produces an intermediate good using capital services, kj,t, and labor services, Lj,t, 
which are rented in perfectly competitive markets. The production function of firm j is 
given by

 Yj,t 5  ka
j,t(ZtLj,t) 12a

   2  kZt, a[ (0, 1) ,  k . 0, (21.3)

where Zt is labor- neutral TFP common to all firms. The term kZt is removed from the 
output of firm j to guarantee that steady state profits are zero as well as to generate the 
period- by- period fixed cost needed to support monopolistic competition among interme-
diate goods firms. We assume that the growth rate of the TFP shock, zt 5  ln(Zt/Zt21) , 
is an AR(1) process

 zt 5 (1 2 rz)g 1 rzzt21 1 szez,t.

This AR(1) is stationary around the deterministic TFP growth rate g (. 0) because 0rz 0  ,1 and the innovation of zt is time invariant and homoskedastic, ez,t ,NID (0, 1)  
with sz . 0.18

Firm j chooses its price Pj,t to maximize the present value of profits subject to 
the restriction that changes in their prices are time dependent. This form of price 
stickiness is called Calvo pricing; see Yun (1996). At each date t, a fraction of the 
unit mass of firms are able to update their price to its optimal level. The remaining 
firms update their prices by a fraction of the economy- wide lagged inflation rate, pt21. 
Inflation is defined as the growth rate of the aggregate price level, pt 5 Pt/Pt2121. 
We posit that firms are able to revise their prices at the exogenous probability 1 2 zp 
every date t, while a firm not re- optimizing its price updates according to the rule: 
Pj,t 5 (p*) 12 ip (pt21) ipPj,t21, where p* is steady state inflation and ip [ [0, 1]. This has 
firms indexing (the log) of their prices to inflation to a weighted average of steady 
state inflation and lagged inflation, according to the weight ip, in periods when re- 
optimization is not allowed.

There is a competitive firm that produces the final good using intermediate goods 
aggregated using the technology

 Yt 5 c31

0
Y 1/ (11lf,t)j,t dj d 11lf,t

,

where lf,t is the time- varying degree of monopoly power (that is, the stochastic price 
elasticity is [1 1 lf,t ] /lf,t). This monopoly power evolves according to the AR(1) 
process

 lnlf,t 5 (1 2 rlf
) lnlf 1 rlf

lnlf,t21 1 slf
el,t,

where 0rlf
0 , 1, lf,  slf

 . 0, and el,t ,  NID (0,1) .
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3.2 Households

The economy is populated by a continuum of households indexed by address i [ [0, 1]. 
Household i derives utility over ‘net’ consumption and the disutility of work.19 This rela-
tionship is summarized by the period utility function

 U(Ci,t, Ci,t21, Li,t; �t) 5 ln(Ci,t 2 hCi,t21)   2  �t

L 
11nl
i,t

1 1 nl
, (21.4)

where Ci,t and Li,t are consumption and labor supply of household i, nl is the inverse 
of the Frisch labor supply elasticity, and �t is an exogenous and stochastic preference 
shifter. Period utility receives the flow of Ci,t net of a fraction h of Ci,t21, which is the habit 
in consumption displayed by preferences. Consumption habit is internal to households 
and governed by the preference parameter h[ (0,1) . The preference shifter follows the 
AR(1) process

 ln�t 5 (1 2 r�
) ln� 1 r�ln�t21 1 s�e�,t,

with 0r�
0 , 1, s� . 0, and e�,t ,NID (0, 1) .

Households are infinitely- lived. For household i, this means that it maximizes the 
expected present discounted value of period utility

 Ei
0a

`

t50
btU(Ci,t, Ci,t21, Li,t; �t) , b[ (0,1) , (21.5)

subject to the budget constraint

   PtCi,t 1 Pt [Ii,t 1 a(ui,t)Ki,t ] 1 Bi,t11 5 RK
t ui,tKi,t 1 Wi,tLi,t 1 Rt21Bi,t 1 Ai,t 1 Pt 1 Ti,t,

 (21.6)

and the law of motion of capital

 Ki,t11 5 (1 2 d)Ki,t 1 Ii,t c1 2 Ga Ii,t

Ii,t21
b d ,  d [ (0,1) , (21.7)

over uncertain streams of consumption, labor supply, capital intensity, ui,t, investment, 
Ii,t, capital, Ki,t11, and 1- period government bonds, Bi,t11. Here Ei

t is the expectation oper-
ator conditional on the information set available to household i at time t; a( # )  is the cost 
(in units of the consumption good) household i generates when working Ki,t11 at intensity 
ui,t; RK

t  is the nominal rental rate of capital; Wi,t is the nominal wage household i charges 
for hiring out Li,t; Rt21 is the gross nominal interest rate paid on Bi,t; Ai,t captures net pay-
ments from complete markets; Pt corresponds to profits from intermediate goods pro-
ducers; Ti,t corresponds to lump- sum transfers from the government to household i; and 
G( # )  is a function reflecting costs associated with adjusting the flow Ii,t into Ki,t11. The 
function G( # )  is assumed to be increasing and convex satisfying G(g*) 5 Gr (g*) 5 0 
and G rr (g*)  > 0, where g* ; exp(g) . Also note that Kt ; eK

i,t di is the aggregate stock 
of capital. Given ui,t is a choice variable for household i, the nominal return on capital 
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is RK
t ui,tKi,t gross of the real cost a(ui,t) . The cost function a( # )  satisfies the restrictions 

a(1)  5 0,  a r (1)  . 0, and as (1)  . 0.

3.3 Staggered Nominal Wage Setting

Erceg et al. (2000) introduce Calvo staggered nominal wage setting into an NKDSGE 
model. We adopt their approach. Assume that household i is a monopolistic supplier 
of a differentiated labor service, Li,t. Households sell these labor services to a firm that 
aggregates labor and sells it to final firms. This firm aggregates household labor services 
using the technology

 Lt 5 c31

0
L 

1/ (11lW)
i,t dj d 11lW

, 0 , lW , `

where the nominal wage elasticity is (1 1 lW) /lW.
The role of this firm is to sell aggregate labor services, Lt, to intermediate goods firms 

in a perfectly competitive market at the aggregate nominal wage, Wt. The relationship 
between Lt, Li,t, Wi,t, and Wt is given by

 Li,t 5 cWi,t

Wt
d 2(11lW)/lW

Lt.

We assume, as Erceg et al. (2000) did to induce wage sluggishness, that household i is 
allowed to reset its nominal wage in a similar manner to the approach that intermediate 
goods firms are forced to use to update the prices of their output. Calvo staggered nominal 
wage setting permits households to re- optimize their labor market decisions at the fixed 
exogenous probability 1 2 zW during each date t. Households not allowed to reset their 
nominal wages optimally employ the rule Wi,t 5 (p*g*) 12 iW (pt21exp(zt21) ) iWWi,t21 to 
update, where iW [ [0,1]. This rule indexes (the log) of those nominal wages not being 
set optimally to a weighted average of steady state inflation grossed up by the deter-
ministic growth rate and lagged inflation grossed up by lagged TFP growth, where iW 
determines the weights.

3.4 The Government

As often in the new Keynesian literature, we assume a cashless economy; see Woodford 
(2003). The monetary authority sets the short- term interest rate according to the Taylor 
rule used in Del Negro et al. (2007) and Del Negro and Schorfheide (2008)

 
Rt

R*
5 aRt21

R*
brR c a pt

p*
by1aYt

Y t
t
by2 d 12rR

exp(sReR,t) , (21.8)

where R* (. 0) corresponds to the steady state gross nominal interest rate, steady state 
inflation is p*,  Y t

t  denotes the target level of output, eR,t is a random shock to the system-
atic component of monetary policy, which is distributed NID (0,1) , and sR (. 0) is the 
size of the monetary shock. The Taylor rule has the central bank systematically smooth-
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ing its policy rate by rR as well as responding to deviations of pt from its steady state p*, 
and of Yt from its target Y t

t .
Finally, we assume that government spending is a time- varying fraction of output, 

Gt 5 (1 2 1/gt)Yt. The fraction is driven by the shock gt, which follows the AR(1) process

 ln gt 5 (1 2 rg) lng* 1 rg lngt21 1 sgeg,t,

where 0rg 0 , 1, g*,  sg . 0, and eg,t ,  NID (0,1) . Although taxes and 1- period bonds 
are notionally used to finance Gt, the government inhabits a Ricardian world such that 
along the equilibrium path 1- period bonds are in zero net supply, Bt 5 0, at all dates t. 
This forces aggregate lump sum taxes, Tt, always to equal Gt (that is, the primary surplus, 
Tt 2 Gt, is zero).

4 PREPARING THE NKDSGE MODEL FOR ESTIMATION

The scale of the NKDSGE model suggests that it does not admit a closed- form solu-
tion. Hence, we rely on linearization to obtain an approximate solution. The procedure 
consists of computing a first- order approximation of the NKDSGE model around its 
non- stochastic steady state.20

4.1 Stochastic Detrending

The productivity shock Zt is non- stationary (that is, has a unit root). Since its growth 
rate, zt, is stationary, the NKDSGE model grows along a stochastic path. We induce 
stationarity in the NKDSGE model by dividing the levels of trending real variables 
Yt,  Ct,  It, and Kt by Zt. This is the detrending step, where for example yt 5 Yt/Zt. The 
nominal wage Wt also needs to be detrended after dividing it by the price level to obtain 
the detrended real wage, wt 5 Wt/(PtZt) . To transform the nominal rental rate of capital 
into the real rate, divide by Pt, rk

t 5 Rk
t /Pt.

4.2 Linearization

We engage a first- order Taylor or linear approximation to solve the NKDSGE model. 
The linear approximation is applied to the levels of the variables found in the non- linear 
optimality and equilibrium conditions of the NKDSGE model.21 The first step is to 
detrend the optimality and equilibrium conditions. Consider the production function 
(21.3), which after detrending becomes

 yj,t 5 ka
j,tL 

12a
j,t   2  k.

We avoid excessive notation by representing the original and detrended levels of capital 
in firm j with kj. Denote y|j,t as the deviation of output from its steady state, y|j,t 5 yj,t 2 yj. 
Taking a linear approximation of the previous expression gives

 y|j,t 5 ak| j,t 1(1 2 a)L| j,t.
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The approach is easily extended to the remaining equilibrium and optimality conditions. 
Del Negro and Schorfheide (2008) present the complete set of linearized optimality and 
equilibrium conditions of the NKDSGE model.

4.3 Solution

Once the model has been detrended and linearized, the collection of its equilibrium con-
ditions can be cast as an expectational stochastic difference equation

 Et{F(Nt11,  Nt,  Xt11,  Xt)}5 0, (21.9)

where Xt and Nt are vectors of predetermined (states) and non- predetermined (controls) 
variables, respectively. These vectors include

 Xt ;  [y|t21  c|t21  i
|

t21  k|t  w
|

t21  R| t21  p| t21  z|t  g|t  �
|

t  l
|

f,t ]r

and

 Nt ;  [y|t  c
|

t  i
|

t  l
|

t  r
|k

t   u|t  w
|

t  p
|

t,R
|

t ]r

whose elements are deviations from their steady state values. Hence, finding the solu-
tion of the model is tantamount to solving the system of linear stochastic difference 
equations (21.9). We rely on a suite of programs developed by Stephanie Schmitt- Grohe 
and Martin Uribe to solve for the linear approximate equilibrium decision rules of the 
state variables of the NKDSGE model.22 The solution of the NKDSGE model takes 
the form

 
Xt 5 PXt21 1 Fxt

Nt 5 YXt,
 (21.10)

where the first system of equations is the linear approximate equilibrium decision 
rules of the state variables, the second set maps from the state variables to the control 
variables, P,  F, and Y are matrices that are non- linear functions of the structural 
parameters of the NKDSGE model, and xt is the vector of structural innovations, 
[ez,t  el,t  e�,t  eR,t  eg,t ]r.

5 BAYESIAN ESTIMATION OF THE NKDSGE MODEL

This section presents the tools needed to generate Bayesian estimates of the linear 
approximate NKDSGE model of the previous section. Bayesian estimation employs the 
Kalman filter to construct the likelihood of the NKDSGE model. Next, priors for the 
NKDSGE model are reported because the likelihood multiplied by the prior is propor-
tional to the posterior according to expression (21.1). We end this section by reviewing 
several details of the MH- MCMC simulator.
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5.1 The Kalman Filter and the Likelihood

A key step in Bayesian MH- MCMC estimation of a linearized NKDSGE model is evalu-
ation of its likelihood. A convenient tool to evaluate the likelihood of linear models is 
the Kalman filter. The Kalman filter generates projections or forecasts of the state of the 
linear approximate solution (21.10) of the NKDSGE model given an information set 
of observed macro time series. Forecasts of these observables are also produced by the 
Kalman filter. The Kalman filter is useful for evaluating the likelihood of a linearized 
NKDSGE model because the forecasts are optimal within the class of all linear models. 
When shock innovations and the initial state of the NKDSGE model are assumed to 
be Gaussian (that is, normally distributed), the Kalman filter renders forecasts that are 
optimal against all data- generating processes of the states and observables. Another 
implication is that at date t the observables are normally distributed with mean and vari-
ance that are functions of forecasts of the state of the linearized NKDSGE model and 
lagged observables. Thus, the Kalman filter provides the building blocks of the likeli-
hood of a linear approximate NKDSGE model.

We describe the link between the solution of the linearized NKDSGE model with the 
Kalman filter.23 Define the expanded vector of states as St 5 [Nrt  X rt ]r. Using this defini-
tion, the state space representation of the NKDSGE model consists of the system of state 
equations

 St 5 FSt21 1 Qxt, xt  ,NID (0, Im) , (21.11.1)

and the system of observation equations

 Yt 5 M 1 HSt1 xu,t, xu,t ,NID (0, Su) . (21.11.2)

Here, Yt corresponds to the vector of observables at time t; F and Q are functions of the 
matrices P, F, and Y; the matrix H, which contains zeros and ones, relates the model’s 
definitions with the data; M is a vector required to match the means of the observed 
data; and xu,t is a vector of measurement errors. Assume the vector of observables and 
the vector of states have dimensions m and n, respectively. Also, define St 0t21 as the con-
ditional forecast or expectation of St given {S1,. . .,St21}, or St 0t21 ; E [St 0S1,. . .,St21 ]. 
Its mean square error or covariance matrix is Pt 0 t21 ; E [ (St 2 St21) (St 2 St21)r ]

The likelihood of the linearized NKDSGE model is built up by generating forecasts 
from the state space system (21.11.1) and (21.11.2) period- by- period

 L(YT 0Q) 5 q
T

t51
L(Yt 0Yt21,Q) , (21.12)

where L(Yt 0Yt21,Q)  is the likelihood conditional on the information available up to date 
t 2 1 and to be clear Yt21 ; {Y0, . . .,Yt21}. The Kalman filter computes this likelihood 
using the following steps:

1. Set S1 00 5  0 and P1 00 5 FP0 00 F 1  Q r, Qr 5 QQ r.24

2. Compute Y1 00 5 H rS1 00 5 0,  W1 00 5 E( [Y12Y1 00 ] [Y12Y1 00 ]r)5H rP1 00H 1 Su.
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3. The predictions made in Steps 1 and 2 produce the date 1 likelihood:

 L(Y1 0Q)5 (2p)2m/2 0W21
1 00 0 1/2 exp c2 1

2
(Yr

1W
21
1 00 Y1) d .

4. Next, update the date 1 forecasts:

 S1 01 5 S1 00 1 P1 00HW21
1 00 (Y1 2 Y1 00) ,

 P1 01 5 P1 00 2 P1 00 HW21
1 00 HrP1 00.

5. Repeat steps 2, 3, and 4 to generate Kalman filter predictions of St and Yt:

 St 0t21 5 FSt21Pt 0t21,

 Pt 0t21 5 FPt21 0t21F r 1 Q r,

 Yt 0t21 5 H rSt 0t21,

 Wt 0t21 5 E [ (Yt 2 Yt 0t21) (Yt 2 Yt 0t21)r] 5 H rPt 0t21H1 Su,

 the likelihood,

 L(Yt 0Yt21, Q) 5 (2p)2m/2 0W21
t 0t21 0 1/2 exp c2 1

2
(Yt 2 Yt 0t21)rW21

t 0t21 (Yt 2 Yt 0t21) d
 and the updates of the state vector and its mean square error matrix

 St 0t 5 St 0t21 1 Pt 0t21HW21
t 0t21 (Yt 2 Yt 0t21) ,

 Pt 0t 5 Pt 0t21 2 Pt 0t21HW21
t 0t21H rPt 0t21

 for t 5  2, . . ., T.

The likelihoods, L (Y1 0Q) , L (Y2 0Y1, Q) , L (Y3 0Y2, Q) , . . ., L (YT21 0YT22, Q) , and 
L (YT 0YT21, Q) , computed at steps 2 and 5 are used to build up the likelihood function 
(21.12) of the linearized NKDSGE model.

5.2 Priors

Our priors are borrowed from Del Negro and Schorfheide (2008). They construct priors 
by separating the NKDSGE model parameters into three sets. Their first set consists of 
those parameters that define the steady state of the NKDSGE model; see Table 2 of Del 
Negro and Schorfheide (2008, p. 1201). The steady state, which as Hall (1996) shows, ties 
the steady state of the NKDSGE model to the unconditional first moments of YT, has no 
effect on the mechanism that endogenously propagates exogenous shocks. This mecha-
nism relies on preferences, technologies and market structure. The parameters of these 
primitives of the NKDSGE model are included in the second set of priors. Along with 
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technology, preference and market structure parameters, Del Negro and Schorfheide 
add parameters of the Taylor rule (21.8) to this set; see the agnostic sticky price and wage 
priors of Tables 1 and 2 of Del Negro and Schorfheide (2008, pp. 1200–201). The third 
set of parameters consist of AR(1) coefficients and standard deviations of the exogenous 
shocks; see Table 3 of Del Negro and Schorfheide (2008, p. 1201).

We divide the parameter vector Q into two parts to start. The 25 3 1 column vector

  Q1 5 [zp  p*  ip  h  nl  as   Gs   lW  zW  iW  R*  rR  y1  y2  g  lf  rz  r�  rlf
  rg  sz  s�  slf

  sg  sR ] r,

contains the parameters of economic interest, which are to be estimated, in the order 
in which they appear in section 3. Under the Del Negro and Schorfheide (2008) prior 
rubric, the elements of Q1 are grouped into the steady state parameter vector

 Q1,ss 5 [p*  g  lf  lW  R* ] r,

the parameters tied to endogenous propagation in the NKDSGE model

 Q1,prop 5 [zp  ip  h  nl  as   Gs   zW  iW  rR  y1  y2 ] r,

and

 Q1,exog 5 [rz  r�  rlf
  rg  sz  s�  slf

  sg  sR ] r.

contains the slope coefficients and standard deviations of the exogenous AR(1) shocks 
that are the source of fluctuations in the NKDSGE model.

Table 21.1 lists priors for Q1,ss,  Q1,prop and Q1,exog. We draw priors for Q1 from normal, 
beta, gamma and inverse gamma distributions; see Del Negro and Schorfheide (2008) for 
details. The priors are summarized by the distribution from which we draw, the param-
eters of the distribution, and implied 95 per cent probability intervals.

Our choices reflect, in part, a desire to elicit priors on Q1 that are easy to understand. 
For example, p* is endowed with a normally distributed prior. Its mean is 4.3 per cent, 
which is less than twice its standard deviation, giving a 95 per cent probability interval 
running from nearly 21 per cent to more than 9 per cent. Thus, the prior reveals the 
extent of the uncertainty that surrounds steady state inflation.

The beta distribution is useful because it restricts priors on NKDSGE model param-
eters to the open unit interval. This motivates drawing the sticky price and wage param-
eter, zp,  ip,  zW, and iW, the consumption habit parameters,  h, and the AR1 parameters, 
rR,  rz, r�,  rl f

, and rg, from the beta distribution. The means and standard deviations 
of the priors display our uncertainty about these NKDSGE model parameters. For 
example, the prior on h indicates less uncertainty about it than is placed on the priors for 
zp,  ip,  zW, and iW (that is, the ratio of the mean to the standard deviation of the priors of 
these parameters is less than 3, while the same ratio for the prior of h is 14). This gives 
larger intervals on which to draw the sticky price and wage parameters than on h. Also, 
the prior 95 per cent probability interval of h is in the range that Kano and Nason (2012) 
show to be relevant for consumption habit to generate business cycle fluctuations in 
similar NKDSGE models.
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The AR(1) coefficients also rely on the beta distribution for priors. The prior on rR 
suggests a 95 per cent probability interval of draws that range from 0.22 to 0.73. At the 
upper end of this range, the Taylor rule is smoothing the policy rate Rt. This interval 
has the same length but is shifted to the left for rz, which endows the technology growth 

Table 21.1 Priors of NKDSGE model parameter

Steady State Parameters:  Q1,ss

Priors Probability intervals, 95% 

Distribution A1 A2

p* Normal 4.30 2.50 [20.600, 9.200]
g Gamma 1.65 1.00 [0.304, 3.651]
l f Gamma 0.15 0.10 [0.022, 0.343]
lW Gamma 0.15 0.10 [0.022, 0.343]
R* Gamma 1.50 1.00 [0.216, 3.430]

Endogenous Propagation Parameters:  Q1, prop

Priors Probability intervals, 95% 

Distribution A1 A2

zp Beta 0.60 0.20 [0.284, 0.842]
ip Beta 0.50 0.28 [0.132, 0.825]
h Beta 0.70 0.05 [0.615, 0.767]
nl Gamma 2.00 0.75 [0.520, 3.372]
as Gamma 0.20 0.10 [0.024, 0.388]
Gs Gamma 4.00 1.50 [1.623, 6.743]
zW Beta 0.60 0.20 [0.284, 0.842]
iW Beta 0.50 0.28 [0.132, 0.825]
rR Beta 0.50 0.20 [0.229, 0.733]
y1 Gamma 2.00 0.25 [1.540, 2.428]
y2 Gamma 0.20 0.10 [0.024, 0.388]

Exogenous Propagation Parameters:  Q1, exog

Priors Probability intervals, 95%

Distribution A1 A2

rz Beta 0.40 0.25 [0.122, 0.674]
r� Beta 0.75 0.15 [0.458, 0.950]
rl f

Beta 0.75 0.15 [0.458, 0.950]
rg Beta 0.75 0.15 [0.458, 0.950]
sz Inv- Gamma 0.30 4.00 [0.000, 7.601]
s� Inv- Gamma 3.00 4.00 [2.475, 28.899]
sl f

Inv- Gamma 0.20 4.00 [0.000, 6.044]
sg Inv- Gamma 0.50 4.00 [0.002, 10.048]
sR Inv- Gamma 0.20 4.00 [0.000, 6.044]

Notes: Columns headed A1 and A2 contain the means and standard deviations of the beta, gamma and 
normal distributions. For the inverse- gamma distribution, A1  and A2  denote scale and shape coefficients.
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prior with less persistence. The taste, monopoly power, and government spending 
shocks exhibit more persistence with AR(1) coefficients priors lying between 0.5 and 
0.95.

The gamma distribution is applied to NKDSGE model parameters that only require 
priors that rule out non- negative draws or impose a lower bound. The former restriction 
describes the use of the gamma distribution for priors on the goods and labor market 
monopoly power parameters, lf  and lW, the capital utilization parameter, as, and the 
Taylor rule parameter on output, y2. A lower bound is placed on the prior of the deter-
ministic growth of technology, g, the mean policy rate R*, the labor supply parameter, 
nl, the investment cost parameter, Gs, and the Taylor rule parameter on inflation, y1. The 
prior on y1 is set to obey the Taylor principle that Rt rises by more than the increase in 
pt net of p*. This contrasts with the prior on y2 that suggests a smaller response of Rt to 
the output gap, Yt 2 Yt

t , but this response is non- zero.
The priors on the standard deviations of the exogenous shocks are drawn from 

inverse- gamma distributions. This distribution has support on an open interval that 
excludes zero and is unbounded. This allows sz,  slf

,  sg, and sR to have priors with 95 per 
cent probability intervals with lower bounds near zero and large upper bounds. These 
priors show the uncertainty held about these elements of the exogenous shock processes 
of the NKDSGE model. The same is true for the prior on s�, but its scale parameter 
has a 95 per cent probability interval that exhibits more uncertainty as it is shifted to the 
right, especially for the upper bound.

The remaining parameters are necessary to solve the linearized NKDSGE model but 
are problematic for estimation. The fixed or calibrated parameters are collected into

 Q2 5 [a  d  g*  LA  k ] r.

The calibration of Q2 results in

 [a  d  g*  LA  k ] r 5 [0.33  0.025  0.22  1.0  0.0] r.

Although these values are standard choices in the DSGE literature, some clarification is 
in order. As in Del Negro and Schorfheide (2008), our parametrization imposes the con-
straint that firms make zero profits in the steady state. We also assume that households 
work one unit of time in steady state. This assumption implies that the parameter �, the 
mean of the taste shock �t, is endogenously determined by the optimality conditions in 
the model. This restriction on steady state hours worked in the NKDSGE model differs 
from the sample mean of hours worked. We deal with this mismatch by augmenting the 
measurement equation in the state space representation with a constant or ‘add- factor’ 
that forces the theoretical mean of hours worked to match the sample mean; see Del 
Negro and Schorfheide (2008, p. 1197). This amounts to adding LA to the log likelihood 
of the linearized NKDSGE model

 lnL(YT 0Q1; Q2)   1  lnLA.

Also, rather than imposing priors on the great ratios, C*/Y*, I*/K*, K*/Y*, and 
G*/Y*, we fix the capital share, a, the depreciation rate, d, and the share of government 
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 expenditure, g*. This follows well established practices that pre- date Bayesian estimation 
of NKDSGE models.

5.3 Useful Information about the MH- MCMC Simulator

The posterior distribution of the NKDSGE model parameters in Q1 is characterized 
using the MH- MCMC algorithm. The MH- MCMC algorithm is started up with an 
initial Q1. This parameter vector is passed to the Kalman filter routines described 
in section 5.1 to obtain an estimate of L(YT 0Q1; Q2) . Next, the initial Q1 is updated 
a  ccording to the MH random walk law of motion. Inputting the proposed update 
of Q1 into the Kalman filter produces a second estimate of the likelihood of the 
linear approximate NKDSGE model. The MH decision rule determines whether 
the initial or proposed update of Q1 and the associated likelihood is carried forward 
to the next step of the MH algorithm. Given this choice, the next step of the MH 
algorithm is to obtain a new proposed update of Q1 using the random walk law of 
motion and to   generate an estimate of the likelihood at these estimates. This likeli-
hood is compared to the likelihood carried over from the previous MH step using the 
MH decision rule to select the likelihood and Q1 for the next MH step. This process 
is repeated H times to generate the posterior of the linear approximate NKDSGE 
model, P (Q1 0YT; Q2) .

We summarize this description of the MH- MCMC algorithm with

1. Label the vector of NKDSGE model parameters chosen to initialize the MH algo-
rithm Q̂1,0.

2. Pass Q̂1,0 to the Kalman filter routines described in section 5.2 to generate an 
initial estimate of the likelihood of the linear approximate NKDSGE model, 
L(YT 0 Q̂1,0; Q2) .

3. A proposed update of Q̂1,0 is Q1,1 which is generated using the MH random walk law 
of motion, Q1,1 5 Q̂1,0 1 .�e1,  e1 ,NID (0d, Id) , where . is a scalar that controls 
the size of the ‘jump’ of the proposed MH random walk update, � is the Cholesky 
decomposition of the covariance matrix of Q1, and d (5 25) is the dimension of Q1. 
Obtain L (YT 0Q1,1; Q2)  by running the Kalman filter using Q1,1 as input.

4. The MH algorithm employs a two- stage procedure to decide whether to keep the 
initial Q̂1,0 or move to the updated proposal Q1,1. First, calculate

 w1 5 min e L(YT 0Q1,1; Q2)P (Q1,1)

L(YT 0Q̂1,0; Q2)P (Q̂1,0)
, 1 f ,

 where, for example, P (Q1,1)  is the prior at Q1,1. The second stage begins by drawing 
a uniform random variable f1 , U(0,1)  to set Q̂1,1 5  Q1,1 and the counter ` 5 1 if 
f1 #  w1, otherwise Q̂1,1 5 Q̂1,0 and ` 5 0.

5. Repeat steps 3 and 4 for , 5  2, 3, . . ., H using the MH random walk law of motion

 Q1,, 5 Q̂1,,211.�e,, e,  ,   NID (0d31, Id) , (21.13)

 and drawing the uniform random variable f, , U(0,1)  to test against
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 w, 5 min e L(YT 0Q1,,; Q2)P (Q1,,)

L(YT 0 Q̂1,,21; Q2)P (Q̂1,,21)
, 1 f ,

 for equating Q̂1,,  to either Q1,, or Q̂1,,21. The latter implies that the counter is 
updated according to ` 5 ` 1 0, while the former has ` 5 ` 1 1.

Steps 1–5 of the MH- MCMC algorithm produce the posterior, P(Q̂1 0YT; Q2) , of the 
linear approximate NKDSGE model by drawing from {Q̂1,,}H,51. Note that in Steps 4 
and 5 the decision to accept the updated proposal, f, # w,, is akin to moving to a higher 
point on the likelihood surface.

There are several more issues that have to be resolved to run the MH- MCMC 
algorithm to create P (Q̂1 0YT; Q2) . Among these are obtaining an Q̂1,0 to initialize the 
MH- MCMC, computing �, determining H, fixing . to achieve the optimal acceptance 
rate for the proposal Q1,, of `/H, and checking that the MH- MCMC simulator has 
converged.25

Step 1 of the MH- MCMC algorithm leaves open the procedure for setting Q̂1,0. 
We employ classical optimization methods and an MH- MCMC ‘burn- in’ stage to 
obtain Q̂1,0. First, a classical optimizer is applied repeatedly to the likelihood of the 
linear approximate NKDSGE model with initial conditions found by sampling 100 
times from P (Q1) .26 These estimates yield the mode of the posterior distribution of 
Q1 that we identify as initial conditions for a ‘burn- in’ stage of the MH- MCMC algo-
rithm. The point of this burn- in of the MH- MCMC algorithm is to remove depend-
ence of P (Q̂1 0YT; Q2)  on the initial condition Q̂1,0. Drawing Q̂1,0 from a distribution 
that resembles P (Q̂1 0YT; Q2)  eliminates this dependence. Next, 10 000 MH steps are 
run with . 5 1 and � 5 Id to complete the burn- in stage. The final MH step of the 
burn- in gives Q̂1,0 to initialize the H steps of the final stage of the MH-MCMC algo-
rithm. The 10 000 estimates of Q1 generated during the MH burn- in steps are used to 
construct an empirical estimate of the covariance matrix �� r. The Cholesky decom-
position of this covariance matrix is the source of � needed for the MH law of motion 
(21.13).

The scale of the ‘jump’ from Q1,, to Q̂1,,21 determines the speed at which the pro-
posals Q1,, converge to P (Q̂1 0YT; Q2)  within the MH- MCMC simulator. The speed of 
convergence is sensitive to . as well as to H. The number of steps of the final stage of 
the MH- MCMC simulator has to be sufficient to allow for convergence. We obtain 
H 5 300 000 draws from the posterior P (Q̂1 0YT; Q2) , but note that for larger and richer 
NKDSGE models the total number of draws is often many times larger. Nonetheless, 
the choice of the scalar . is key for controlling the speed of convergence of the MH- 
MCMC. Although Gelman et al. (2004) recommend that greatest efficiency of the MH 
law of motion (21.13) is found with . 5 2.4 /"d, we set . to drive the acceptance rate 
`/H [  [0.23, 0.30].27

It is standard practice to test to check the convergence of the MH- MCMC simula-
tor, besides requiring `/H to 0.23. Information about convergence of the MH- MCMC 
simulator is provided by the R̂  statistic of Gelman et al. (2004, pp. 294–7). This statistic 
compares the variances of the elements within the sequence of {Q̂1,,},51

m  to the variance 
across several sequences produced by the MH- MCMC simulator given different initial 
conditions. These different initial conditions are produced using the same methods 
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already described, with one exception. The initial condition for the burn- in stage of the 
MH- MCMC algorithm is typically set at the next largest mode of the posterior distribu-
tion obtained by applying the classical optimizer to the likelihood of the linear approxi-
mate NKSDSGE model. This process is often repeated three to five times. Gelman et 
al. (2004) suggest that R̂  , 1.1 for each element of Q̂1.  If not, across the posteriors of 
the MH- MCMC chains there is excessive variation relative to the variance within the 
sequences. When R̂  is large, Gelman et al. propose increasing H until convergence is 
achieved as witnessed by R̂  , 1.1.28

6 RESULTS

This section describes the data and reports the results of estimating the linear approxi-
mate NKDSGE model using the Bayesian procedures of the previous section.

6.1 Data

We follow Del Negro and Schorfheide (2008) in estimating the NKDSGE model given 
five aggregate US variables. The observables are per capita output growth, per capita 
hours worked, labor share, inflation, and the nominal interest rate on the 1982Q1–2009
Q4 sample. Thus, Bayesian estimates of the NKDSGE model parameters are conditional 
on the information set

 Yt 5 c400D lnYt  100 lnLt  100 ln
WtLt

PtYt
  400pt  400 lnRt dr,

where D is the first difference operator. Per capita output growth, labor share, infla-
tion, and the nominal interest rate are multiplied to obtain data that are annualized, 
which is consistent with the measurement of per capita hours worked, and in percent-
ages. Real GDP is divided by population (16 years and older) to create per capita 
output. Hours worked is a series constructed by Del Negro and Schorfheide (2008) 
that we extend for several more quarters. They interpolate annual observations on 
aggregate hours worked in the US into the quarterly frequency using the growth rate 
of an index of hours of all persons in the non- farm business sector. Labor share equals 
the ratio of total compensation of employees to nominal GDP. Inflation is equated 
to the (chained) GDP deflator. The effective federal funds rate defines the nominal 
interest rate.29

6.2 Posterior Estimates

Table 21.2 contains summary statistics of the posterior distributions of two NKDSGE 
models. We include posterior medians, modes and 95 per cent probability intervals of the 
NKDSGE model parameters in Table 21.2. Estimates of the NKDSGE model labeled 
M1 are grounded in the priors that appear in Table 21.1 and discussed in section 5.2. We 
also estimate an NKDSGE model that fixes ip at zero, which defines the weights on p* 
and pt21 in the indexation rule used by firms unable to update their prices at any date t. 
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Table 21.2  Summary of posterior distributions of the NKDSGE models (sample:
1982Q1–2009Q4)

ln Marginal Likelihoods

M1 5 239.49 M2 (ip 5 0) 5 238.69

Steady State Parameters:  Q1, ss

Posterior Probability 
intervals, 

95% 

Posterior Probability 
intervals, 

95%medians modes medians modes

p* 2.822 2.831 [2.133, 3.635] 2.804 2.551 [2.116, 3.559]
g 1.771 1.766 [1.206, 2.356] 1.773 2.109 [1.191, 2.409]
l f 0.178 0.178 [0.160, 0.216] 0.177 0.176 [0.160, 0.211]
lW 0.215 0.159 [0.086, 0.458] 0.225 0.274 [0.090, 0.473]
R* 2.629 2.705 [2.014, 3.242] 2.622 1.915 [2.001, 3.229]

Endogenous Propagation Parameters:  Q1, prop

Posterior Probability 
intervals, 

95% 

Posterior Probability 
intervals, 

95%medians modes medians modes

zp 0.656 0.653 [0.578, 0.734] 0.673 0.725 [0.600, 0.743]
ip 0.059 0.007 [0.006, 0.215] NA NA NA
h 0.814 0.825 [0.729, 0.872] 0.816 0.830 [0.736, 0.873]
nl 1.157 1.003 [0.717, 1.773] 1.156 1.074 [0.720, 1.787]
as 0.241 0.198 [0.112, 0.459] 0.238 0.249 [0.109, 0.462]
Gs 10.05 10.14 [6.948, 13.88] 10.13 13.90 [7.029, 14.18]
zW 0.153 0.113 [0.072, 0.270] 0.154 0.180 [0.076, 0.270]
iW 0.461 0.514 [0.228, 0.818] 0.467 0.427 [0.224, 0.803]
rR 0.787 0.780 [0.742, 0.823] 0.784 0.780 [0.739, 0.822]
y1 2.513 2.514 [2.161, 2.902] 2.503 2.356 [2.138, 2.897]
y2 0.055 0.052 [0.025, 0.093] 0.053 0.078 [0.024, 0.093]

Exogenous Propagation Parameters:  Q1, exog

Posterior Probability 
intervals, 

95%

Posterior Probability 
intervals, 

95%medians modes medians modes

rz 0.256 0.226 [0.080, 0.454] 0.257 0.228 [0.077, 0.469]
r� 0.936 0.934 [0.875, 0.976] 0.936 0.963 [0.878, 0.977]
rl f

0.915 0.921 [0.797, 0.974] 0.912 0.909 [0.804, 0.971]
rg 0.944 0.944 [0.906, 0.975] 0.944 0.937 [0.906, 0.975]
sz 0.739 0.722 [0.659, 0.839] 0.741 0.732 [0.660, 0.846]
s� 2.259 1.945 [1.741, 3.224] 2.239 2.133 [1.732, 3.154]
sl f

6.639 6.174 [4.987, 9.624] 6.798 8.474 [5.114, 9.822]
sg 0.772 0.757 [0.678, 0.889] 0.772 0.759 [0.679, 0.885]
sR 0.195 0.193 [0.170, 0.225] 0.196 0.203 [0.172, 0.226]
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This NKDSGE model is labeled M2. The motivation for estimating M2 is that Table 6 
of Del Negro and Schorfheide (2008, p. 1206) has 90 per cent probability intervals for ip 
with a lower bound of zero for all but one of their priors.

We obtain similar estimates for Q1,prop across M1 and M2 as listed in the middle panel 
of Table 21.2, except for ip. The posterior distributions of these models indicate substan-
tial consumption habit, h [ (0.73, 0.87), a large Frisch labor supply elasticity, n21

l  [  
(0.56, 1.39), costly capital utilization, as [ (0.11, 0.46), investment costs of  adjustments, 
Gs [ (6.9, 14.2), sticky prices, zp [ (0.58, 0.74), nominal wage indexation, iW [ (0.22, 
0.82), and interest rate smoothing by a monetary authority, rR [ (0.74, 0.82), that 
 satisfies the Taylor principle, y1 [ (2.14, 2.90). These estimates show which elements of 
the NKDSGE models interact endogenously to replicate fluctuations found YT. These 
estimates are also in the range often found in the existing literature; for example, see Del 
Negro and Schorfheide (2008).

Sticky nominal wages, price indexation, and the monetary authority’s response to 
deviations of output from its target appear to matter less for generating endogenous 
propagation in the NKDSGE models. The 95 per cent probability interval of ip has a 
lower bound of 0.006 in the posterior distribution of M1. For M1 and M2, the estimates 
of zW and y2 are also relatively small. Thus, sticky prices and nominal wage indexation, 
not sticky nominal wages and price indexation, matter for endogenous propagation in 
M1 and M2 given YT and our priors.

Estimates of Q1,exog show that exogenous propagation matters for creating fluctuations 
in the posterior distributions of M1 and M2. The bottom panel of Table 21.2 shows that 
the taste shock �t, the goods market monopoly power shock lf, and the government 
spending shock gt are persistent. In M1 and M2, the half- life of a structural innovation 
to these shocks is about seven quarters for lf  and 11 quarters for �t and gt at the medians 
and modes of rlf

, r�, and rg, respectively.30 The NKDSGE M1 and M2 yield estimates 
of rz that signal much less persistence. Estimates of rz [ (0.23, 0.47) surround estimates 
of the unconditional first- order autocorrelation coefficient of US output growth; see 
Cogley and Nason (1995). Further, M1 and M2 produce posterior distributions in which 
the lower end of the 95 per cent probability intervals of rz suggests little or no persistence 
in zt.

Exogenous shock volatility contributes to M1 and M2 replicating variation in YT. 
The scale parameters s� and slf

 matter most for this aspect of the fit of the NKDSGE 
models. Estimates of these elements of Q1,exog are 2.5 to more than 9 times larger than 
estimates of sz and sg. When sR is included in this comparison, it reveals that exogenous 
variation in monetary policy matters less for M1 and M2 to explain variation in YT. 
Thus, M1 and M2 attribute the sources of business cycle fluctuations more to taste and 
goods market monopoly power shocks than to TFP growth, government spending, or 
monetary policy shocks.

The top panel of Table 21.2 displays estimates of Q1,ss that are nearly identical across 
M1 and M2. These estimates indicate that the posterior distributions of these NKDSGE 
models place a 95 per cent probability that steady state inflation in the US was as low 
as 2.1 per cent and just a little more than 3.5 per cent.31 There is greater precision in the 
posterior estimates of g. Deterministic TFP growth is estimated to range from 2.85 to 3 
per cent per annum with a 95 per cent probability interval according to M1 and M2. In 
contrast, the 95 per cent probability intervals of R* are shifted slightly to the left of the 
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ones shown for p*. These estimates suggest the NKDSGE models M1 and M2 predict 
steady state real interest rates near zero.

Del Negro and Schorfheide (2008) report estimates of price and wage stickiness that 
often differ from those of M1 and M2. For example, the middle panel of Table 21.2 
shows that the median degree of price stickiness yields a frequency (that is, 1/[1 – zp]) at 
which the firms of M1 and M2 change prices about once every two to three quarters. Del 
Negro and Schorfheide obtain estimates of zp that imply an almost identical frequency of 
price changes for only three of the six priors they use. Notably, when they adopt priors 
with greater price stickiness, posterior estimates have firms changing prices as infre-
quently as once every 10 quarters on average.

Nominal wages exhibit less rigidity in the posterior distributions of M1 and M2. The 
95 per cent probability intervals of zW range from 0.07 to 0.27. This indicates that the 
households of M1 and M2 change their nominal wages no more than every other quarter. 
However, at the posterior median and modes of iW, those households unable to optimally 
adjust their nominal wages depend in about equal parts on  p*,  g*,  pt21, and zt21 when 
updating to Wi,t21. In comparison, the posterior of M1 shows that firms unable to reset 
their prices optimally rely almost entirely on pt21 and not p* when updating because the 
95 per cent probability interval of ip [ (0.0, 0.2). The lower end of this interval is near the 
restriction imposed on ip by M2.

The marginal likelihoods of M1 and M2 give evidence about which NKDSGE 
model is preferred by YT. The Bayes factor (21.2) is employed to gauge the relative merits 
of M1 and M2. We adopt methods described in Geweke (1999, 2005) to integrate or 
marginalize Q̂1 out of L(YT 0 Q̂1;  Mj; Q2) ,  j 5  1, 2; also see Chib and Jeliazkov (2001).32 
The top of Table 21.2 lists the log marginal likelihoods of M1 and M2. The Bayes factor 
of the marginal likelihoods of M1 and M2 is 2.23. According to Jeffreys (1998), a Bayes 
factor of this size shows that YT’s preference for M2 over M1 is ‘barely worth mention-
ing’.33 Thus, the marginal likelihoods of M1 and M2 provide evidence that, although YT 
support ip 5 0, the evidence in favor of this restriction is not sufficient for an econom-
etrician with the priors displayed in Table 21.1 to ignore M1, say, for conducting policy 
analysis.

7 CONCLUSION

This chapter surveys Bayesian methods for estimating NKDSGE models with the goal 
of raising the use of these empirical tools. We give an outline of an NKDSGE model to 
develop intuition about the mechanisms it has to transmit exogenous shocks into endog-
enous business cycle fluctuations. Studying the sources and causes of these propagation 
mechanisms requires us to review the operations needed to detrend its optimality and 
equilibrium conditions, a technique to construct a linear approximation of the model, 
a strategy to solve for its linear approximate decision rules, and the mapping from this 
solution into a state space model that can produce Kalman filter projections and the 
likelihood of the linear approximate NKDSGE model. The projections and likelihood 
are useful inputs into the MH- MCMC simulator. Since the source of Bayesian estimates 
of the NKDSGE model is the MH- MCMC simulator, we present an algorithm that 
implements it. This algorithm relies on our priors of the NKDSGE model parameters 
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and setting initial conditions for the simulator. We employ the simulator to generate 
posterior distributions of two NKDSGE models. These posterior distributions yield 
summary statistics of the Bayesian estimates of the NKDSGE model parameters that 
are compared to results in the extant literature. These posterior distributions are needed 
as well to address the question of which NKDSGE models are most favored by the data. 
We also provide a short history of DSGE model estimation as well as pointing to issues 
that are at the frontier of this research.

We describe Bayesian methods in this chapter that are valuable because DSGE models 
are useful tools for understanding the sources and causes of business cycles and for con-
ducting policy evaluation. This chapter supplies empirical exercises in which NKDSGE 
models are estimated and evaluated using data and priors that are standard in the 
published literature. Thus, it is no surprise that our estimates of the NKDSGE models 
resemble estimates found in the published literature. Although comforting, the similar-
ity in estimates raises questions about whether the data are truly informative about the 
NKDSGE models or if posterior distributions of the NKDSGE models are dominated 
by our priors. Also, little is known about the impact of misspecification on the relation-
ship between data, priors and posterior distributions of NKDSGE models. We hope this 
chapter acts as a foundation supporting future research on these issues.

NOTES

 * The views herein are those of the authors and do not necessarily represent the views of the Federal 
Reserve Bank of Philadelphia or the Federal Reserve System.

 1. L. Kilian gives a progress report on BVARs in this Handbook (Chapter 22).
 2. This volume has surveys of MS models by J. Gonzalo and J- Y. Pitarakis (Chapter 8) and TVP models by 

O. Boldea and A. Hall (Chapter 9).
 3. L. Bauwens and D. Korobilis provide a chapter on Bayesian methods for macroeconomists in this 

Handbook (Chapter 16).
 4. Fernández- Villaverde et al. (2009) and Schorfheide (2011) review Bayesian estimation of DSGE models, 

while Canova (2007) and DeJong and Dave (2007) give textbook treatments of the subject.
 5. An and Schorfheide (2007), Fernández- Villaverde and Rubio- Ramírez (2007), Fernández- Villaverde et 

al. (2010), Aruoba et al. (2011), and Liu et al. (2011) propose different non- linear estimators of DSGE 
models.

 6. This Handbook has a chapter on GMM DSGE model estimation by F. Ruge- Murcia (Chapter 20).
 7. Assuming sample data suffers from classical measurement error helps Altuǧ identify the Kydland and 

Prescott (1982) RBC model. Bencivenga achieves the same objective with AR(1) taste shocks in an RBC 
model.

 8. White (1982) develops quasi- ML for misspecified models, but its consistency needs a strong set of 
assumptions.

 9. Gregory and Smith (1990, 1991) anticipate the II approach to DSGE model estimation and evaluation.
10. Also, II can estimate DSGE model parameters by minimizing the distance between the likelihoods of an 

auxiliary model generated using actual and simulated samples. Simulated quasi- ML yields an asymptoti-
cally less efficient estimator because the likelihood of the auxiliary model differs from that of the DSGE 
model; see Smith (1993).

11. Christiano et al. (2005) estimate an NKDSGE model by matching its predicted impulse responses to those 
of an SVAR. This approach to moment matching is in the class of II estimators. See Canova and Sala 
(2009) for a discussion of the identification problem facing this estimator and Hall et al. (2012) for an 
optimal impulse response matching estimator of DSGE models.

12. This is a proper prior that is independent of the data and has a density that integrates to 1.
13. The objective is to approximate E{G(Q)}5 eG(Q)P(Q 0Yt)dQ /eP (Q 0Yt)dQ.
14. Given N draws from D (Q) , E{G(Q)  is approximated as GN 5  gN

i51W (Qi)G(Qi) /gN
i51W (Qi) , where the 

weights, W (Qi) , equal P (Qi 0Yt) /D (Qi) .
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15. In general, Bayes factor involves the ratio of marginal likelihoods of M j and Ms. The marginal likelihood 
integrates out Qj from L (YT 0Qj,Mj) ; see Geweke (2005).

16. Kim (2002), Chernozhukov and Hong (2003) and Sims (2007) give Bayesian treatments of GMM and 
other limited information estimators.

17. See the chapter in this Handbook by Cantore et al. for a plethora of DSGE model specifications (Chapter 
18).

18. A strictly positive deterministic growth term g is also needed to have a well defined steady state around 
which we can linearize and solve the NKDSGE model.

19. Agents in the economy are given access to complete insurance markets. This assumption is needed to 
eliminate wealth differentials arising from wage heterogeneity.

20. A first- order approximation is sufficient for many macroeconomic applications. Otherwise, see 
Fernández- Villaverde et al. (2010, 2011) for tools to solve and estimate DSGE models with higher- order 
approximations.

21. First- order approximations can also linearize many variables in logs rather than in levels.
22. These programs are available at http://www.columbia.edu/mu2166/2nd_order.htm. Other examples of 

widely used software to solve DSGE models are found in the Dynare and Iris software packages. This 
Handbook includes reviews of Dynare and Iris by J. Madeira (Chapter 25).

23. For more information on linear filtering see Anderson and Moore (2005), and for details on the Kalman 
filter and likelihood- based estimation see Harvey (1989) and a chapter by T. Proietti and A. Luati in this 
Handbook (Chapter 15).

24. Let SS be the unconditional covariance matrix of S. The state equations (21.11.1) imply SS 5 FSSFr 1 Q r. 
Its solution is vec (SS

) 5 [In 2 F # F ] 21 vec (Q r) , where vec (ABC) 5 (C r# A)  vec (B) , which in turn 
sets P0 00 5  vec (SS

) .
25. Gelman et al. (2004, pp. 305–307) discuss rules for the MH- MCMC simulator that improve the efficiency 

of the law of motion (21.13) to give acceptance rates that are optimal.
26. Chris Sims is responsible for the optimizer software that we use. The optimizer is csminwel and available 

at http://sims.princeton.edu/yftp/optimize/.
27. This involves an iterative process of running the MH- MCMC simulator to calibrate . to reach the 

desired acceptance rate.
28. Geweke (2005) advocates a convergence test examining the serial correlation within the sequence of each 

element of Q̂1,,, , 5  1, . . ., H.
29. The data are available at http://research.stlouisfed.org/fred2/. This website, which is maintained by the 

Federal Reserve Bank of St Louis, contains data produced by the Bureau of Economic Analysis (BEA), 
the Bureau of Labor Statistics (BLS), and the Board of Governors of the Federal Reserve System 
(BofG). The BEA compiles real GDP, annual aggregate hours worked, total compensation of employees, 
nominal GDP, and the chained GDP deflator. The BLS provides the population series and the index of 
hours of all persons in the non- farm business sector. The effective federal funds rate is collected by the 
BofG.

30. The half- life estimates are computed as ln0.5/lnrs, s 5 �, lf, and g.
31. The posterior probability interval differs from a frequentist confidence band. The latter holds the relevant 

parameter fixed and depends only on data, while the former is conditional on the model, priors and data. 
32. Geweke advises computing the marginal likelihood with a harmonic mean estimator along with several 

refinements that he proposes. Useful instructions for computing marginal likelihoods along these lines are 
provided by Fernández- Villaverde and Rubio- Ramírez (2004, pp. 169–170).

33. The Bayes factor needs to exceed odds of 3 to 1 before there is ‘substantial’ evidence against M2.
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22 Structural vector autoregressions*
Lutz Kilian

1 INTRODUCTION

Notwithstanding the increased use of estimated dynamic stochastic general equilib-
rium (DSGE) models over the last decade, structural vector autoregressive (VAR) 
models continue to be the workhorse of empirical macroeconomics and finance. 
Structural VAR models have four main applications. First, they are used to study 
the expected response of the model variables to a given one- time structural shock. 
Second, they allow the construction of forecast error variance decompositions that 
quantify the average contribution of a given structural shock to the variability of the 
data. Third, they can be used to provide historical decompositions that measure the 
 cumulative contribution of each structural shock to the evolution of each variable 
over time. Historical decompositions are essential, for example, in understanding the 
genesis of recessions or of surges in energy prices (see, for example, Edelstein and 
Kilian, 2009; Kilian and Murphy, 2013). Finally, structural VAR models allow the 
construction of forecast scenarios conditional on hypothetical sequences of future 
structural shocks (see, for example, Waggoner and Zha, 1999; Baumeister and Kilian, 
2012).

VAR models were first proposed by Sims (1980a) as an alternative to traditional 
large- scale dynamic simultaneous equation models. Sims’ research program stressed 
the need to dispense with ad hoc dynamic exclusion restrictions in regression models 
and to discard empirically implausible exogeneity assumptions. He also stressed the 
need to model all endogenous variables jointly rather than one equation at a time. All 
of these points have stood the test of time. There is a large body of literature on the 
specification and estimation of reduced- form VAR models (see, for example, Watson, 
1994, Lütkepohl, 2005 and Chapter 6 in this volume). The success of such VAR models 
as descriptive tools and to some extent as forecasting tools is well established. The ability 
of structural representations of VAR models to differentiate between correlation and 
causation, in contrast, has remained contentious.

Structural interpretations of VAR models require additional identifying assumptions 
that must be motivated based on institutional knowledge, economic theory, or other 
extraneous constraints on the model responses. Only after decomposing forecast errors 
into structural shocks that are mutually uncorrelated and have an economic interpre-
tation can we assess the causal effects of these shocks on the model variables. Many 
early VAR studies overlooked this requirement and relied on ad hoc assumptions for 
identification that made no economic sense. Such atheoretical VAR models attracted 
strong criticism (see, for example, Cooley and LeRoy, 1985), spurring the development 
of more explicitly structural VAR models starting in 1986. In response to ongoing 
questions about the validity of commonly used identifying assumptions, the structural 
VAR model literature has continuously evolved since the 1980s. Even today new ideas 
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and insights are being generated. This survey traces the evolution of this literature. It 
focuses on alternative approaches to the identification of structural shocks within the 
framework of a reduced- form VAR model, highlighting the conditions under which 
each approach is valid and discussing potential limitations of commonly employed 
methods.

Section 2 focuses on identification by short- run restrictions. Section 3 reviews identi-
fication by long- run restrictions. Identification by sign restrictions is discussed in section 
4. Section 5 summarizes alternative approaches such as identification by heteroskedas-
ticity or identification based on high- frequency financial markets data and discusses 
identification in the presence of forward- looking behavior. Section 6 discusses the 
relationship between DSGE models and structural VAR models. The conclusions are 
in section 7.

2 IDENTIFICATION BY SHORT- RUN RESTRICTIONS

Consider a K- dimensional time series yt, t 5 1, . . . , T. We postulate that yt can be 
approximated by a vector autoregression of finite order p. Our objective is to learn about 
the parameters of the structural vector autoregressive model

 B0 yt 5 B1yt21 1 . . . 1 Bp yt2p 1 ut,

where ut denotes a mean zero serially uncorrelated error term, also referred to as a 
structural innovation or structural shock. The error term is assumed to be uncondi-
tionally homoskedastic, unless noted otherwise. All deterministic regressors have been 
suppressed for notational convenience. Equivalently the model can be written more 
compactly as

 B(L)yt 5 ut,

where B(L) ; B0 2 B1L 2 B2L 
2 2 . . . 2 BpL 

p is the autoregressive lag order polyno-
mial. The variance–covariance matrix of the structural error term is typically normalized 
such that:

 E(uturt) ; Su 5 IK.

This means, first, that there are as many structural shocks as variables in the model. 
Second, structural shocks by definition are mutually uncorrelated, which implies that Su 
is diagonal. Third, we normalize the variance of all structural shocks to unity. The latter 
normalization does not involve a loss of generality, as long as the diagonal elements of 
B0 remain unrestricted. We defer a discussion of alternative normalizations until the end 
of this section.1

In order to allow estimation of the structural model we first need to derive its reduced- 
form representation. This involves expressing yt as a function of lagged yt only. To derive 
the reduced- form representation, we pre- multiply both sides of the structural VAR rep-
resentation by B21

0 :
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 B21
0 B0 yt 5 B21

0 B1yt21 1 . . . 1 B21
0 Bp yt2p 1 B21

0 ut

Hence, the same model can be represented as:

 yt 5 A1yt21 1 . . . 1 Apyt2p 1 et

where Ai 5 B21
0 Bi, i 5 1,. . . , p, and et 5 B21

0 ut. Equivalently the model can be written 
more compactly as:

 A(L)yt 5 et,

where A(L) ; I 2 A1L 2 A2L 
2 2 . . . 2 ApL 

p denotes the autoregressive lag order 
polynomial. Standard estimation methods allow us to obtain consistent estimates of the 
reduced- form parameters Ai, i 5 1, . . . , p, the reduced- form errors et, and their covari-
ance matrix E(etert ) ; Se (see Lütkepohl, 2005).

It is clear by inspection that the reduced- form innovations et are in general a weighted 
average of the structural shocks ut. As a result, studying the response of the vector yt to 
reduced- form shocks et will not tell us anything about the response of yt to the struc-
tural shocks ut. It is the latter responses that are of interest if we want to learn about 
the structure of the economy. These structural responses depend on Bi, i 5 0,. . . , p. The 
central question is how to recover the elements of B21

0  from consistent estimates of the 
reduced- form parameters, because knowledge of B21

0  would enable us to reconstruct ut 
from ut 5 B0et and Bi, i 5 1,. . . , p, from Bi 5 B0Ai.

By construction, et 5 B21
0 ut. Hence, the variance of et is:

 E(etert) 5 B21
0 E(uturt)B21r0

 Se 5 B21
0 SuB21r0

 Se 5 B21
0 B21r0

where we made use of Su 5 IK in the last line. We can think of Se 5 B21
0 B21r0  as a system 

of non- linear equations in the unknown parameters of B21
0 . Note that Se can be estimated 

consistently and hence is treated as known. This system of non- linear equations can 
be solved for the unknown parameters in B21

0  using numerical methods, provided the 
number of unknown parameters in B21

0  does not exceed the number of equations. This 
involves imposing additional restrictions on selected elements of B21

0  (or equivalently 
on B0). Such restrictions may take the form of exclusion restrictions, proportionality 
restrictions, or other equality restrictions. The most common approach is to impose zero 
restrictions on selected elements of B21

0 .
To verify that all of the elements of the unknown matrix B21

0  are uniquely identified, 
observe that Se has K(K 1 1) /2 free parameters. This follows from the fact that any 
covariance matrix is symmetric about the diagonal. Hence, K(K 1 1) /2 by construction 
is the maximum number of parameters in B21

0  that one can uniquely identify. This order 
condition for identification is easily checked in practice, but is a necessary condition for 
identification only. Even if the order condition is satisfied, the rank condition may fail, 
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depending on the numerical values of the elements of B21
0 . Rubio- Ramirez et al. (2010) 

discuss a general approach to evaluating the rank condition for global identification in 
structural VAR models.

The earlier discussion alluded to the existence of alternative normalization assump-
tion in structural VAR analysis. There are three equivalent representations of structural 
VAR models that differ only in how the model is normalized. All three representations 
have been used in applied work. In the discussion so far we made the standard normal-
izing assumption that Su 5 IK, while leaving the diagonal elements of B0 unrestricted. 
Identification was achieved by imposing identifying restrictions on B21

0  in et 5 B21
0 ut. By 

construction a unit innovation in the structural shocks in this representation is an inno-
vation of size one standard deviation, so structural impulse responses based on B21

0  are 
responses to one- standard deviation shocks.

Equivalently, one could have left the diagonal elements of Su unconstrained and set 
the diagonal elements of B0 to unity in ut 5 B0et (see, for example, Keating, 1992). A 
useful result in this context is that B0, being lower triangular, implies that B21

0  is lower 
triangular as well. However, the variance of the structural errors will no longer be unity 
if the model is estimated in this second representation, so the implied estimate of B21

0  
must be rescaled by one residual standard deviation to ensure that the implied structural 
impulse responses represent responses to one- standard deviation shocks.

Finally, these two approaches may be combined by changing notation and writing the 
model equivalently as

 B0et 5 Uut

with Su 5 IK such that Se 5 B21
0 UUrB21r0 . The two representations above emerge as special 

cases of this representation with the alternative normalizations of B0 5 IK or U 5 IK. The 
advantage of the third representation is that it allows one to relax the assumption that 
either U 5 IK or B0 5 IK, which sometimes facilitates the exposition of the identifying 
assumptions. For example, Blanchard and Perotti (2002) use this representation with the 
diagonal elements of U normalized to unity, but neither U nor B0 being diagonal.

2.1 Recursively Identified Models

One popular way of disentangling the structural innovations ut from the reduced- form 
innovations et is to ‘orthogonalize’ the reduced- form errors. Orthogonalization here 
means making the errors uncorrelated. Mechanically, this can be accomplished as 
follows. Define the lower- triangular K 3 K  matrix P with positive main diagonal such 
that PPr 5 Se. Taking such a Cholesky decomposition of the variance–covariance matrix 
is the matrix analogue of computing the square root of a scalar variance.2

It follows immediately from the condition Se 5 B21
0 B21r0  that B21

0 5 P is one pos-
sible solution to the problem of how to recover ut. Since P is lower triangular, it has 
K(K 1 1) /2 free parameters, so all parameters of P are exactly identified. As a result, 
the order condition for identification is satisfied. Given the lower triangular structure of 
P, there is no need to use numerical solution methods in this case, but if we did impose 
the recursive exclusion restrictions on B21

0  and solved numerically for the remaining 
parameters, the results would be identical to the results from the Cholesky decomposi-
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tion. The advantage of the numerical approach discussed earlier is that it allows for 
alternative non- recursive identification schemes and for restrictions other than exclusion 
restrictions.

It is important to keep in mind that the ‘orthogonalization’ of the reduced- form resid-
uals by applying a Cholesky decomposition is appropriate only if the recursive structure 
embodied in P can be justified on economic grounds.

● The distinguishing feature of ‘orthogonalization’ by Cholesky decomposition is 
that the resulting structural model is recursive (conditional on lagged variables). 
This means that we impose a particular causal chain rather than learning about 
causal relationships from the data. In essence, we solve the problem of which 
structural shock causes the variation in et by imposing a particular solution. This 
mechanical solution does not make economic sense, however, without a plausible 
economic interpretation for the recursive ordering.

● The neutral and scientific- sounding term ‘orthogonalization’ hides the fact that 
we are making strong identifying assumptions about the error term of the VAR 
model. In the early 1980s, many users of VARs did not understand this point 
and thought the data alone would speak for themselves. Such ‘atheoretical’ VAR 
models were soon severely criticized (see, for example, Cooley and LeRoy, 1985). 
This critique spurred the development of structural VAR models that impose 
non- recursive identifying restrictions (for example, Sims, 1986; Bernanke, 1986; 
Blanchard and Watson, 1986). It also prompted more careful attention to the eco-
nomic underpinnings of recursive models. It was shown that in special cases the 
recursive model can be given a structural or semistructural interpretation.

●  P is not unique. There is a different solution for P for each ordering of the K  vari-
ables in the VAR model. It is sometimes argued that one should conduct sensitivity 
analysis based on alternative orderings of the K  variables. This proposal makes no 
sense for three reasons:

 1.  On the one hand, we claim to be sure that the ordering is recursive, yet on the 
other hand we have no clue in what order the variables are recursive. This 
approach is not credible.

 2.  For a small VAR model with K 5 4, for example, there are 4 # 3 # 2 # 1 5 24 
permutations of the ordering. Nobody seriously tries out this many model 
specifications, nor would there be much hope that the results would be the 
same in each case, unless the reduced- form errors are uncorrelated, which can 
be checked by inspecting the off- diagonal elements of Se.

 3.  Even if there were no difference across these 24 specifications, this would only 
prove that the results are robust among all recursive orderings, but there is no 
reason for the model to be recursive in the first place. This point is best illus-
trated by example. Let pt denote the price and qt the quantity of a good. Price 
and quantity are driven by structural demand shocks ud

t  and supply shocks us
t . 

All dynamics are suppressed for expository purposes such that yt 5 et:

 apt

qt
b 5 c 1 20.5

0.5 1
d aud

t

us
t
b.

 et  B21
0

 ut
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   In this example, by construction Se is diagonal and the observable data are 
uncorrelated such that all recursive orderings are identical. This outcome 
obviously does not imply that any of the recursive orderings are valid. In fact, 
B21

0  differs from

 P 5 chol(Se) 5 chol a c1.25 0
0 1.25

d b 5 c1.118 0
0 1.118

d
   by construction. This point holds more generally. Let et 5 B21

0 ut denote the 
true structural relationship and et 5 Puchol

t  be the Cholesky relationship. 
Then

 uchol
t 5 P21et 5 P21 (B21

0 ut) 2 ut,

  so the Cholesky decomposition will fail to identify the true structural shocks.

2.2 Sources of Identifying Restrictions

The preceding subsection stressed that, unless we can come up with a convincing ration-
ale for a particular recursive ordering, the resulting VAR impulse responses, forecast 
error variance decompositions, and historical decompositions are economically mean-
ingless. This raises the question of where the economic rationale of identifying restric-
tions on B21

0  or B0 comes from. There are a number of potential sources. One is economic 
theory:

● In some cases, we may wish to impose the structure provided by a specific eco-
nomic model, although in that case the empirical results will only be as credible as 
the underlying model. A case in point is Blanchard’s (1989) structural VAR analy-
sis of the traditional Keynesian model involving an aggregate demand equation, 
Okun’s law, a price- setting equation, the Phillips curve and a monetary policy 
rule.

● Another strategy is to specify an encompassing model that includes as special 
cases various alternative structural models implied by different economic models, 
allowing tests for overidentifying restrictions. The advantage of this approach is 
that it avoids conditioning on one specific model that may be incorrect. Of course, 
this type of structural VAR model no longer admits a Cholesky representation 
and must be estimated by numerical methods using the Generalized Method of 
Moments (GMM). This strategy has been used, for example, by Bernanke and 
Mihov (1998) who model the market for bank reserves as part of a study of US 
monetary policy. Within a semistructural VAR framework they jointly analyze 
a vector of policy indicators rather than a single indicator (such as the federal 
funds rate). Their approach allows for changes in the operating procedures of the 
Federal Reserve over time.

Often there is no fully developed theoretical model available, in which case identification 
may be achieved by using extraneous information or by using selective insights from 
economic theory:
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● Information delays: information may not be available instantaneously because 
data are released only infrequently, allowing us to rule out instantaneous feed-
back. This approach has been exploited in Inoue et al. (2009), for example.

● Physical constraints: for example, a firm may decide to invest, but it takes time for 
that decision to be made and for the new equipment to be installed, so measured 
physical investment responds with a delay.

● Institutional knowledge: for example, we may have information about the inabil-
ity of suppliers to respond to demand shocks in the short run due to adjustment 
costs, which amounts to imposing a vertical slope on the supply curve (see, for 
example, Kilian, 2009). Similarly, Davis and Kilian (2011) exploit the fact that 
gasoline taxes (excluding ad valorem taxes) do not respond instantaneously to the 
state of the economy because lawmakers move at a slow pace. This feature of the 
data allows them to treat gasoline taxes as predetermined with respect to domes-
tic macroeconomic aggregates. Moreover, given that consumers are effectively 
unable to store gasoline, anticipation of gasoline tax changes can be ignored in this 
setting.

● Assumptions about market structure: another common identifying assumption 
in empirical work is that there is no feedback from a small open economy to the 
rest of the world. This identifying assumption has been used, for example, to 
motivate treating US interest rates as contemporaneously exogenous with respect 
to the macroeconomic aggregates of small open economies such as Canada (see, 
for example, Cushman and Zha, 1997). This argument is not without limitations, 
however. Even if a small open economy is a price taker in world markets, both 
small and large economies may be driven by a common factor invalidating this 
exclusion restriction.

● Another possible source of identifying information is homogeneity restrictions 
on demand functions. For example, Galí (1992) imposes short- run homogeneity 
in the demand for money when assuming that the demand for real balances is 
not affected by contemporaneous changes in prices (given the nominal rate and 
output). This assumption amounts to assuming away costs of adjusting nominal 
money holdings. Similar homogeneity restrictions have also been used in Bernanke 
(1986).

● Extraneous parameter estimates: when impact responses (or their ratio) can be 
viewed as elasticities, it may be possible to impose values for those elasticities 
based on extraneous information from other studies. This approach has been 
used by Blanchard and Perotti (2002), for example. Similarly, Blanchard and 
Watson (1986) impose non- zero values for some structural parameters in B0 based 
on extraneous information. If the parameter value cannot be pinned down with 
any degree of reliability, yet another possibility is to explore a grid of possible 
structural parameters values, as in Abraham and Haltiwanger (1995). A similar 
approach has also been used in Kilian (2010) and Davis and Kilian (2011) in an 
effort to assess the robustness of their baseline results. In a different context, Todd 
(1990) interprets Sims’ (1980b) recursive VAR model of monetary policy in terms 
of alternative assumptions about the slopes of money demand and money supply 
curves.

● High- frequency data: in rare cases, it may be possible to test exclusion restrictions 
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more directly. For example, Kilian and Vega (2011) use daily data on US macro-
economic news to formally test the identifying assumption of no feedback within 
the month from US macroeconomic aggregates to the price of oil. Their work 
lends credence to exclusion restrictions in monthly VAR models ruling out instan-
taneous feedback from domestic macroeconomic aggregates to the price of oil.

It is fair to say that coming up with a set of credible short- run identifying restrictions 
is difficult. Whether a particular exclusion restriction is convincing, often depends on the 
data frequency, and in many cases there are not enough credible exclusion restrictions to 
achieve identification. This fact has stimulated interest in the alternative identification 
methods discussed in sections 3, 4 and 5.

2.3 Examples of Recursively Identified Models

2.3.1 Example 1: a simple macroeconomic model
Let yt 5 (pt, gdpt, mt, it) where pt is the log price level, gdpt is log real GDP, mt the log of a 
monetary aggregate such as M1, and it the federal funds rate. The data are quarterly and 
the proposed identification is recursive such that:

 ± ep
t

egdp
t

em
t

ei
t

≤ 5 ≥ a 0 0 0
b c 0 0
d e f 0
g h i j

¥ ± u1
t

u2
t

u3
t

u4
t

≤ .

Note that each line can be viewed as an equation. This may be seen by multiplying 
through each term on the right- hand side. Each reduced- form shock is a weighted average 
of selected structural shocks. The letters a, b, . . ., j represent the weights attached to the 
structural shocks. For example, the first equation is ep

t 5 au1
t 1 0 1 0 1 0, the second 

reads egdp
t 5 bu1

t 1 cu2
t 1 0 1 0, and so on.

One way of rationalizing this identification would be to interpret the first two equa-
tions as an aggregate supply and aggregate demand model with a horizontal AS curve 
and downward- sloping AD curve. u1

t  moves the price level and real output, so it must 
involve a shift of the AS curve. u2

t  moves real output only, so it must represent a shift 
of the AD curve. The third equation could be interpreted as a money demand equation 
derived from the quantity equation: MV 5 PY, where V  stands for velocity and Y  for 
real income. Hence, u3

t  can be interpreted as a velocity shock or money demand shock, if 
we take real GDP to represent real income. The last equation could represent a monetary 
policy reaction function. The Federal Reserve systematically responds to ep

t , egdp
t , and em

t  
(as well as lags of all variables). Any change in the interest rate not accounted for by 
this response, would be an exogenous monetary policy (or money supply) shock. Such 
policy shocks could arise from changes in the composition of the Federal Open Market 
Committee, for example, or may reflect reactions to idiosyncratic events such as 9/11 or 
the housing crisis that are not captured by standard policy rules.

It is easy to spot the limitations of this model. For example, why does money demand 
not respond to the interest rate within a quarter? How plausible is the horizontal supply 
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curve? These are the types of questions that one must ask when assessing the plausibil-
ity of a structural VAR model. This example also illustrates that theory typically is not 
sufficient for identification, even if we are willing to condition on a particular theoreti-
cal model. For example, if the AS curve were vertical, but the AD curve horizontal by 
assumption, the first two equations of the structural model above would have to be mod-
ified. More generally, no recursive structure would be able to accommodate a theoretical 
model in which the AS and AD curves are neither horizontal nor vertical, but upward 
and downward sloping. This point highlights the difficulty of specifying fully structural 
models of the macroeconomy in recursive form and explains why such models have been 
largely abandoned.

2.3.2 Example 2: a model of the global market for crude oil
The second example is a structural VAR model of the global market for crude oil based 
on Kilian (2009). Let yt 5 (Dprodt, reat, rpoilt) where Dprodt denotes the percentage 
change in world crude oil production, reat is a suitably detrended measure of the log of 
global real economic activity, and rpoilt is the log of the real price of oil. The data are 
monthly.

 ° eDprod
t

erea
t

erpoil
t

¢ 5 £ a 0 0
b c 0
d e f

§ ° uflow supply
t

u flow demand
t

uother oil demand
t

¢ .

This model of the global market for crude oil embodies a vertical oil supply curve and 
a downward- sloping oil demand curve (conditional on lags of all variables). There are 
two demand shocks that are separately identified by the delay restriction that other oil- 
demand shocks raise the real price of oil, but without slowing down global real economic 
activity within the same month.

One might question whether one could have imposed an overidentifying restriction 
of the form b 5 0. In other words, one would expect that higher oil prices triggered by 
unanticipated oil supply disruptions would not slow down global real activity within the 
month any more or less than other oil demand shocks. It turns out that the estimate of b 
is essentially zero, even without imposing that restriction, making this point moot. One 
also could question whether the short- run supply curve is truly vertical. Defending this 
assumption requires institutional knowledge of oil markets or extraneous econometric 
evidence. For example, Kellogg (2011) provides independent microeconomic evidence 
from Texan oil wells that oil producers are unresponsive to demand shocks in the short 
run even in competitive environments.

2.3.3 Example 3: models of the transmission of energy price shocks
The preceding two examples are recursively identified VAR models that are fully identi-
fied in that each structural shock is identified. Often we do not have enough restrictions 
to fully identify a VAR model. This has prompted the development of semistructural 
or partially identified VAR models. The idea of semistructural models is that in some 
cases we may be satisfied if we can identify a subset of the structural shocks. Often we 
are interested in one structural shock only. An example are models of the transmission 
of energy price shocks in which the price of energy is predetermined with respect to all 
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domestic macroeconomic aggregates, consistent with the empirical evidence provided in 
Kilian and Vega (2011). For example, Edelstein and Kilian (2009) utilized a recursively 
identified monthly bivariate model similar to the model:

 aeDp
t

eDc
t
b 5 ca 0

b c
d au1

t

u2
t
b,

where Dp denotes the percentage change in US energy prices and Dc denotes the per-
centage growth in real US consumption. The model is semistructural in that only the 
innovation in the price of energy, u1

t , is explicitly identified. The u2
t  term, in contrast, is a 

conglomerate of other structural shocks that are not individually identified.

2.3.4 Example 4: semistructural models of monetary policy
Another situation in which we may be interested in identifying one structural shock only 
are VAR studies of monetary policy shocks. The simplest example is a quarterly model 
for yt 5 (Dgdpt,pt, it) where Dgdpt denotes US real GDP growth, pt the inflation rate, 
and it the federal funds rate. We use the Cholesky decomposition to compute

 ° eDgdp
t

ep
t

ei
t

¢ 5 £ a 0 0
b c 0
d e f

§ °u1
t

u2
t

u3
t

¢ .

The last equation of the model is interpreted as a linear monetary policy reaction func-
tion. The interest rate is the policy instrument. In setting ei

t, the Federal Reserve responds 
endogenously to contemporaneous movements in Dgdp and p. The residual left after 
accounting for all endogenous variation in the interest rate, u3

t , is interpreted as an exog-
enous monetary policy shock. This policy shock reflects deviations from the expected (or 
average) policy response that may arise, for example, from changes in the composition of 
the Federal Open Market Committee or from discretionary policy decisions in response 
to extraordinary events. The policy shock, u3

t , is the only structural shock of interest in 
this model. No attempt is made to identify the structural shocks u1

t  and u2
t .3

Models of this type have been commonly used in empirical work. The policy vari-
able in semistructural VAR models need not be the short- term interest rate. A similar 
approach to identification may be followed with alternative policy indicators such as 
non- borrowed reserves (see, for example, Strongin, 1995). Regardless of the details of the 
specification, this identification scheme requires that the shock of interest be ordered at 
(or near) the bottom of the recursive ordering. Semistructural VAR models of monetary 
policy have five important weaknesses.

First, the model does not allow for feedback within a given quarter from u3
t  to Dgdpt 

and pt. This seems implausible at least at quarterly frequency. Because Dgdpt is not avail-
able at higher frequency, there is little we can do about this problem.4 It might seem 
that the same identification scheme would be more credible if we replaced Dgdpt by the 
growth rate of industrial production and estimated the model at monthly frequency. This 
is not the case. One problem is that industrial output accounts for only a fraction of total 
output. Moreover, real GDP is a measure of value added, whereas industrial output is 
a gross output measure. Finally, it is well known that the Federal Reserve is concerned 
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with broader measures of real activity, making a policy reaction function based on indus-
trial production growth economically less plausible and hence less interesting. In this 
regard, a better measure of monthly US real activity would be the Chicago Fed’s monthly 
principal components index of US real activity (CFNAI). Yet another approach in the 
literature has been to interpolate quarterly real GDP data based on the fluctuations in 
monthly industrial production data and other monthly indicators. Such ad hoc methods 
not only suffer from the same deficiencies as the use of industrial production data, but 
they are likely to distort the structural impulse responses to be estimated.

Second, the Federal Reserve may respond systematically to more variables than 
just Dgdpt and pt. Examples are housing prices, stock prices, or industrial commodity 
prices. To the extent that we have omitted these variables from the model, we will obtain 
inconsistent estimates of d and e, and incorrect measures of the monetary policy shock 
u3

t . In essence, the problem is that the policy shocks must be exogenous to allow us to 
learn about the effects of monetary policy shocks. Thus, it is common to enrich the set 
of variables ordered above the interest rate relative to this simple benchmark model and 
estimate much larger VAR systems (see, for example, Bernanke and Blinder, 1992; Sims, 
1992; Christiano et al., 1999).

Adding more variables, however, invites overfitting and undermines the credibility of 
the VAR estimates. Standard VAR models cannot handle more than half a dozen vari-
ables, given typical sample sizes. One potential remedy of this problem is to work with 
factor augmented VAR (FAVAR) models, as in Bernanke and Boivin (2003), Bernanke 
et al. (2005), Stock and Watson (2005) or Forni et al. (2009). Alternatively, one can 
work with large- scale Bayesian VAR models in which the cross- sectional dimension 
K  is allowed to be larger than the time dimension T, as in Banbura et al. (2010). These 
large- scale models are designed to incorporate a much richer information structure 
than conventional semistructural VAR models of monetary policy. FAVAR models 
and large- scale BVAR models have three distinct advantages over conventional small 
to medium sized VAR models. First, they allow for the fact that central bankers form 
expectations about domestic real activity and inflation based on hundreds of economic 
and financial time series rather than a handful of time series. Second, they allow for the 
fact that economic concepts such as domestic economic activity and inflation may not 
be well represented by a single observable time series. Third, they allow the user to con-
struct the responses of many variables not included in conventional VAR models. There 
is evidence that allowing for richer information sets in specifying VAR models improves 
the plausibility of the estimated responses. It may mitigate the price puzzle, for example.5

Third, the identification of the VAR model hinges on the monetary policy reaction 
function being stable over time. To the extent that policymakers have at times changed 
the weights attached to their inflation and output objectives or the policy instrument, it 
becomes essential to split the sample in estimating the VAR model. The resulting shorter 
sample in turn makes it more difficult to include many variables in the model due to the 
lack of degrees of freedom. It also complicates statistical inference.

Fourth, the VAR model is linear. It does not allow for a lower bound on the interest 
rate, for example, making this model unsuitable for studying the quantitative easing of 
the Federal Reserve Board in recent years.

Fifth, most VAR models of monetary policy ignore the real- time nature of the policy 
decision problem. Not all data relevant to policymakers are available without delay and 
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when data become available, they tend to be preliminary and subject to further revisions. 
To the extent that monetary policy shocks are defined as the residual of the policy reac-
tion function, a misspecification of the policymaker’s information set will cause biases in 
the estimated policy shocks. Bernanke and Boivin (2003) is an example of a study that 
explores the role of real- time data limitations in semistructural VAR models. Their con-
clusion is that 2 at least for their sample period 2 the distinction between real- time data 
and ex- post revised data is of limited importance.

Finally, it is useful to reiterate that the thought experiment contemplated in structural 
VAR models is an unanticipated monetary policy shock within an existing monetary 
policy rule. This exercise is distinct from that of changing the monetary policy rule (as 
happened in 1979 under Paul Volcker or in 2008 following the quantitative easing of 
the Federal Reserve Board). The latter question is of independent interest, but much 
harder to answer. The role of systematic monetary policy has been stressed in Leeper et 
al. (1996) and Bernanke et al. (1997), for example. Econometric evaluations of the role 
of systematic monetary policy, however, remain controversial and easily run afoul of the 
Lucas critique (see, for example, Kilian and Lewis (2011) and the references therein).

2.3.5 Example 5: the permanent income model of consumption
Cochrane (1994) proposes another application of the recursive model. His interest is not in 
identifying demand or supply shocks, but in decomposing permanent and transitory shocks 
within the framework of the permanent income model of consumption. The standard per-
manent income model implies that log real consumption (ct) and log real income (gnpt) are 
cointegrated such that the consumption–income ratio is stationary. Cochrane imposes this 
cointegration restriction on the reduced- form VAR model for (ct, gnpt). The permanent 
income model also predicts that if income changes unexpectedly without a corresponding 
change in consumption, then consumers will regard the shock to income as having purely 
transitory effects on income. Cochrane identifies such a shock by ordering innovations to 
consumption first in the Cholesky decomposition of the reduced- form error–covariance 
matrix. This decomposition allows him to separate permanent from transitory shocks and 
to quantify their importance for the variability of consumption and income:

 aec
t

egnp
t
b 5 ca 0

b c
d aupermanent

t

utransitory
t

b.

Note that by construction consumption only depends on the permanent shock, whereas 
income in addition depends on the transitory shock.6 Cochrane verifies that the response 
of income to the transitory shock is indeed rapidly mean- reverting, whereas the response 
of income to a shock that moves both consumption and income on impact has long- 
lasting effects on income, as expected from a permanent shock. Moreover, much of 
the consumption response to a permanent shock is immediate, whereas the response of 
consumption to a transitory shock is close to zero at all horizons.7 Unlike in our earlier 
examples, this methodology is silent about the economic interpretation of permanent 
and transitory shocks. There is no way to determine from the data whether these shocks 
refer to supply shocks or demand shocks, for example, or to preference shocks, policy 
shocks, or technology shocks. In general, the transitory and permanent shocks will be a 
mixture of these deeper economic shocks.
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2.4 Examples of Non- recursively Identified Models

Not all structural VAR models have a recursive structure. Increasing skepticism toward 
atheoretical recursively identified models in the mid- 1980s stimulated a series of studies 
proposing explicitly structural models identified by non- recursive short- run restrictions 
(see, for example, Bernanke, 1986; Sims, 1986; Blanchard and Watson, 1986). As in 
the recursive model, the identifying restrictions on B0 or B21

0  generate moment condi-
tions that can be used to estimate the unknown coefficients in B0. Efficient estimation 
of B0 in these models can be cast in a GMM framework in which, in addition to the 
predetermined variables in the reduced form, the estimated structural errors are used as 
instruments in the equations with which the structural errors are assumed uncorrelated. 
In general, solving the moment conditions for the unknown structural parameters will 
require iteration, but in some cases the GMM estimator can be constructed using tra-
ditional instrumental- variable techniques (see, for example, Watson, 1994; Pagan and 
Robertson, 1998). An alternative commonly used approach is to model the error distri-
bution as Gaussian and to estimate the structural model by full information maximum 
likelihood methods. This approach involves the maximization.of the concentrated likeli-
hood with respect to the structural model parameters subject to the identifying restric-
tions (see, for example, Lütkepohl, 2005).

2.4.1 Example 6: fiscal policy shocks
Blanchard and Perotti (2002) introduce a model of US fiscal policy that deviates from 
the usual recursive structure. They propose a quarterly model of the US economy for 
yt 5 (taxt, govt, gdpt), where taxt refers to real taxes, govt to real government spending, 
and gdpt to real GDP. All variables are in logs. Ignoring lags, the model can be written as

 ° etax
t

egov
t

egdp
t

¢ 5 °aegdp
t 1 bugov

t 1 utax
t

cegdp
t 1 dutax

t 1 ugov
t

eetax
t 1 fegov

t 1 ugdp
t

¢
Blanchard and Perotti first provide institutional arguments for the delay restriction 

c 5 0 which rules out automatic feedback from economic activity to government spend-
ing within the quarter. They then show that the within- quarter response of taxes to 
economic activity, a, can be derived on the basis of extraneous tax elasticity estimates 
and can be shown to equal a 5 2.08. The parameters e and f  are left unrestricted. The 
potential endogeneity between taxes and spending is dealt with by imposing either d 5 0 
or b 5 0. In the latter case, for example, we obtain

 ° etax
t

egov
t

egdp
t

¢ 5 ° 2.08egdp
t 1 utax

t

dutax
t 1 ugov

t

eetax
t 1 fegov

t 1 ugdp
t

¢
This system can easily be solved numerically imposing the two exclusion restrictions 

and the equality restriction on b when constructing the second moments. Note that 
Blanchard and Perotti effectively treat the first two innovations as mutually exogenous 
without imposing the overidentifying restriction on d. An obvious concern is that 
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the model does not allow for the anticipation of fiscal shocks. Blanchard and Perotti 
discuss how this concern may be addressed by changing the timing assumptions and 
adding further identifying restrictions, if we are willing to postulate a specific form of 
foresight. Another concern is that the model does not condition on the debt structure 
(see, for example, Chung and Leeper, 2007). Allowing the debt structure to matter 
would result in a non- linear dynamic model not contained within the class of VAR 
models.

2.4.2 Example 7: an alternative simple macroeconomic model
Keating (1992) discusses a variation of the simple macroeconomic model we discussed 
earlier that does not impose a recursive structure and involves a different economic 
interpretation:

 ± ep
t

egdp
t

ei
t

em
t

≤ 5 ± uAS
t

aep
t 1 bei

t 1 cem
t 1 uIS

t

dem
t 1 uMS

t

e(egdp
t 1 ep

t ) 1 fei
t 1 uMD

t

≤
The first equation again represents a horizontal AS curve, but the second equation 

now can be interpreted as an IS curve, allowing real output to respond to all other model 
variables. The third equation represents a simple money supply function, according to 
which the central bank adjusts the rate of interest in relation to the money stock, and 
the fourth equation is a money demand function in which short- run money holdings rise 
in proportion to nominal income, yielding the final restriction required for exact iden-
tification. Unlike in the earlier example, money holdings are allowed to depend on the 
interest rate as well. Clearly, this model specification embodies a very different view of 
what monetary policymakers do than more recently developed structural VAR models 
motivated by the literature on Taylor rules (see Taylor, 1993).

2.4.3 Limitations of non- recursively identified models
Non- recursively identified VAR models more closely resemble traditional simultane-
ous equation models. This means that they also are susceptible to the usual weaknesses 
of such models including the difficulty of finding strong instruments in identifying 
causal effects. A case in point is the literature on the liquidity effect. The liquidity 
effect refers to the short- run negative response of interest rates to an unanticipated 
monetary expansion. Although the presence of such an effect has been suspected 
for a long time, it has only been in the 1990s that structural VAR studies emerged 
concluding that there is a liquidity effect. Whereas the evidence of a liquidity effect 
is at best mixed in recursively identified models of monetary policy, empirical VAR 
studies based on non- recursive simultaneous equation systems have reliably produced 
a strong liquidity effect. This evidence might seem to suggest that more explicitly 
structural models are inherently superior to earlier semistructural models of monetary 
policy, but Pagan and Robertson (1998) show that the instruments underlying the 
three most important non- recursive studies of the liquidity effect appear weak in the 
econometric sense, calling into question any inferences made about the magnitude of 
the liquidity effect.
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3 IDENTIFICATION BY LONG- RUN RESTRICTIONS

One alternative idea has been to impose restrictions on the long- run response of vari-
ables to shocks. In the presence of unit roots in some variables but not in others, this 
may allow us to identify at least some shocks. The promise of this alternative approach 
to identification is that it will allow us to dispense with the controversy about what the 
right short- run restrictions are and to focus on long- run properties of models that most 
economists can more easily agree on. For example, it has been observed that most econo-
mists agree that demand shocks such as monetary policy shocks are neutral in the long 
run, whereas productivity shocks are not. This idea was first introduced in the context of 
a bivariate model in Blanchard and Quah (1989).

Consider the structural VAR representation B(L)yt 5 ut and the corresponding 
structural vector moving average (VMA) representation yt 5 B(L)21ut 5 Q(L)ut. Also 
consider the reduced- form VAR model A(L)yt 5 et and the corresponding reduced- form 
VMA representation yt 5 A(L)21et 5 F(L)et.. By definition

 et 5 B21
0 ut

 Se 5 B21
0 B21r0

where we imposed Su 5 IK. Recall that

 A(L) 5 B21
0 B(L)

 B21
0 5 A(L)B(L)21

so for L 5 1

 B21
0 5 A(1)B(1)21

and hence

 Se 5 B21
0 B21r0

 5 [A(1)B(1)21 ] [A(1)B(1)21 ]r

          [B(1)21 ]rA (1)r

Premultiply both sides by A(1)21 and post- multiply both sides by (A(1)21)r 5 [A(1)r ]21:

 A(1)21Se (A(1)21)r 5 A(1)21A(1)B(1)21 [B(1)21 ]rA(1)r [A(1)r ]21

 A(1)21Se (A(1)21)r 5 [B(1)21 ] [B(1)21 ]r

 F(1)SeF(1)r 5 Q(1)Q(1)r

 vec(F(1)SeF(1)r) 5 vec(Q(1)Q(1)r)

HASHIMZADE 9780857931016 CHS. 22-23 (M3110).indd   529HASHIMZADE 9780857931016 CHS. 22-23 (M3110).indd   529 01/07/2013   10:3101/07/2013   10:31



530  Handbook of research methods and applications in empirical macroeconomics

The key observation is that the expression on the left- hand side (LHS) can be esti-
mated from the data. Both Ŝe and the cumulative sum F̂(1) 5 Â(1)21 are observable 
based on the reduced- form model, given that A(1) ; I 2 A1 2 . . . 2 Ap, so if we put 
enough restrictions on Q(1) , we can uniquely pin down the remaining elements of Q(1)  
using numerical methods. Because the LHS represents a variance–covariance matrix, as 
in the case of short- run identification, we need K(K 2 1) /2 restrictions on Q(1)  to satisfy 
the order condition for exact identification. If the exclusion restrictions on Q(1)  are 
recursive, it suffices to apply a lower triangular Cholesky decomposition to F̂(1)ŜeF̂(1)r.

What does it mean to impose restrictions on Q(1)? Observe that Q(1) 5 B(1)21 rep-
resents the sum of the structural impulse response coefficients. Its elements measure the 
long- run cumulative effects of each structural shock j on each variable i, so, for an I(1) 
variable entering the VAR model in log differences,

 Qij(1) 5 0

means that the log- level of this variable i is not affected in the long run by structural 
innovation j. Imposing zero restrictions on selected elements of Q(1)  allows us to dif-
ferentiate between structural shocks that affect the log- level of an I(1) variable in the 
long run and shocks that do not. Clearly, it does not make sense to put any such restric-
tions on VAR variables that are I(0) because, for I(0) variables expressed in log- levels, 
Qij(1) 2 0 4j by construction.

Given a sufficient number of exclusion restrictions on the elements of Q(1)  allows us 
to solve for the remaining elements of Q(1) , which provides an estimate of

 B21
0 5 A(1)Q(1) ,

where A(1)  can be consistently estimated. Once we have estimated B21
0 , we can proceed 

as in the case of short- run identifying restrictions. Although we do not consider this case, 
note that it would be straightforward to combine short- run and long- run identifying 
restrictions in estimating B21

0 , when using numerical solution methods. A good example 
is Galí (1992).

3.1 Examples of Models Identified by Long- run Restrictions

3.1.1 Example 8: a model of aggregate demand and aggregate supply
The first example is the original analysis in Blanchard and Quah (1989). Let urt denote 
the unemployment rate and gdpt log real GDP. Consider

 yt 5 aDgdpt

urt
b

where by assumption yt , I(0) , but gdpt , I(1) . In principle, any other stationary 
variable such as the capacity utilization rate would have done just as well as the second 
element of yt. After postulating a diagonal Su matrix, we obtain:

 B(1)yt 5 ut
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 c 1 0
2b1 1

d aDgdpt

urt
b 5 auAS

t

uAD
t
b

 aDgdpt

urt
b 5 c 1 0

2a1 1
d 21auAS

t

uAD
t
b

 yt 5 Q(1)ut

The t- subscripts may be dropped because all relationships are long- run relationships. 
Equivalently, we could have imposed Su 5 I2. In that case

 Q(1) 5 cq11 (1) 0
q21 (1) q22 (1) d 5 chol (F(1)SeF(1)r)

which can also be solved using the Cholesky decomposition instead of numerical 
methods. Either way the identifying assumption is that aggregate demand shocks do 
not have long- run level effects on real GDP, whereas aggregate supply shocks do. Most 
applications of long- run restrictions involve a close variation on the theme of Blanchard 
and Quah (1989), in which the aggregate supply shock is interpreted as a permanent 
aggregate productivity shock. The analysis in Galí (1999) is a good example. Even if 
more variables are included in VAR models based on long- run restrictions, the focus 
typically is on identifying the responses to aggregate productivity shocks only as opposed 
to other structural shocks.8

3.1.2 Example 9: a Keynesian model
The second example is from Keating (1992). The data vector includes real output (gdp), 
the real interest rate (r), real money balances (m 2 p)  and the monetary aggregate (m). 
There are four structural shocks: an aggregate supply shock, an IS shock, a money 
demand shock and a money supply (or monetary policy) shock:

 

gdp 5 uAS

r 5 a1gdp 1 uIS

m 2 p 5 a2gdp 1 a3r 1 uMD

m 5 a4gdp 1 a5r 1 a6 (m 2 p) 1 uMS

which implies

 C(1) 5 ≥ 1 0 0 0
2a1 1 0 0
2a2 2a3 1 0
2a4 2a5 2a6 1

¥21

Although this example is somewhat old- fashioned, it is included as a counterpart to 
the earlier macroeconomic VAR examples based on short- run restrictions. The first 
identifying assumption is that in the long run only AS shocks affect real output. Second, 

HASHIMZADE 9780857931016 CHS. 22-23 (M3110).indd   531HASHIMZADE 9780857931016 CHS. 22-23 (M3110).indd   531 01/07/2013   10:3101/07/2013   10:31



532  Handbook of research methods and applications in empirical macroeconomics

monetary shocks do not affect capital accumulation and hence do not affect the IS curve. 
Third, money supply shocks do not affect real balances in the long run.

3.1.3 Example 10: a model of the neoclassical synthesis
The third example is Shapiro and Watson’s (1988) model of the US economy that 
exploits insights from neoclassical economics about long- run behavior, while allow-
ing for Keynesian explanations of short- run behavior. Unlike the preceding example, 
Shapiro and Watson do not take a stand on the economic model underlying the short- 
run behavior. Let ht denote the log of hours worked, ot the price of oil, gdpt the log of 
real GDP, pt inflation and it the nominal interest rate. Shapiro and Watson decompose 
fluctuations in yt 5 (Dht, Dot, Dgdpt, Dpt, it 2 pt) in terms of labor supply shocks, tech-
nology shocks and two aggregate demand shocks. The first identifying assumption is 
that aggregate demand shocks have no long- run effects on real GDP or hours worked. 
The second identifying assumption is that the long- run labor supply is exogenous, which 
allows Shapiro and Watson to separate the effects of shocks to technology and to labor 
supply. The third identifying assumption is that exogenous oil price shocks have a per-
manent effect on the level of all variables but hours worked. The two aggregate demand 
shocks may be interpreted as goods market (IS) and money market (LM) shocks. No 
effort is made to identify the two aggregate demand shocks separately. The matrix of 
long- run multipliers is

 C(1) 5 Ea 0 0 0 0
0 b 0 0 0
c d e 0 0
f g h i j
k l m n o

U
Note that the structure of C(1)  is not recursive.

3.2 Limitations of Long- run Restrictions

One important limitation of long- run identification schemes is that they require us to 
take a stand on the presence of exact unit roots in the autoregressive lag order polyno-
mial A(L) . This means that this alternative approach is more limited in scope than VAR 
models based on short- run restrictions. In addition, there also are serious concerns about 
the reliability of long- run restrictions:

● One weakness of VAR models identified by long- run restrictions is that they 
require an accurate estimate of the impulse responses at the infinite horizon. This, 
however, is akin to pinning down the dominant autoregressive root of the process. 
We know that it is not possible to estimate accurately the long- run behavior of an 
economic time series from a short time span of data. For that reason one would 
expect such structural VAR models to be unreliable in finite samples. Exactly this 
point was made by Faust and Leeper (1997).

● Second, numerical estimates of the responses in VAR models identified by long- 
run restrictions are identified only up to their sign. This fact matters. For example, 
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researchers have been frequently interested in the sign of the response of real 
output to a productivity shock. Without further identifying assumptions, models 
based on long- run restrictions cannot resolve this question (also see Taylor, 2004).

● A third concern is that the I(0) variable used to aid in the identification often 
itself is quite persistent. The unemployment rate used in Blanchard and Quah’s 
(1989) model is a good example. In this regard, Gospodinov (2010) proves that 
the impulse responses of interest are not consistently estimable under the long- run 
identification scheme when the process for this variable is parameterized as local to 
unity. Likewise, standard confidence intervals are invalid. Gospodinov studies the 
statistical properties of the impulse response estimator in the context of the tech-
nology shock example where labor productivity (or real output) is assumed to have 
an exact unit root, and hours worked (or the unemployment rate) are modeled as 
a near- integrated process. He expresses this estimation problem as an instrumen-
tal variable problem and demonstrates that it is equivalent to a weak- instrument 
problem. His analysis suggests that many applications of this methodology based 
on models with highly persistent I(0) variables have been invalid.

● Fourth, it has been observed that the conclusion from Blanchard–Quah type 
VAR models are sensitive to whether the second variable (for example, unemploy-
ment rate or hours worked) is entered in levels or differences. In related work, 
Gospodinov et al. (2011) clarify the empirical source of the extensive debate on 
the effect of technology shocks on unemployment/hours worked. They find that 
the contrasting conclusions from specifying the second VAR variable in levels as 
opposed to differences can be explained by a small, but important, low frequency 
co- movement between hours worked and labor productivity or output growth, 
which is allowed for in the level specification but is implicitly set to zero in the dif-
ferenced specification. Their theoretical analysis shows that, even when the root of 
hours is very close to 1 and the low frequency co- movement is quite small, assum-
ing away or explicitly removing the low frequency component can have important 
implications for the long- run identifying restrictions, giving rise to biases large 
enough to account for the empirical difference between the two specifications. 
Which specification is right is ultimately an economic question and continues to be 
debated. For a closely related analysis see also Canova et al. (2010).

4 IDENTIFICATION BY SIGN RESTRICTIONS

Skepticism toward traditional identifying assumptions based on short- run or long- run 
exclusion restrictions in recent years has made increasingly popular an alternative class 
of structural VAR models in which structural shocks are identified by restricting the 
sign of the responses of selected model variables to structural shocks. This approach 
was pioneered by Faust (1998), Canova and De Nicolo (2002) and Uhlig (2005) in the 
context of VAR models of monetary policy. For example, Uhlig (2005) postulated that 
an unexpected monetary policy contraction is associated with an increase in the federal 
funds rate, the absence of price increases and the absence of increases in non- borrowed 
reserves for some time following the monetary policy shock. Uhlig showed that 
sign- identified models may produce substantially different results from conventional 
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 structural VAR models. Sign- identified VAR models have become increasingly popular 
in other areas as well and are now part of the mainstream of empirical macroeconomics. 
They have  been used to study fiscal shocks (for example, Canova and Pappa, 2007; 
Mountford and  Uhlig, 2009; Pappa, 2009), technology shocks (for example, Dedola 
and Neri, 2007), and various other shocks in open economies (for example, Canova and 
De Nicolo, 2002; Scholl and Uhlig, 2008), in oil markets (for example, Baumeister and 
Peersman, 2012; Kilian and Murphy, 2012, 2013), and in labor markets (for example, 
Fujita, 2011).

Identification in sign- identified models requires that each identified shock is associ-
ated with a unique sign pattern. Sign restrictions may be static, in which case we simply 
restrict the sign of the coefficients in B21

0 . Unlike traditional exclusion restrictions, such 
sign restrictions can often be motivated directly from economic theory. In addition, one 
may restrict the sign of responses at longer horizons, although the theoretical rationale 
of such restrictions is usually weaker. There is a misperception among many users that 
these models are more general and hence more credible than VAR models based on 
exclusion restrictions. This is not the case. Note that sign- identified models by construc-
tion are more restrictive than standard VAR models in some dimensions and less restric-
tive in others. They do not nest models based on exclusion restrictions.

For a given set of sign restrictions, we proceed as follows. Consider the reduced- form 
VAR model A(L)yt 5 et, where yt is the K- dimensional vector of variables, A(L)  is a 
finite- order autoregressive lag polynomial, and et is the vector of white noise reduced- 
form innovations with variance–covariance matrix Se. Let ut denote the corresponding 
structural VAR model innovations. The construction of structural impulse response 
functions requires an estimate of the K 3 K  matrix B21

0  in et 5 B21
0 ut.

Let P denote the lower triangular Cholesky decomposition that satisfies Se 5 PPr. 
Then B21

0 5 PD also satisfies Se 5 B21
0 B21

0  r for any orthogonal K 3 K  matrix D. Unlike 
P, PD will in general be non- recursive. One can examine a wide range of possible solu-
tions B21

0  by repeatedly drawing at random from the set D of orthogonal matrices D. 
Following Rubio- Ramirez et al. (2010) one constructs the set of admissible models by 
drawing from the set D and discarding candidate solutions for B21

0  that do not satisfy a 
set of a priori sign restrictions on the implied impulse responses functions.

The procedure consists of the following steps:

1. Draw a K 3 K  matrix L of NID(0, 1) random variables. Derive the QR decomposi-
tion of L such that L 5 Q # R and QQ r 5 IK.

2. Let D 5 Q r. Compute impulse responses using the orthogonalization B21
0 5 PD. If 

all implied impulse response functions satisfy the identifying restrictions, retain D. 
Otherwise discard D.

3. Repeat the first two steps a large number of times, recording each D that satisfies the 
restrictions (and the corresponding impulse response functions).

The resulting set B21
0  in conjunction with the reduced- form estimates characterizes the 

set of admissible structural VAR models.
The fraction of the initial candidate models that satisfy the identifying restriction may 

be viewed as an indicator of how informative the identifying restrictions are about the 
structural parameters. Note that a small fraction of admissible models is not an indica-
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tion of how well the identifying restrictions fit the data. There is no way of evaluating 
the validity of identifying restrictions based on the reduced form. All candidate models 
by construction fit the data equally well because they are constructed from the same 
reduced- form model.

4.1 Interpretation

A fundamental problem in interpreting VAR models identified based on sign restric-
tions is that there is not a unique point estimate of the structural impulse response 
functions. Unlike conventional structural VAR models based on short- run restrictions, 
sign- identified VAR models are only set identified. This problem arises because sign 
restrictions represent inequality restrictions. The cost of remaining agnostic about the 
precise values of the structural model parameters is that the data are potentially consist-
ent with a wide range of structural models that are all admissible in that they satisfy the 
identifying restrictions. Without further assumptions there is no way of knowing which 
of these models is most likely. A likely outcome in practice is that the structural impulse 
responses implied by the admissible models will disagree on the substantive economic 
questions of interest.

● One early approach to this problem, exemplified by Faust (1998), has been to focus 
on the admissible model that is most favorable to the hypothesis of interest. This 
allows us to establish the extent to which this hypothesis could potentially explain 
the data. It may also help us to rule out a hypothesized explanation, if none of the 
admissible models supports this hypothesis. The problem is that this approach is 
not informative about whether any one of the admissible models is a more likely 
explanation of the data than some other model. There are examples in which the 
admissible structural models are sufficiently similar to allow unambiguous answers 
to the question of economic interest (see, for example, Kilian and Murphy, 2012, 
2013). Typically, however, the set of admissible models will be equally consistent 
with competing economic hypotheses.

● The standard procedure for characterizing the set of admissible models outlined 
above conditions on a given estimate of the reduced- form VAR model and does 
not account for estimation uncertainty. A method of constructing classical confi-
dence intervals for sign- identified VAR impulse responses has recently been devel-
oped by Moon et al. (2009). Unlike in structural VAR models based on exclusion 
restrictions, the asymptotic distribution of the structural impulse responses is 
non- standard and the construction of these non- standard confidence intervals is 
computationally costly. Moreover, these intervals are not informative about the 
shape of the impulse response functions in that a given confidence set is consistent 
with a wide range of different shapes. This fact makes it difficult to interpret the 
results from an economic point of view.

● The most common approach in the literature has been to rely on Bayesian methods 
of inference. Under the assumption of a conventional Gaussian- inverse Wishart 
prior on the reduced- form parameters and a prior on the rotation matrices con-
ditional on a given reduced- form model estimate, one can construct the posterior 
distribution of the impulse responses by simulating posterior draws from the 

HASHIMZADE 9780857931016 CHS. 22-23 (M3110).indd   535HASHIMZADE 9780857931016 CHS. 22-23 (M3110).indd   535 01/07/2013   10:3101/07/2013   10:31



536  Handbook of research methods and applications in empirical macroeconomics

reduced- form posterior and applying the identification procedure to each reduced- 
form posterior draw. In simulating this posterior distribution, care must be taken 
that the posterior is approximated using a sufficiently large number of reduced- 
form draws as well as a sufficiently large number of rotations for each posterior 
draw from the reduced form.

  Given the posterior distribution of the structural impulse responses we can 
make probability statements about the structural impulse responses. The stand-
ard approach in the literature for many years has been to report the vector of 
pointwise posterior medians of the structural impulse responses as a measure of 
the central tendency of the impulse response functions. This approach suffers 
from two distinct shortcomings. First, the vector of pointwise posterior median 
responses (often referred to as the median response function) will not correspond 
to the response function of any of the admissible models, unless the pointwise pos-
terior medians of all impulse response coefficients in the VAR system correspond 
to the same structural model, which is highly unlikely a priori. Thus, the median 
response function lacks a structural economic interpretation (see, for example, Fry 
and Pagan, 2011). Second, median response functions are not a valid statistical 
summary of the set of admissible impulse response functions. It is well known that 
the vector of medians is not the median of a vector. In fact, the median of a vector- 
valued random variable does not exist, rendering the vector of pointwise medians 
inappropriate as a statistical measure of the central tendency of the impulse 
response functions. This means that even if there were an admissible structural 
model with the same impulse response function as the median response function, 
there would be no compelling reason to focus on this model in interpreting the evi-
dence. In fact, it has been shown that posterior median response functions may be 
quite misleading about the most likely response dynamics in sign- identified models 
(see, for example, Kilian and Murphy, 2012; Inoue and Kilian, 2013).

● A solution to this problem has recently been proposed in Inoue and Kilian (2013) 
who show how to characterize the most likely admissible model(s) within the set 
of structural VAR models that satisfy the sign restrictions. The most likely struc-
tural model can be computed from the posterior mode of the joint distribution 
of admissible models both in the fully identified and in the partially identified 
case. The resulting set of structural response functions is well defined from an 
economic and a statistical point of view. Inoue and Kilian also propose a highest- 
posterior density credible set that characterizes the joint uncertainty about the set 
of admissible models. Unlike conventional posterior error bands or confidence 
bands for sign- identified VAR models, the implied credible sets for the structural 
response functions characterize the full uncertainty about the structural response 
functions.

● The reason that classical estimation methods are inherently uninformative about 
which of the admissible structural models is most likely is that the likelihood is flat 
with respect to the choice of rotation matrix. An obvious question is how Bayesian 
methods are able to overcome this problem. The answer is that they rely on a 
prior distribution over the set D. This prior is not based on economic information, 
however, and there is no way for the data to overrule this prior even asymptotically 
because the likelihood does not depend on D. It can be shown that the posterior 
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distribution of the VAR impulse responses depends on the prior for D as well as 
the prior for the reduced- form parameters and the likelihood. An open question 
that is the subject of ongoing research is to what extent the posterior distribution 
of the impulse responses of sign- identified VAR models depends on the ad hoc 
prior for the rotation matrices, as opposed to other aspects of the prior or the data.

4.2 Extensions

Since the introduction of VAR models based on sign restrictions several researchers 
have made proposals to facilitate the interpretation of a set of admissible structural 
impulse response functions. Broadly speaking, there are two approaches. One approach 
involves the use of a penalty function to narrow down the set of admissible models to 
a singleton (see, for example, Uhlig, 2005). For example, Francis et al. (2010) identify 
a technology shock as that shock which satisfies sign restrictions and maximizes the 
forecast- error variance share in labor productivity at a finite horizon. Faust (1998) 
appeals to an analogous argument regarding the effects of monetary policy shocks 
on real output. Penalty functions help in assessing worst case (or best case) scenarios, 
based on the set of admissible models, but the results are best thought of as providing 
evidence that some outcome is possible rather than that it is true or that it is the most 
likely outcome.

An alternative approach has been to narrow down the set of admissible responses 
by imposing additional restrictions. The idea is to reduce the set of admissible models 
to a small number of admissible models that are easier to interpret and, ideally, have 
similar impulse responses. For example, Canova and De Nicolo (2002) and Canova 
and Paustian (2011) propose to reduce the number of admissible solutions by imposing 
additional structure in the form of sign restrictions on dynamic cross- correlations. They 
motivate these restrictions based on properties of DSGE models and show that these 
restrictions are needed to recover the DSGE model responses from data generated by 
DSGE models. In related work, Kilian and Murphy (2011, 2012) propose additional 
identifying restrictions based on bounds on impact price elasticities in the context of a 
structural oil market VAR model. This can be considered a special case of imposing a 
prior distribution on the values of these price elasticities.

Imposing such additional restrictions has been shown to improve the ability of sign- 
identified VARs to discriminate between alternative data generating processes. The use 
of all available information in identifying structural shocks from sign- identified models 
is not merely an option – it is essential. There is a perception among some applied 
users that remaining agnostic about all but a small number of sign restrictions can only 
increase the chances of inferring the true structural responses from sign- identified VAR 
models. This perception is erroneous. In constructing the posterior distribution of the 
structural responses one implicitly assumes that all admissible models are equally likely 
a priori. If we know this assumption to be violated and fail to impose further restrictions, 
we end up averaging models with incorrect probability weights invalidating the implied 
posterior distribution of the impulse responses. For example, Kilian and Murphy (2012) 
demonstrate that oil market VAR models identified by sign restrictions only may imply 
large responses of the real price of oil to oil supply shocks, yet these responses can be 
ruled out merely by imposing a bound on the short- run price elasticity of oil supply, 
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consistent with long- established views in the literature and extraneous empirical evi-
dence that this elasticity is close to zero. They further show that the failure to impose 
this additional identifying information would have misled researchers by assigning more 
importance to oil supply shocks than is warranted by the data.

4.3 Examples of Sign- identified VAR Models

4.3.1 Example 11: an alternative model of monetary policy shocks
Uhlig (2005) proposes replacing a conventional semistructural model of monetary policy 
by a model based only on sign restrictions. His set of model variables consists of monthly 
US data for the log of interpolated real US GDP, the log of the interpolated GDP defla-
tor, the log of a commodity price index, total reserves, non- borrowed reserves and the 
federal funds rate. Uhlig postulates that an unexpected monetary policy contraction is 
associated with an increase in the federal funds rate, the absence of price increases and 
the absence of increases in non- borrowed reserves for some time following the policy 
shock.
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where 1 and 2 denotes the postulated sign of the impact response and 3 denotes no 
restriction. The model is partially identified in that only the response to an unanticipated 
monetary tightening is identified. It is also set- identified in that sign restrictions are 
consistent with a range of admissible models. The same sign restrictions are imposed for 
half a year following the monetary policy shock. As shown by Uhlig (2005), this model 
is uninformative even about the direction of the real GDP response to a monetary policy 
shock. If the identifying restrictions are strengthened by the restriction that the response 
of real GDP is negative in month 6 following a monetary policy tightening, however, 
inference can be sharpened considerably (see Inoue and Kilian, 2013). This additional 
restriction allows us to remain agnostic about the short-  and long- run responses of real 
GDP, while expressing the common conviction that a monetary tightening is associated 
with a decline in real activity in the foreseeable future.

4.3.2 Example 12: an alternative model of the global market for crude oil
We have already considered a fully identified monthly model of the global market for 
crude oil based on exclusion restrictions on B21

0 . Inoue and Kilian (2013) provide an 
alternative fully identified model based on sign restrictions:
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Here the required signs of each element of B21
0  have been indicated by 1 and 2. Flow 

supply shocks are normalized to correspond to supply disruptions. An unanticipated 
flow supply disruption causes oil production to fall, the real price of oil to increase, and 
global real activity to fall on impact. An unanticipated increase in the flow demand for 
oil driven by the global business cycle causes global oil production, global real activity 
and the real price of oil to increase on impact. Other positive oil demand shocks (such 
as shocks to oil inventory demand driven by forward- looking behavior) cause oil pro-
duction and the real price of oil to increase on impact and global real activity to fall. In 
addition, the impact price elasticity of oil supply is bounded above by 0.025, as suggested 
by Kilian and Murphy (2012). This bound is consistent with widely held views among oil 
economists that the short- run price elasticity of oil supply is close to zero. The elasticity 
in question can be expressed as the ratio of two impact responses, making it straight-
forward to discard draws that violate that restriction. Finally, following Baumeister 
and Peersman (2012) the real price of oil is restricted to be positive for the first year in 
response to unanticipated oil supply disruptions and in response to positive oil demand 
shocks.

5 ALTERNATIVE STRUCTURAL VAR APPROACHES

VAR models identified by sign restrictions are the most popular alternative to VAR 
models identified by short- run or long- run exclusion restrictions, but not the only alter-
native. Discomfort with semistructural models of monetary policy in particular has 
stimulated the development of two more methodologies. It has been noted, in particular, 
that the sequences of policy shocks identified by such models do not always correspond 
to common perceptions of when policy shocks occurred. For example, Rudebusch (1998) 
compares estimates of monetary policy shocks from semistructural VAR models to 
financial market measures of policy shocks and finds little correspondence. He views this 
as evidence against the identifying assumptions employed in semistructural VAR models 
of monetary policy (also see Cochrane and Piazzesi, 2002).

5.1 Financial Market Shocks

This critique stimulated a new identification method by Faust et al. (2004) who iden-
tify monetary policy shocks in monthly VAR models based on high- frequency futures 
market data. Using the prices of daily federal funds futures contracts, they measure the 
impact of the surprise component of Federal Reserve policy decisions on the expected 
future trajectory of interest rates. It is shown how this information can be used to iden-
tify the effects of a monetary policy shock in a standard VAR. This alternative approach 
to identification is quite different from the conventional identifying restrictions in 
monetary policy VAR models in that it dispenses with the exclusion restrictions used in 
semistructural models of monetary policy.

Faust et al.’s procedure involves two key steps: first, they use the futures market to 
measure the response of expected future interest rates to an unexpected change in the 
Federal Reserve’s target rate. Specifically, they treat the change in the futures rate on the 
day on which a change in the Fed’s target federal funds rate is announced as a measure 
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of the change in market expectations. This interpretation requires that risk premia 
remain unchanged. Faust et al. further postulate that this change in expectations is due 
to the policy shock only. In other words, no other news moves the market on that day 
and the policy announcement itself does not reveal information about other structural 
shocks. In the second step, they impose that the impulse responses of the funds rate to 
the monetary policy shock in the VAR model must match the response measured from 
the futures data.

While these two steps are conceptually straightforward, carefully implementing them 
in practice requires dealing with several complications. Measuring the response of the 
funds rate to policy shocks in the futures data requires taking account of several peculiar 
aspects of the futures market and testing the validity of the underlying assumptions. 
Moreover, the information from the futures market only set- identifies the structural 
VAR model. The most striking implication of set identification is that one must give up 
on point estimation of the structural responses and focus on confidence intervals instead, 
similar to classical inference in sign- identified VAR models.

In their empirical analysis, Faust et al. find that the usual recursive identification of 
monetary policy shocks is rejected, as is any identification that insists on a monetary policy 
shock having no effect on prices contemporaneously. This confirms our earlier concerns 
with semistructural monetary policy VAR models. Their identification also eliminates 
the price puzzle – the finding in the benchmark recursive identification that the impulse 
response of prices first rises slightly but significantly, before falling. Faust et al. neverthe-
less find that only a small fraction of the variance of output can be attributed to monetary 
policy shocks, as has been shown by the sign- identification methodology in Faust (1998).

D’Amico and Farka’s (2011) analysis of stock market and interest rate data takes 
this approach a step further. Rather than just estimating the response of stock returns 
to monetary policy shocks identified from high- frequency data, they propose a VAR 
methodology for estimating simultaneously the response of stock returns to policy deci-
sions and the Federal Reserve’s contemporaneous reaction to the stock market. Their 
methodology has broad applicability when modeling asset prices. D’Amico and Farka’s 
approach involves two steps. In the first step, the response of the stock market to policy 
shocks is estimated outside the VAR model by measuring changes in intraday S&P500 
futures prices immediately before and after policy announcements. The monthly policy 
shock is obtained by summing the intraday shocks over the course of a given month. In 
the second step, D’Amico and Farka impose that external estimate when estimating the 
response of the federal funds rate to stock returns in a monthly VAR model.

5.2 Identification by Heteroskedasticity

Rigobon (2003) develops yet another method for solving the VAR identification 
problem based on the heteroskedasticity of the structural shocks. Heteroskedasticity 
may arise, for example, as a result of financial crises. In the baseline model, Rigobon 
considers  heteroskedasticity that can be described as a two- regime process and shows 
that the  structural parameters of the system are just identified. He also discusses identi-
fication under more general conditions such as when there are more than two regimes, 
when common unobservable shocks exist, and situations in which the nature of the het-
eroskedasticity is misspecified.
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For expository purposes recall the two- equation model of demand and supply based 
on price and quantity data. All lags have been suppressed for notational convenience:
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Under the standard assumption of unconditional homoskedasticity, it can be shown 
that the reduced- form error covariance matrix is:

 Se 5
1

(1 2 ab)2 cb2s2
2 1 s2

1 bs2
2 1 as2

1
# s2

2 1 a2s2
1
d ,

where s2
1 and s2

2 denote the variance of the first and the second structural shock. There 
are three moments in four unknowns (a, b, s2

1, s2
2), so without further assumptions such 

as a 5 0 or b 5 0 it is not possible to identify the structural shocks from the data in this 
baseline model. This is the basic identification problem discussed throughout this survey.

Now suppose that there are two regimes in the variances of the structural shocks. 
Further suppose that the difference between regimes is that in one regime the uncondi-
tional variance of the supply shock increases relative to the unconditional variance of the 
demand shocks, while the parameters a and b remain unchanged across regimes. This 
variance shift suffices to approximate the slope of the demand curve.

As a result of the regime shift, we obtain two expressions of the variance–covariance 
matrix, one for each regime r [ {1, 2}   :

 Se,r 5
1

(1 2 ab)2 cb2s2
2,r 1 s2

1,r bs2
2,r 1 as2

1,r
# s2

2,r 1 a2s2
1,r
d .

This means that there are now six moments in six unknowns, allowing us to solve for 
all six structural parameters (a, b, s2

1, 1, s2
2, 1, s2

1, 2, s2
2, 2) without restricting a or b. Rigobon 

(2003) applies this methodology to the problem of characterizing the contemporane-
ous relationship between the returns on Argentinean, Brazilian and Mexican sovereign 
bonds – a case in which standard identification methodologies do not apply. Rigobon’s 
approach is of particular interest for modeling asset prices because instantaneous feed-
back must be assumed when trading is near- continuous. It is not without serious limita-
tions, however. Not only is there uncertainty about the existence, number, and timing of 
the variance regimes, but in practice we are not likely to know whether a high volatility 
regime is caused by a relative increase in the volatility of demand shocks or of supply 
shocks, without assuming the answer to the identification question. This means that we 
do not know whether we are identifying the supply curve or the demand curve, which 
is the central question of interest. This problem is particularly apparent in modeling 
the global market for crude oil. Researchers have proposed competing views of what 
increased oil price volatility in the 1970s and Rigobon’s methodology would not be able 
to tell us, which view is supported by the data. This concern is less of an issue if the shock 
of interest can be associated with one variable only, as would be the case when modeling 
monetary policy shocks within a policy reaction function.

The latter case is discussed in Lanne and Lütkepohl (2008). Lanne and Lütkepohl 
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propose a test of over-identifying restrictions within the structural VAR framework 
of Bernanke and Mihov (1998). Their test exploits evidence of structural change in the 
 variance–covariance matrix of the reduced- form shocks. As in Rigobon’s work, the main-
tained assumption is that the autoregressive parameters are time invariant. Volatility in 
the shocks is significantly higher during the Volcker period than the  post- Volcker period. 
This volatility change may be used to test alternative models of the money market. Based 
on monthly US data for 1965 to 1996, Lanne and Lütkepohl  conclude that a model in 
which monetary policy shocks are associated with shocks to non- borrowed reserves 
is rejected by the data, whereas a model in which the Federal Reserve accommodates 
demand shocks to total reserves is not rejected.

In closely related work, Lanne et al. (2010) address the issue of how to detect struc-
tural changes in the volatility of the VAR errors in the data. They consider the important 
special case of volatility shifts that follow a Markov regime switching model (see Sims 
and Zha, 2006). Identification is achieved by assuming that the shocks are orthogonal 
across states and that only the variances of the shocks change across states, while the 
other model parameters remain unaffected. Modeling the reduced- form errors as a 
Markov regime switching model provides data- dependent estimates of the dates of vola-
tility shifts, conditional on the assumed number of regimes.

Finally, a related identification methodology for vector autoregressions with non- 
normal residuals has also been discussed by Lanne and Lütkepohl (2010). It is well 
known that VAR regression errors are frequently non- normal. These errors may be 
modeled as a mixture of normal distributions. That assumption is useful, for example, 
when the reduced- form error distribution has heavy tails and a tendency to generate out-
liers. In that case, one may think of the outliers as being generated by a distribution dif-
ferent from the distribution of the other observations and identification may be obtained 
by heteroskedasticity across regimes. Unlike in Rigobon’s approach, the unconditional 
error distribution remains homoskedastic, however, and the regime switches in the 
model are generated endogeneously.

5.3 Identification in the Presence of Forward- looking Behavior

It is important to stress that standard VAR models of monetary policy are concerned 
with responses to unanticipated policy shocks. They have nothing to say about the 
effects of anticipated monetary policy shocks. For further discussion see also Leeper et 
al. (1996), Bernanke and Mihov (1998) and Christiano et al. (1999). The anticipation of 
shocks is an even greater concern when modeling fiscal policy shocks or productivity 
shocks and requires fundamental modifications in the analysis. The mere possibility of 
forward- looking behavior greatly complicates the identification of structural shocks in 
VAR models.

The maintained assumption in structural VAR analysis is that the structural data- 
generating process can be represented as a VAR model. In other words, we start with the 
structural VAR representation with the objective of recovering the structural VMA rep-
resentation. Suppose that instead we started with the premise that the data- generating 
process is of the form of the structural VMA

 yt 5 Q(L)ut.
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where the number of variables equals the number of structural shocks. Not every struc-
tural VMA has an equivalent structural VAR representation. Expressing the structural 
VMA process as a structural VAR process of the form

 Q(L)21yt 5 B(L)yt 5 ut

requires all roots of det(Q(L))  to be outside the unit circle. This condition rules out 
models with unit roots in the moving average polynomial, for example, because in that 
case the moving average polynomial is not invertible. This situation will arise when the 
data have been overdifferenced. Such cases can be handled by transforming the data 
appropriately. A more serious complication is that the moving average roots may be 
inside the unit circle. In this case, the model is said to be non- fundamental. Such repre-
sentations imply the same autocovariance structure as the fundamental representation, 
but the underlying structural shocks cannot be recovered from current and past observa-
tions of the variables included in the VAR model even asymptotically. Consequently, 
when the economic model does not guarantee fundamentalness, standard structural 
impulse response analysis may be misleading (see Lippi and Reichlin, 1993, 1994).

How concerned we should be with that possibility depends on whether non- 
fundamental representations can be shown to arise in economic theory. In this regard, 
Hansen and Sargent (1991) illustrated that non- fundamental representations may arise 
in rational expectations models when agents respond to expectational variables that are 
not observable to the econometrician. This result suggests extreme caution in interpret-
ing structural VAR models when the VAR information set is smaller than that of the 
agents making economic decisions in the real world, as would typically be the case in 
models with forward- looking behavior. If we think of asset prices containing informa-
tion about expected movements in real macroeconomic aggregates beyond the informa-
tion in the lagged macroeconomic aggregates, for example, then a VAR including only 
real macroeconomic aggregates would be misspecified. In particular, we would not 
be able to recover the true structural shocks of this economy from the reduced- form 
VAR representation under any possible identification scheme. If we simply ignored this 
problem, we would end up identifying seemingly structural shocks without economic 
meaning. For further discussion see Lippi and Reichlin (1993, 1994), Blanchard and 
Quah (1993), Forni et al. (2009) and Leeper et al. (2011).

A formal test designed to detect non- fundamentalness of this type in a given structural 
VAR model was proposed by Giannone and Reichlin (2006). Giannone and Reichlin 
showed that Granger causality from a set of potentially relevant variables that are 
omitted from the baseline VAR model to the variables already included in the baseline 
model implies that the structural shocks in the baseline model are not fundamental. 
Under weak conditions, adding previously omitted Granger causal variables to the 
VAR model may eliminate this informational inefficiency. Even a model modified in 
this fashion, however, need not be properly identified. One problem is that there may 
be expectational variables that affect agents’ behavior which are not observable. Thus, 
passing the Giannone and Reichlin test is necessary, but not sufficient for ruling out 
identification problems in the structural model. The other problem is that the inclusion 
of previously omitted Granger causal variables may undermine conventional identifica-
tion strategies. For example, it may seem that the problem of non- fundamental VAR 
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representations could be mitigated, if not avoided altogether, by simply augmenting the 
set of VAR variables with forward- looking variables such as asset prices, survey meas-
ures of expectations, or professional forecasts. This strategy, however, may invalidate 
commonly used approaches to identifying monetary policy shocks. Consider a semi-
structural model of monetary policy of the type discussed earlier. If we add stock prices 
to the list of variables the Federal Reserve responds to in setting interest rates, we are 
implicitly assuming that stock prices do not respond instantaneously to interest rates, 
which does not seem plausible. If we order stock prices below the interest rate, on the 
other hand, we prevent the Federal Reserve from responding to a variable that matters 
for agents’ economic decisions and hence should matter to the Federal Reserve. Thus, 
the presence of forward- looking variables often requires additional modifications in the 
identification strategy.

Only recently, VAR models have been adapted to allow for forward- looking behav-
ior of some form. Such extensions are non- trivial. Here we consider three illustrative 
examples. None of the examples provides a generic solution to the problem of modeling 
forward- looking behavior, but they illustrate that at least in special cases these problems 
may be overcome.

5.3.1  Example 13: shocks to expectations about future oil demand and oil supply 
conditions

The first example is a model of the global spot market for crude oil proposed by Kilian 
and Murphy (2013). Identification is based on a four- variable model including the 
change in above- ground global inventories of crude oil in addition to the three variables 
already included in Kilian and Murphy (2012). The key observation is that any change 
in expectations about future oil demand and oil supply conditions not already captured 
by flow demand shocks and flow supply shocks must be reflected in a shift in the demand 
for oil inventories, conditional on past data. By including these inventories (the change 
of which is denoted by Dinv) in the model and simultaneously identifying all shocks 
that move inventories, it becomes possible to identify the effect of shifts in expectations 
without having to measure expectations explicitly. The model is identified by a combina-
tion of sign restrictions on the impact responses, bounds on the impact price elasticities 
of oil demand and of oil supply, and dynamic sign restrictions on the responses to unex-
pected flow supply disruptions. The impact sign restrictions are:

 ± eDprod
t

erea
t

erpoil
t

eDinv
t

≤ 5 ≥2 1 1 3

2 1 2 3

1 1 1 3

3 3 1 3

¥ ± uflow supply
t

u flow demand
t

uspeculative demand
t

uother oil demand
t

≤ .

In other words, on impact, a negative flow supply shock shifts the supply curve to 
the left along the demand curve, resulting in a decline in the quantity and an increase in 
the price of oil, which causes real activity to decline. A positive flow demand shock is 
associated with increased real activity. Quantity and price increase, as the demand curve 
shifts to the right along the supply curve, while real activity increases by construction. 
The inventory responses to flow supply and flow demand shocks are ambiguous a priori 
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and hence remain unrestricted. A positive speculative demand shock reflecting expecta-
tions of a tightening oil market is associated with an increase in inventories and in the 
real price of oil by construction. The accumulation of inventories requires oil production 
to increase and oil consumption (and hence real activity) to decline. Effectively, this 
model further decomposes the other oil demand shock in Inoue and Kilian (2013) into a 
speculative component driven by shifts in expectations and a residual containing only 
the remaining idiosyncratic oil demand shocks. In addition, the model imposes that the 
impact price elasticity of oil supply is bounded above and that the impact price elasticity 
of oil demand (defined to incorporate the inventory response) is restricted to be negative 
and smaller in magnitude than the long- run price elasticity of oil demand which can be 
estimated from cross- sectional data. Both elasticities can be expressed as ratios of struc-
tural impulse responses on impact. Finally, the model imposes that the sign restrictions 
on the responses to a flow supply shock remain in effect for one year.

It may seem that this oil market model is incomplete in that it excludes the price of 
oil futures contracts, which is commonly viewed as an indicator of market expectations 
about future oil prices. This is not the case. The spot market and the futures market for 
oil are two distinct markets linked by an arbitrage condition. Thus, if there is speculation 
in the oil futures market, by arbitrage there should be speculation in the spot market 
reflected in increased inventory demand (see Alquist and Kilian, 2010). Not only does 
economic theory imply that oil futures prices are redundant in this model of the spot 
market, but one can use the Giannone and Reichlin (2006) test to show that the oil 
futures spread does not Granger cause the variables in the Kilian and Murphy model, 
consistent with the view that the structural shocks are fundamental.9

5.3.2 Example 14: anticipated technology shocks
A second example of a structural VAR model of forward- looking behavior is Barsky and 
Sims (2011) who focus on expectations about future aggregate productivity. They pos-
tulate that the log of aggregate productivity, At, is characterized by a stochastic process 
driven by two structural shocks. The first shock is the traditional surprise technology 
shock, which impacts the level of productivity in the same period in which agents observe 
it. The second shock reflects information about future technology and is defined to be 
orthogonal to the first shock.10 The two shocks jointly account for all variation in At. The 
two structural shocks are identified as follows:

 At 5 [B11 (L)B12 (L) ]au1t

u2t
b

where B12 (0) 5 0 such that only u1t affects current productivity, making u2t the future 
technology shock. Effectively, Barsky and Sims treat At as predetermined with respect 
to the rest of the economy. This identifying assumption leaves a wide range of possible 
choices for u2t. In practice, u2t is identified as the shock that best explains future move-
ments in At11, . . . , At1H, not accounted for by its own innovation, where H is some finite 
horizon. This approach, of course, amounts to constructing the best possible case for the 
role of shocks to expectations rather than necessarily the most likely case.

The estimated VAR model includes a total factor productivity series as well as 
selected macroeconomic aggregates. At is ordered first. The procedure is implemented by 
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 constructing candidate solutions of the form PD, where P denotes the lower triangular 
Cholesky decomposition of Se and D a conformable orthogonal matrix, as in the case 
of sign- identified VAR models. The ability of a shock to explain future movements of 
the data is measured in terms of the forecast- error variance decomposition. Because the 
contribution of the second shock to the forecast error variance of At depends only on 
the second column of A21

0 , Barsky and Sims choose the second column, g, to solve the 
optimization problem:

 g* 5 arg maxa
H

h50
W12 (h),

subject to the first element of g being zero and grg 5 1, where Wij(h)  denotes the share 
of the forecast error variance of variable i attributable to structural shock j at horizon h 
expressed in terms of the structural parameters of the model (also see Lütkepohl, 2005).

5.3.3 Example 15: anticipated tax shocks
In related work, Leeper et al. (2011) address the problem of anticipated tax shocks in 
the context of the model of Blanchard and Perotti (2002). Although Blanchard and 
Perotti as part of a sensitivity analysis relaxed the assumption of no foresight in their 
baseline model, they only investigated a very limited form of tax foresight involving one 
quarter of anticipation. Clearly, there is no compelling reason for agents not to be more 
forward- looking.

Leeper et al. propose a more general approach. Their starting point is the observation 
that the differential US Federal tax treatment of municipal and treasury bonds embeds 
news about future taxes. The current spread, st, between municipal bonds and treasury 
bonds may be viewed as an implicit tax rate. This implicit tax rate is a weighted average 
of discounted expected future tax rates and should respond immediately to news about 
expected future tax changes. This motivates treating st as a variable containing expecta-
tions of future tax shocks. Assuming market efficiency, the implicit tax rate reveals the 
extent to which agents do or do not have foresight. A simple test is whether st contains 
useful predictive information for the variables modeled by Blanchard and Perotti. 
Leeper et al. demonstrate that st Granger causes the variables in Blanchard and Perotti’s 
VAR model, indicating that this model is not fundamental. Their solution is to augment 
the model of Blanchard and Perotti with data on the spread, s, resulting in the four- 
variable system:

 ± etax
t
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They add the identifying assumption that news contained in the interest rate spread, 

us
t, has no direct effect on current output, tax revenue and spending. The resulting 

structural VAR model can be used to construct responses both to unanticipated and 
anticipated tax revenue shocks. Leeper et al. show that their model produces markedly 
different impulse response estimates from Blanchard and Perotti’s model and suggests 
that agents’ foresight may extend as far as five years.
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6 STRUCTURAL VAR MODELS AND DSGE MODELS

Both structural VAR models and DSGE models were developed in response to the 
perceived failure of traditional large- scale macroeconometric models in the 1970s. 
Proponents of DSGE models responded to this evidence by developing fully structural 
models that facilitated policy analysis, but at the expense of requiring strong assump-
tions about market structures, functional forms and about the exogeneity and dynamic 
structure of the underlying forcing variables. Proponents of structural VAR models 
responded by proposing dynamic simultaneous equation models that required minimal 
assumptions about the dynamics of the model variables, no assumptions about the exo-
geneity of any variable, and minimal assumptions about the structure of the economy. 
They dispensed in particular with the imposition of cross- equation restrictions in an 
effort to make the structural VAR model robust to alternative ad hoc modeling choices.

An obvious question is under what conditions these modeling approaches are compat-
ible and under what conditions one might be able to learn from one approach about the 
other. This has been less of a concern for DSGE proponents (who often reject the struc-
tural VAR approach on a priori grounds) than for proponents of the structural VAR 
approach, some of whom have viewed results from structural VAR models as informa-
tive for DSGE modeling (see, for example, Galí, 1999). Recent research has shown that 
comparisons of structural VAR estimates with DSGE models are not straightforward:

● Not every DSGE model will have a structural VAR representation. Fernandez- 
Villaverde et al. (2007) discuss invertibility conditions that must be met for data 
from a DSGE model to have a structural VAR representation. Whether this fact is 
a concern for structural VAR modeling depends on whether we view the excluded 
DSGE models as practically relevant. Moreover, Sims (2012) shows that there may 
exist situations in which a model has a non- invertible VAR representation, yet 
structural VAR models nevertheless perform reliably.

● Conversely, not every structural VAR model will correspond to an existing DSGE 
model. This does not necessarily mean that the structural VAR model lacks 
theoretical support. It may also reflect our inability to write down and solve more 
articulated theoretical models.

● The state- space representation of a DSGE model’s log- linearized equilibrium often 
can be expressed in terms of a vector autoregressive moving average (VARMA) 
process for the observable DSGE model variables. It rarely will take the form of a 
finite- order VAR process. Integrating out some of the model variables will further 
affect the nature of the reduced- form VARMA representation. Under suitable 
conditions, the resulting VARMA model for the observables can be inverted and 
expressed as a VAR(`) model, which in turn can be approximated by a sequence of 
finite- order VAR(k) processes, where k increases with the sample size at a suitable 
rate. The use of an autoregressive sieve approximation has important implications 
for lag order selection and for statistical inference in the implied VAR(k) model 
(see, for example, Inoue and Kilian, 2002).

  An obvious concern in practice is how well a VAR(`) model may be approxi-
mated by a VAR(k) in finite samples. One important area of current research is 
how to select k. The answer depends in part on which aspect of the DSGE model 
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we are interested in. This is an open area of research. Simulation evidence suggests 
that in some cases the VAR(k) approximation to the VAR(`) process may be poor 
for realistic sample sizes for any feasible choice of k. This problem can be severe 
when the underlying DSGE model has a VARMA representation with a high 
moving average root.

● The existence of an approximate reduced- form VAR(k) representation is a nec-
essary, but not a sufficient condition for the existence of a structural VAR(k) 
representation. One additional condition is that the number of shocks in the 
DSGE model must match the number of shocks in the VAR model. Recall that we 
postulated that Su is of full column rank. This means that there must be as many 
shocks as variables in the VAR model. Many DSGE models have fewer shocks 
than variables. For example, a textbook real business cycle model has only one 
technology shock, so, when fitting a VAR to output, investment and consumption 
data generated from this DSGE model, Su would be of reduced rank if the DSGE 
model were correct. Clearly, the DSGE model and VAR model specifications are 
incompatible in that case. Users of DSGE models have responded to this problem 
by either adding ad hoc noise without structural interpretation (such as measure-
ment error) or by augmenting the number of economic shocks in the DSGE model. 
Examples include preference shocks, fiscal shocks and monetary shocks. This can 
be problematic if the additional shocks in the DSGE model have no clear struc-
tural interpretation or involve questionable exogeneity assumptions.

  Another additional condition is that the restrictions imposed in identifying the 
structural shocks in the VAR model must be consistent with the underlying DSGE 
model structure. This is rarely the case when using short- run exclusion restrictions, 
so caution must be exercised in comparing results from DSGE and structural VAR 
models. This point was first illustrated by Keating (1990) in the context of a simple 
rational expectations model. The use of long- run restrictions as in Galí (1999) 
circumvents this problem in part, but it requires the user to take a strong stand on 
the presence of unit roots and near- unit roots, it requires the DSGE model to be 
consistent with these assumptions, it focuses on one shock at the expense of others, 
and it suffers from its own limitations as discussed earlier. Simulation evidence on 
the efficacy of this approach is mixed (see, for example, Gust and Vigfusson, 2009). 
Perhaps the best hope for matching structural VAR models and DSGE models is 
the use of sign restrictions. Canova and Paustian (2011) report considerable success 
in recovering responses generated by DSGE models with the help of sign- identified 
structural VAR models. They stress the importance of not being too agnostic 
about the identification, however. It is generally easier to recover the underlying 
population responses when more variables are restricted, for a given number of 
identified shocks, or when more structural shocks are identified in the VAR model. 
Moreover, models based on weak identifying restrictions may become unreliable 
when the variance of the shock in question is small in population. This conclusion 
is further reinforced by the discussion in Kilian and Murphy (2012) of the dangers 
of relying on excessively agnostic sign- identified VAR models.

● The earlier comments about forward- looking behavior continue to apply. As noted 
by Sims (2012), when the data are generated by a DSGE model in which shocks are 
anticipated by the agents, there is a missing state variable in the structural VAR 
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representation of the observables, and structural VAR models will be unable to 
recover the true structural shocks. There is evidence that this problem need not 
be fatal, however. Even when the conditions for the invertibility of the state- space 
representation fail, the degree of misspecification of the structural VAR responses 
may be small.

This discussion highlights that in general caution must be exercised in comparing 
structural VAR and DSGE model estimates. Interest in such comparisons has further 
increased in recent years, as Bayesian estimation methods have facilitated the estimation 
of the state- space representation of DSGE models, making it possible to dispense with 
VAR models in estimating structural impulse responses. At the same time, there has 
been increasing recognition that DSGE models are not only sensitive to ad hoc modeling 
choices, but often suffer from weak identification of the structural parameters. Unless we 
are very confident about the adequacy of the DSGE model structure, estimates of DSGE 
models may be misleading, and calibration of the model parameters will be preferable. 
Moreover, even if the model structure is adequate, structural parameter estimates may 
be sensitive to the choice of priors. Thus, both the structural VAR approach and the 
DSGE model approach have to be used with care and the best we can hope for is that 
both types of models paint a similar picture.

7 CONCLUSION

In addition to continued innovation in the area of the identification of structural 
shocks from VAR models, recent years have witnessed a number of generalizations of 
the underlying reduced- form VAR framework. One of the main concerns in the VAR 
literature we already alluded to is that policy rules and more generally the structure 
of the economy may evolve over time. One possibility is that structural changes occur 
infrequently, resulting in occasional breaks in the data that can be handled by split-
ting the sample. For example, Boivin and Giannoni (2006) consider the possibility that 
the Great Moderation was caused by a one- time break in the volatilities of the VAR 
shocks as opposed to improved monetary policy responses. They suggest that, if only 
the volatilities of the shocks changed during the Great Moderation, structural response 
functions estimated on pre- break data – after suitable normalizations to control for the 
magnitude of the shocks – should be identical to structural impulse responses estimated 
on post- break data, whereas changes in the shape of the response functions would be an 
indication of a change in the transmission mechanism. Inoue and Rossi (2011), however, 
document that time- invariant impulse response shapes are not sufficient for structural 
stability because structural breaks in the autoregressive slope parameters may have off-
setting effects on the impulse response functions. Moreover, if there are changes in the 
shape of the impulse response functions, it is not possible to infer from these changes 
which parameters in the structural model changed. In particular, it is difficult to infer 
whether these changes are associated with better policy rules or with other instabilities 
in the structural model.

A more pernicious form of structural change is associated with smoothly time- varying 
model parameters. In some cases, such temporal instability may be modeled within a 
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linear VAR framework. For example, Edelstein and Kilian (2009) showed how time 
variation in the share of energy expenditures in total consumption may be modeled 
within a linear VAR framework by redefining energy price shocks in terms of shocks 
to the purchasing power of consumers. A similar approach was taken by Ramey and 
Vine (2011) in modeling gasoline price rationing. An alternative approach pioneered 
by Primiceri (2005), Benati (2008), Canova and Gambetti (2009), and Baumeister and 
Peersman (2012) has been to allow for explicit smooth time variation in the parameters 
of the structural VAR model. The development of structural TVP- VAR models is chal-
lenging because the identifying restrictions themselves may be time- varying. Structural 
VAR models have also been extended to allow for more specific non- linearities such as 
regime- switching, threshold non- linearities, or GARCH in mean (see, for example, Elder 
and Serletis, 2010). Not all non- linearities lend themselves to structural VAR analysis, 
however. For example, Kilian and Vigfusson (2011a, 2011b) show that certain models 
involving asymmetric transmissions of shocks may not be represented as structural VAR 
models. They propose an alternative non- VAR representation of dynamic asymmetric 
structural models.

A second development in recent years has been the integration of results from the 
literature on data- dimension reduction in forecasting from large cross- sections. One 
example is the development of factor augmented VAR (FAVAR) models as in Bernanke 
et al. (2005) or Stock and Watson (2005). An alternative approach has been the use of 
large- scale Bayesian VAR models as in Banbura et al. (2010). Both model frameworks 
allow the user to generate impulse responses for a much larger set of variables than tra-
ditional VAR models. A third development has been the increased popularity of panel 
VAR models (see, for example, Canova, 2007).

These developments illustrate that there is much life left in the research program 
started by Sims (1980a, 1980b). As with all methodologies, structural vector autoregres-
sions can be powerful tools in the right hands, yet potentially misleading if used blindly. 
Credible applications require careful consideration of the underlying economic struc-
ture. Although not every problem can be cast in a structural VAR framework, structural 
VAR models are likely to remain an important tool in empirical macroeconomics. There 
is no indication that DSGE models, in particular, are ready to take the place of structural 
vector autoregressions. Both approaches have their distinct advantages and disadvan-
tages, and it remains up to the researcher to decide which class of models is more appro-
priate for a given question.

NOTES

 * I thank Ron Alquist, Christiane Baumeister, Fabio Canova, Carlo Favero, Nikolay Gospodinov, Ana 
María Herrera, Helmut Lütkepohl, and Barbara Rossi for helpful comments on an earlier draft.

 1. It is worth noting that, in general, structural shocks do not correspond to particular model variables. For 
example, in a VAR system consisting of only price and quantity, we can think of a demand shock and a 
supply shock each shifting prices and quantities. In fact, if price and quantity variables were mechanically 
associated with price and quantity shocks, this would be an indication that the proposed model is not 
truly structural.

 2. Standard software provides built- in functions for generating the Cholesky decomposition of Se.
 3. Christiano et al. (1999) prove that alternative orderings of eDgdp

t  and ep
t  will leave u3

t  unaffected, provided 
the model is recursive.
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 4. The Bureau of Economic Analysis does not release monthly US real GDP data. Unofficial measures of 
monthly US real GDP constructed similarly to the official quarterly data have recently been provided by 
Macroeconomic Advisers, LLC. These time series for the time being are not long enough for estimating 
VAR models of monetary policy, however.

 5. The price puzzle refers to the finding of a statistically significant increase in the price level in response 
to an unanticipated monetary tightening in models of this type. Sims (1992) suggested that this 
puzzle could be resolved by including global commodity prices as an indicator of future inflation in 
the model. This idea is reasonable because the Federal Reserve considers global commodity prices 
as a predictor of inflation. Hanson (2004), however, showed that there is little correlation between 
the ability of alternative measures of global commodity prices to predict inflation and to resolve the 
price puzzle. Indeed, subsequent research has shown that the price puzzle more often than not persists 
even after including global commodity prices in the VAR model, suggesting that the model remains 
misspecified.

 6. The terminology of transitory shocks and permanent shocks is somewhat misleading in that any shock 
by construction involves a one- time disturbance only. A transitory shock, more precisely, is defined as a 
shock with purely transitory effects on the observables, whereas a permanent shock refers to a shock with 
permanent (or long- run) effects on the observables.

 7. It can be shown that the results of Cochrane’s model would be exactly identical to the results from a 
model in which the transitory shock has no long- run effect on the level of income and consumption, pro-
vided consumption follows a pure random walk. Such long- run restrictions will be discussed in section 3.

 8. A generalization of the approach of Blanchard and Quah (1989) was proposed by King et al. (1991). King 
et al. consider a baseline model for output, consumption and investment. Unlike in Blanchard and Quah 
(1989), in their 3- variable VAR model all variables are driven by the same productivity shock in the long 
run. In other words, the model variables are cointegrated. King et al. are interested in using this model 
to differentiate between the three variables’ responses to the common productivity shock. One difficulty 
in models such as this one lies in finding an economically credible identification of the transitory shocks. 
Another difficulty lies in how to distinguish between multiple permanent shocks when dealing with larger 
VAR models.

 9. One could have considered an alternative specification in which the oil futures spread replaces the change 
in crude oil inventories, but one- year oil futures contracts did not exist on a monthly basis prior to 1989, 
so this alternative specification would involve a much smaller sample size. Another advantage of the 
specification in Kilian and Murphy (2013) is that it remains equally valid even in the absence of an oil 
futures market (or when arbitrage for some reason is less than perfect). Nor would a model based on the 
oil futures spread allow the imposition of bounds on the oil demand elasticity.

10. Barsky and Sims refer to this shock as a news shock, following a terminology common in the recent 
macroeconomic literature. This is somewhat misleading in that news shocks have traditionally been 
defined as unexpected changes to observed aggregates (see, for example, Kilian and Vega, 2011). Rather 
the second shock captures expected changes in future productivity.
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 23 Vector autoregressive models for macroeconomic 
policy analysis
Soyoung Kim

1 INTRODUCTION

Vector autoregressive (VAR) models have been intensively used for macro policy analy-
sis since Sims (1980) suggested VAR models for macroeconomic analysis. VAR models 
employ minimal restrictions compared with traditional large- scale models, which impose 
a large number of incredible restrictions. As a result, VAR models have been used to 
document data- oriented empirical evidence on the effects of macroeconomic policies.

VAR models were commonly used in the early years to analyze the role of macro 
policies in business cycle fluctuations. For example, how much does monetary shock 
contribute to output fluctuations? VAR analysis was later performed as an empirical 
counterpart of the theoretical model. For example, impulse responses from VAR models 
are compared with those from Dynamic Stochastic General Equilibrium (DSGE) models 
to examine the success and failure of theories.

Simple recursive VAR models introduced by Sims (1980) were frequently used in the 
early years because such models were regarded as models with atheoretical (or normal-
izing) restrictions. However, subsequent studies showed that the results were usually 
sensitive to the ordering among variables. Thereafter, providing proper justification for 
the restrictions has been the most important task. In addition, subsequent studies intro-
duced various methods of identifications, for example, SR non- recursive restrictions, LR 
zero restrictions, sign restrictions, and so on, because providing justifications for recur-
sive restrictions is often difficult. Subsequent studies also introduced more complicated 
structures of VAR models, such as the large- scale Bayesian VAR, Factor- Augmented 
VAR (FAVAR), regime- switching VAR, and time- varying VAR, to better address the 
policy effects.

This chapter summarizes various methods of analyzing macro policy issues using 
VAR models. It focuses on summarizing the modeling aspects instead of the results 
themselves. In particular, this chapter discusses the types of identification methods and 
the types of VAR models that have been used to analyze macro policies since the litera-
ture evolved, as alternative identification methods or new types of VAR models have 
been introduced. Whereas the previous chapter discussed various identification methods 
themselves, this chapter focuses on the applications to macro policy analysis.

VAR literature on macro policy analysis began to develop from its application to 
monetary policy analysis. Thus, in this chapter (from section 2 to section 6), monetary 
policy analysis is extensively reviewed. More recent analysis on other macro policies are 
also discussed. Section 7 reviews fiscal policy analysis. Section 8 discusses analysis on 
open economy policies, such as exchange rate policies and capital controls, and section 
9 concludes.

Notation in this chapter is as follows. The reduced form VAR model is
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 yt 5 c 1 A(L)yt 1 et, A(L) ; A1L 1 A2L 
2 1 . . . 1 ApL 

p

 E(et) 5 0, E(etert) ; Se, t 5 1, . . . , T  (23.1)

where yt is a k 3 1 data vector, c is a k 3 1 constant vector, et is a k 3 1 error term vector, 
and Ajs and Se are k 3 k matrices. The structural form VAR model is

 B0yt 5 d 1 B(L)yt 1 ut, B(L) ; B1L 1 B2L 
2 1 . . . 1 BpL 

p

 E(ut) 5 0, E(uturt) ; Su, t 5 1,. . . , T  (23.2)

where d is a k 3 1 constant vector, ut is a k 3 1 structural shock vector, Bjs are k 3 k 
matrices, and Su is a k 3 k diagonal matrix. The structural and reduced forms are related 
as follows.

 Ai 5 B21
0 Bi, c 5 B21

0 d, i 5 1,. . ., p, et 5 B21
0 ut, Se 5 B21

0 SuB21r0 .

2 EARLY LITERATURE ON MONETARY POLICY

Early studies on the effects of monetary policy using VAR models clearly show that 
the most important task is identifying exogenous shocks to monetary policy. Monetary 
policy actions are endogenous to the state of the economy. Unless the exogenous parts 
of monetary policy actions are identified, the true effects of monetary policy actions will 
be hard to determine. Distinguishing and disentangling the effects of exogenous policy 
actions on the state of the economy and the changes in the state of the economy to which 
monetary policy reacts is not an easy task.

Such problems are found in the old debate between the monetarist and the Keynesian. 
Friedman and Schwartz (1963) show the timing pattern of monetary aggregates and real 
activities (that is, money leads real activities) to support the monetarist view. However, 
Tobin (1970) argues that such timing relation can be observed even in a theoretical 
model in which monetary policy does not affect real activities, but monetary aggre-
gate endogenously responds to the real activities. This debate suggests that identifying 
‘exogenous’ changes in monetary policies and examining the effects of the exogenous 
changes are important because monetary aggregates are endogenous to the state of the 
economy.

Since Sims (1980) introduced VAR models for macroeconomic analysis, VAR models 
have frequently been used to analyze the effects of monetary policy shocks. VAR models 
are usually regarded as a useful tool to extract ‘surprise’ or ‘exogenous shocks’ of a vari-
able and hence VAR methodology is frequently used in monetary policy analysis.

The initial VAR literature, including Sims’ (1980) study, used the SR recursive VAR 
models (with Cholesky decomposition) and identified innovations in broad monetary 
aggregates such as M1 and M2 as monetary shocks. However, these studies are faced 
with the liquidity puzzle.1 That is, an exogenous monetary expansion is supposed to 
increase the monetary aggregates and decrease the interest rate. However, in the model 
that uses innovations in broad monetary aggregate as monetary shocks, both the 
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monetary aggregates and the interest rate increase. This puzzle is usually interpreted 
as an indication that exogenous shocks to monetary policy actions are not properly 
identified in the model. Changes in broad monetary aggregates usually respond to 
non- policy shocks, such as money demand shocks, endogenously. Thus, innovations in 
broad monetary aggregates are not likely to represent exogenous shocks to monetary 
policy.

To avoid the liquidity puzzle, subsequent studies, such as Bernanke and Blinder 
(1992) and Sims (1992), used innovations in short- term interest rate as monetary policy 
shocks. In recent years, the short- term interest rate has been used as the monetary policy 
instrument, and it is less likely to be endogenous than the broad monetary aggregates. 
However, as Sims (1992) suggests, the ‘price puzzle’ emerges in the model with key macro 
variables such as the short- term interest rate, real income, price level, and monetary 
aggregates. That is, an exogenous monetary contraction is supposed to increase the 
interest rate and decrease the price level. However, monetary policy shocks identified 
as innovations in short- term interest rate increase the price level. Similar to the liquidity 
puzzle, the price puzzle is commonly regarded as an indication that exogenous shocks to 
monetary policy are not properly identified in the model. Sims (1992) suggests that the 
price puzzle emerges because the monetary authority reacts to inflationary expectation 
but excludes the variables reflecting inflationary expectation in the model, thus not prop-
erly identifying the exogenous shocks to the monetary policy. Sims (1992) resolves the 
price puzzle in the model by additionally including the commodity price index to capture 
inflation expectation.2

As reviewed in this section, the literature on VAR methods evolved by developing 
ways to identify exogenous monetary policy shocks. The following sections review the 
more recent methodologies. Note that these early debates clarify the following concepts. 
Monetary policy actions can be conceptually divided into two parts, namely, systematic 
and non- systematic. The systematic part is called the monetary policy rule or the mon-
etary reaction function. Regarding the systematic part, we may analyze how changes in 
monetary policy rule affect the economy. For example, we can analyze whether the infla-
tion rate is stabilized if the central bank increases the interest rate more steeply in reac-
tion to an inflation rate rise. The non- systematic part is relatively vague conceptually. 
This part includes discretionary parts that do not follow the policy rule and/or errors in 
monetary policy actions. The debate suggests that analyses should aim to separate these 
two parts clearly.

3 MONETARY VAR MODELS WITH SR ZERO RESTRICTIONS

Some studies use SR zero restrictions to resolve the various puzzles discussed in the 
previous section and to identify exogenous monetary policy shocks. These studies can be 
divided into three categories: (1) using innovations in short- term interest rates as mon-
etary policy shocks; (2) dividing money demand and money supply using non- recursive 
models; and (3) modeling detailed monetary policy operating procedure.
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Short- term Interest Rate Shocks

As discussed in the previous section, Bernanke and Blinder (1992) and Sims (1992) 
suggest using innovations in short- term interest rates as monetary policy shocks. This 
identification method is widely used. Christiano et al. (1996, 1999) further suggest a 
popular recursive model.

Using a recursive VAR model, Christiano et al. (1996, 1999) assume that the output, 
price and commodity price are contemporaneously exogenous to the federal funds rate 
but the federal funds rate is contemporaneously exogenous to other variables, such 
as non- borrowed reserves, total reserves and monetary aggregates. Such a structure 
assumes that the monetary authority decides the federal funds rate using information on 
the current and lagged values of output, price and commodity price as well as the lagged 
values of other variables. Output and price are the variables that the central bank consid-
ers most important. The commodity price index is also included in the recursive VAR 
model to capture the inflation expectation (as in Sims, 1992). The assumption might 
be justified since the three variables are directly related to the two important objectives 
of monetary policy but the assumption can be controversial. Nevertheless, this model 
has become popular partly because no puzzling responses are observed, the method is 
easy to implement, and the results are relatively stable as a recursive structure is used. 
Subsequent studies such as Kim (2001) and Christiano et al. (2005) have used similar 
models.

Separation of Money Demand and Supply

The second method is to separate money demand and money supply. Monetary aggre-
gates and interest rates are likely to be affected not only by monetary policy shocks (or 
money supply shocks) but also by money demand shocks. Therefore, by separating 
money demand and money supply, more exogenous components of monetary policy 
actions (or money supply) can be identified. Gordon and Leeper (1994), Sims and Zha 
(2006a, 2006b), Kim (1999), Kim and Roubini (2000), and Cushman and Zha (1997) use 
this method.

The models in this category typically include the following structural equations:

 eM
t 5 a1pe

P
t 1 a1ye

Y
t 2 a1ReR

t 1 uMD
t

 eR
t 5 a2ReM

t 1 a2ze
I
t 1 uMS

t  (23.3)

where es are reduced form residuals; us are structural shocks; M, R, P, Y, and I represent 
the monetary aggregate, short- term interest rate, price level, output, and an informa-
tional variable such as the commodity price index, respectively; and uMD and uMS are 
money demand and money supply (or monetary policy) shocks, respectively.

The first equation is the money demand equation. Based on the traditional money 
demand equation, real money balance is assumed dependent on the interest rate and real 
income.3 The second equation is the monetary policy reaction function (or the monetary 
policy rule or money supply equation). The monetary authority is assumed to set the 
interest rate (or monetary aggregate) after observing contemporaneous values of the 
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monetary aggregate (or the interest rate), the variable I, and the lagged values of all the 
variables in the model. Unlike in Christiano et al.’s method (1996, 1999), contempo-
raneous values of output and the price level are not included in the monetary reaction 
function. The output and the price level are aggregate variables, and contemporaneously 
obtaining the precise information is difficult because collecting information and aggrega-
tion take time. This assumption is called the information delay assumption.

The following model by Sims and Zha (2006a) presents a more concrete example:

 Ha11 a12 a13 a14 a15 a16 a17 a18

0 a22 a23 0 2a22 0 2a22 0
a31 a32 a33 0 0 0 0 a38

a41 0 0 a44 a45 a46 a47 a48

a51 0 0 0 a55 a56 a57 a58

a61 0 0 0 0 a66 a67 a68

a71 0 0 0 0 0 a77 a78

a81 0 0 0 0 0 0 a88

X HePIG
t

eM
t

eR
t

ePIM
t

eP
t

eW
t

eY
t

eTBK
t

X 5 H u1,t

uMD,t

uMP,t

u4,t

u5,t

u6,t

u7,t

u8,t

X (23.4)

where PIG, PIM, W and TBK represent producers’ price index of intermediate goods, 
producers’ price index of intermediate materials, real wage, and the number of personal 
and business bankruptcy filings, respectively.

The second and the third equations are money demand and money supply equa-
tions, respectively. In the money demand equation, the elasticity of real money demand 
with respect to real income is assumed to be 1. The first equation shows a financial 
market equilibrium in which the price of intermediate goods instantaneously reflects 
all the information. The rest of the equations represent the real sector equations, in 
which real sector variables do not respond to financial market and monetary variables 
contemporaneously.

Modeling Monetary Policy Operating Procedure

An alternative approach tries to identify monetary policy shocks by carefully modeling 
the monetary policy operating procedure. For example, Strongin (1995) reviews the 
history of monetary policy procedure and tries to identify monetary policy shocks for 
each sub- period in which different monetary policy procedures are adopted. The study, 
along with other similar studies, suggests that shocks to non- borrowed reserves (or 
shocks to non- borrowed reserves orthogonal to shocks to total reserves) can represent 
open market operation precisely because non- borrowed reserves change as a result of 
open market operation.

Christiano et al. (1996, 1999), Eichenbaum (1992) and Eichenbaum and Evans (1995) 
utilize this idea to use shocks to non- borrowed reserves as monetary policy shocks in the 
recursive model, where output, price level and commodity prices are contemporaneously 
exogenous to non- borrowed reserves.

Bernanke and Mihov (1998) build a model based on monetary policy operating pro-
cedure to interpret and compare various existing methods to identify monetary policy 
shocks. The model by Bernanke and Mihov (1998) is summarized as follows:
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 eTR
t 5 2a1FFe

FFR
t 1 uDTR

t

 eTR
t 2 uNBR

t 5 a2FFe
FFR
t 1 uDBR

t

 eNBR
t 5 bDTRuDTR

t 1 bDBRuDBR
t 1 uMP

t  (23.5)

where TR, FFR and NBR represent total reserves, the federal funds rate, and non- 
borrowed reserves, respectively. The first equation shows the demand for total reserves, 
which is a negative function of the federal funds rate. The second equation shows the 
demand for borrowed reserves (total reserves minus non- borrowed reserves), which is a 
positive function of the difference between the federal funds rate and the discount rate 
(the innovations in discount rate are assumed zero). The third equation represents mon-
etary policy function. Non- borrowed reserves are set by an open market operation in 
reaction to the demand for total reserves and borrowed reserves.

This model comprises various methods as special cases. For example, when bDTR 5 1 
and bDBR 5 −1, monetary policy shocks are innovations in the federal funds rate. When 
bDTR 5 0 and bDBR 5 0, monetary policy shocks are innovations in the non- borrowed 
reserves.

4 MONETARY VAR MODELS WITH OTHER RESTRICTIONS

LR Restrictions

Some studies use LR restrictions. The long- run neutrality of money is usually exploited 
as the LR restriction. This identification strategy is attractive, as the long- run neutrality 
of money is the property shared by most theoretical models with money. In this regard, 
the identification is consistent with many theoretical models. Thus, the empirical evi-
dence based on such an identification method is a fair benchmark with which to compare 
different theoretical monetary models.

The study of Blanchard and Quah (1989) is an example of this identification method. 
The following is the structural VMA representation:

 cdYt

UR
d 5 ch1

h2
d 1 cq11 (L) q12 (L)

q21 (L) q22 (L) d cu1t

u2t
d , (23.6)

where q12(1) 5 0, and UR is the unemployment rate. q12(1) 5 0 implies that u2 does not 
have long- run effects on Y. Under this assumption, u2 can be interpreted as nominal 
shocks that do not affect real output in the long run.

Although the long- run neutrality assumption is appealing, it may be limited in that 
there can be structural shocks other than monetary policy shocks that do not affect real 
output in the long run. For example, money demand shocks are also nominal shocks that 
are not likely to affect real output in the long run. In addition, temporary real shocks are 
not likely to have long- run effects on real output.

Using a similar methodology, Lastrapes (1992) and Clarida and Galí (1994) iden-
tify nominal or monetary shocks in the open economy set- up. Clarida and Galí (1994) 
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determine monetary shocks using various LR restrictions derived from the Mundell–
Fleming–Dornbusch model in the open economy set- up as follows:

£dY 2 dY*

dRER
dP 2 dP*

§ 5 £h1

h2

h3

§ 1 £q11(L) q12(L) q13(L)
q21(L) q22(L) q23(L)
q31(L) q32(L) q33(L)

§ £uAS

uAD

uM

§ ,q12(1) 5 q13(1) 5 q23(1) 5 0
 (23.7)

where the variables with * are the foreign variables, RER is the real exchange rate, 
and uAS, uAD and uM are (the difference between home and foreign) aggregate supply, 
aggregate demand, and monetary shocks, respectively. q13(1) 5 q23(1) 5 0 implies 
that monetary shocks do not affect real output and real exchange rate in the long 
run (LR neutrality of money), and q12(1) 5 0 implies that aggregate demand shocks 
do not affect real output in the long run, which also holds true in traditional macro 
models.

By employing both LR and SR restrictions, Galí (1992) separately identifies money 
supply and money demand shocks. Kim and Lee (2008) use LR restrictions derived from 
the new open economy macro models to identify various structural shocks, including 
nominal or monetary shocks. Fung (1998) identifies monetary shocks by combining the 
cointegration relation for money demand equation and the one- to- one long- run relation 
between money and price.

Sign Restrictions

As reviewed in previous sections, previous studies usually yield various puzzles, such as 
the price puzzle and the liquidity puzzle, suggesting that monetary policy shocks iden-
tified in these studies may not be truly exogenous. The identification method by sign 
restrictions is an alternative identification strategy. By imposing the proper signs on 
impulse responses (or conditional correlation structure), such puzzles can be eliminated 
by construction.

Uhlig (2005) identifies monetary policy shocks by imposing sign restrictions on 
impulse responses. Uhlig (2005) defines monetary policy shocks as shocks that increase 
the federal funds rate, the price level, and the commodity price index but decrease non- 
borrowed reserves. By defining monetary shocks in this way, price and liquidity puzzles 
cannot appear by construction. In other words, Uhlig (2005) determines monetary policy 
shocks as shocks that do not generate the price puzzle and the liquidity puzzle. Scholl 
and Uhlig (2008) apply a similar method to examine the effect of monetary policy shocks 
in an open economy context.4

To identify monetary shocks, Canova and de Nicolo (2002, 2003) impose sign 
restrictions on the correlation of impulse responses. Canova and de Nicolo (2002) 
define monetary policy shocks as the shocks that generate positive correlations 
between inflation rate and real GDP, between inflation rate and real money balance, 
and between real money balance and real GDP. Canova and de Nicolo (2002) 
support these correlations by showing that monetary models predict such correlation 
 structures in general.5
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5 ALTERNATIVE MONETARY VAR MODELS

Some studies extend the basic VAR model (as shown in equations (23.1) and (23.2)). 
Large- scale Bayesian VAR and FAVAR models are used to include more variables in 
the model, as the basic VAR model is often faced with the degree of freedom problem. 
Such models are useful in analyzing monetary policy, as the monetary authority usually 
takes action using a lot of information from many variables that are difficult to include 
in the basic VAR model. On the other hand, monetary policy rule, structure of the 
economy, and/or variance structure may change over time. Time- varying VAR and 
regime- switching VAR models are used to capture such changes.

Large- scale VARs

By imposing prior information that does not depend on a specific economic theory, 
large- scale Bayesian VAR models try to mitigate the degree of freedom problem while 
maintaining the data- based nature of VAR analysis. For example, the Minnesota prior 
suggested by Litterman (1986) can be imposed by setting the following moments for the 
prior distribution of the coefficients in the reduced form VAR model (23.1).

 E [ (Ak)ij ] 5 e1, j 5 i, k 5 1
0, otherwise

 (23.8)

 VAR [ (Ak)ij ] 5 •g(k)2l2, j 5 i

f (i, j)2g(k) 2l2
s2

i

s2
j
, otherwise

 (23.9)

where (Ak)ij is the ith low and jth column of Ak. In addition, a diffuse prior is assumed 
for each element of c in (23.1). The basic idea is that all equations are centered on the 
random walk with drift. l controls the overall tightness. As l decreases, prior variance 
of all coefficients decreases, and all equations converge to the random walk with drift. 
g(k) is a decreasing function of k (for example, 1/k2), which implies that prior variance 
decreases (and the coefficient becomes less important) as the lag length increases. f(i,j) 
shows the relative importance of lags of other variables to its own lags; f(i,j) is between 
0 and 1, so own lags are more important. si is the standard error of a univariate autore-
gression on equation i. Prior variance is scaled by the standard errors to correct for the 
different magnitudes of the variables in the system. As this type of prior does not depend 
on a specific economic theory (but rather depends on a simple belief on the data process 
itself), it can be useful in increasing the precision on the estimates of the VAR model 
while maintaining the data- based nature of the VAR analysis. Refer to Doan et al. 
(1984), Litterman (1986) and the following references for more details.

Some studies use large- scale Bayesian VAR models for structural analysis. Leeper et 
al. (1996) construct 13-  and 18- variable structural Bayesian VAR models (with SR non- 
recursive restrictions) to identify various types of monetary policy shocks and examine 
their effects. Banbura et al. (2011) develop structural Bayesian VAR models with 131 
variables and conclude that such models can be used for structural analysis.

Bernanke et al. (2005) construct FAVAR models that combine factor analysis and 
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structural VARs. They include about 120 variables. The model is briefly described as 
follows.

Observable variables (yt) and unobservable factors (Ft) follow the following VAR 
process:

 cFt

yt
d 5 F(L) cFt21

yt21
d 1 et (23.10)

where Ft is a K 3 1 vector, yt is an M 3 1 vector, F(L)  is a matrix polynominal in lag 
operator L, and et is the residual vector. E(et) 5 0 and E(etert) ; S.

Assume that xt, Ft and yt are related by the following factor model:

 xt 5 LfFt 1 Lyyt 1 et (23.11)

where xt is an N 3 1 vector, Lf  is an N 3 K matrix, Ly is an N 3 M matrix, et is the error 
term vectors, and E(et) 5 0. Therefore, information on unobservable factors (Ft) can be 
extracted from various observable variables.

Bernanke et al. (2005) use the main policy variable such as the federal funds rate as 
yt, which is included directly in (23.10). However, other variables (xt) used to collect 
information on the state of the economy are not directly included in (23.10) but only in 
(23.11), which is used to extract the factors to be included in (23.10). This way, the degree 
of freedom problem in estimating the VAR equation with all variables is reduced. Then, 
as in the usual VAR, a structural form can be recovered from the reduced form VAR 
(23.1). Bernanke et al. (2005) use the SR recursive structure to identify monetary policy 
shocks.

VARs with Changing Parameters

Various studies, such as Cogley and Sargent (2005), Primiceri (2005), Canova and 
Gambetti (2009), and Sims and Zha (2006b), enable the use of time variations. These 
studies mostly find that enabling the use of time variations is important.

A (reduced- form) VAR model that enables time variations in parameters and vari-
ance–covariance matrices is described as follows:

 yt 5 ct 1 At(L)yt 1 et

 E(etert) ; Se,t (23.12)

where elements of At(L) and/or Se, t, or functions of these elements are usually assumed 
to follow random walks. Canova and Gambetti (2009) impose sign restrictions to recover 
structural equations/shocks, whereas Primiceri (2005) imposes SR recursive restrictions.

Sims and Zha (2006b) introduce regime- switching components into contemporaneous 
structural parameters and the variance of structural shocks. The model may be described 
in a simple way as follows:

 B0 (st)yt 5 d 1 B(L)yt21 1 ut
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 E(uturt) ; Su(st)

 Pr(st 5 i 0st21 5 k) 5 pik, i, k 5 1, . . ., h (23.13)

where s is an unobserved state, and h is the total number of states. The first equation 
shows that contemporaneous structural parameters can have different values under dif-
ferent regimes. The second equation shows that the variance of structural shocks can 
have different values under different regimes. The third equation shows the transition 
probability. The identification is achieved by SR non- recursive restrictions similar to 
those of Sims and Zha (2006a).

6 OTHER RELATED STUDIES ON MONETARY POLICY

Narrative Approach

To examine the effects of monetary policy, some studies identify the dates of mon-
etary policy actions following the spirit of Friedman and Schwartz (1963). Romer and 
Romer (1989) review ‘Record of Policy Actions’ and ‘Minutes of FOMC Meetings’, 
which describe the details on the process of actual monetary policy decisions. They 
collect the episodes in which the monetary authority takes a monetary contraction 
to reduce inflation rates. Such episodes are arguably exogenous to output changes 
because they exclude the episodes in which the monetary authority takes action in 
reaction to output changes. They treat these episodes (dates) as the dummy vari-
able and regress output on the dummies to examine the effects of monetary policy 
actions.

Romer and Romer’s (1989) regression is as follows:

 Yt 5 a0 1 a
11

i51
aiSDit 1 a

24

j51
bjYt2 j 1 a

36

k51
ckDt2k (23.14)

where SD is the seasonal dummy, and D is the dummy variable that takes 1 only if the 
abovementioned monetary contraction takes place and 0 otherwise.

Boschen and Mills (1991) extend Romer and Romer’s (1989) study by constructing 
the index by including the case of expansion (in addition to contraction) and refining 
it by allocating the value of {−2,−1,0,1,2}, depending on the strength of the policy 
actions.

On the other hand, Leeper (1997) criticizes Romer and Romer’s (1989) methodology 
by showing that the price puzzle emerges in response to shocks to the dummy variable 
in the VAR framework. This finding implies that, unfortunately, Romer and Romer’s 
(1989) measure is not fully exogenous.

Romer and Romer (2004) develop alternative measures to avoid the endogeneity 
problem. First, they control for the Federal Reserve’s forecasts of output and inflation 
prepared for scheduled FOMC meetings to deal with the central bank’s forward- looking 
behavior. Second, they only consider changes in the federal funds rate scheduled around 
FOMC meetings, as changes at other times may reflect structural shocks other than 
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monetary policy shocks. The price puzzle does not appear with this new measure, sug-
gesting that this measure may be close to an exogenous one.

Systematic Monetary Policy

In most monetary VAR models, the monetary policy reaction function (or monetary 
policy rule) is identified when monetary policy shocks are identified. Although past 
VAR studies on monetary policy focus on the effects of exogenous monetary policy 
shocks, some studies attempt to obtain the implications for the systematic monetary 
policy.

Some studies attempt to determine the implied monetary policy reaction function 
from the monetary VAR models. Clarida and Gertler (1997) estimate Taylor- type mon-
etary policy rules based on the estimates of structural VAR models. Kim (2002, 2003) 
calculates the elasticity of monetary instruments to changes in various variables based 
on impulse responses.

Other studies try to calculate the effects of changes in monetary policy rule using 
structural VAR models. Sims and Zha (2006a) and Kim (1996) perform counterfactual 
experiments to analyze the effects of changes in monetary policy rule by examining how 
the impulse responds to each structural shock change when the estimated monetary 
policy rule is changed to alternative hypothetical policy rules. Such counterfactual exper-
iments in the structural VAR framework are subject to the Lucas critique. However, 
they are still interesting experiments because they can complement the evidence provided 
by DSGE models, in which all economic agents are rational, and expectations change 
instantaneously when the policy rule changes.

Recently, interest on the systematic part of monetary policy has been revived in studies 
that use VAR models with time variations (that is, Sims and Zha, 2006b; Cogley and 
Sargent, 2005; Primiceri, 2005; Canova and Gambetti, 2009). While these studies analyze 
time- varying or regime- switching features, they also discuss how the systematic part of 
monetary policy changes over time and how changes in the systematic part of monetary 
policy (in addition to changes in volatility of the non- systematic part of monetary policy) 
contribute to changes in various business cycle features.

7 FISCAL POLICY

In recent years, VAR analysis on the effects of fiscal policy has expanded rapidly. There 
are two types of fiscal policies: changes in government spending and changes in net tax. 
Some studies analyze the effects of both types of policy shocks in one framework, and 
other studies investigate only government spending shocks because identification is 
easier, and the theoretical effects can be better understood.

Blanchard and Perotti (2002) use an SR non- recursive model to examine the effects of 
government spending and tax shocks as follows:

 eT
t 5 a1GDPe

GDP
t 1 a1GuG

t 1 uT
t

 eG
t 5 a2T uT

t 1 uG
t
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 eGDP
t 5 a3T uT

t 1 b3GuG
t 1 uGDP

t  (23.15)

where T, G and GDP represent (real) net tax, (real) government spending, and real GDP, 
respectively. The first and second equations show the policies on tax and government 
spending. In the second equation, government spending is assumed not to contempora-
neously respond to GDP (within a quarter). Blanchard and Perotti (2002) suggest that 
such an assumption is consistent with the US institutional process. Government spend-
ing does not automatically respond to economic activities. In addition, changing gov-
ernment spending in response to economic activities (for example, to perform a macro 
stabilization policy) takes at least more than a quarter because of its implementation 
lag. Blanchard and Perotti (2002) estimate a1GDP (showing how net tax responds to GDP 
within the period) outside the VAR model and use the estimated value of a1 in the VAR 
model. They also assume that either a1G or a2T is zero, which does not affect the result 
much because eT

t  and eG
t  (which are not explained by eGDP

t ) are not correlated much.
Among the various identifying assumptions by Blanchard and Perotti (2002), subse-

quent studies frequently exploit the restriction that government spending is contempora-
neously exogenous to other variables. For example, Fatas and Mihov (2001), Galí et al. 
(2007), Kim and Roubini (2008), Ilzetzki et al. (2009), Beetsma et al. (2008), Corsetti and 
Müller (2006), Ravn et al. (2007), and Kim (2009), among many others, use the assump-
tion that government spending is contemporaneously exogenous to other variables. This 
assumption has become popular partly because it can be imposed in a VAR model with 
a simple identification method similar to a recursive model.

Mountford and Uhlig (2009) provide an interesting approach with sign restrictions, 
which simultaneously identifies two types of fiscal shocks. They attempt to extract two 
types of fiscal shocks by excluding two important structural shocks, namely, non- fiscal 
business cycle shocks and monetary shocks. Monetary shocks are identified as in Uhlig 
(2005). Non- fiscal business cycle shocks are defined as the shocks that move government 
revenue and key macro variables in the same direction. Government revenue shocks and 
government spending shocks are defined as shocks that increase government revenue 
and government spending, respectively. Enders et al. (2011) impose sign restrictions 
derived from the DSGE models to identify government spending shocks in an open 
economy set- up.

Similar to the narrative approach for monetary policy analysis, Ramey and Shapiro 
(1998) isolate three arguably exogenous events that lead to large military build- up. Then, 
they use these dates as a dummy variable and regress real GDP on the dummy variable, 
as Romer and Romer (1989) do for monetary policy analysis. Edelberg et al. (1999) and 
Burnside et al. (2004) include the dummy variable in a VAR set- up to examine the effects 
of the dummy on various variables. Ramey (2009) extends and refines the Ramey and 
Shapiro (1998) study using richer narrative data on news of military build- ups. Barro 
and Redlick (2009) use a similar approach.

Fiscal policy actions are commonly anticipated. Thus, recent studies have worked 
on how to take care of anticipated fiscal shocks in the VAR framework. As discussed 
in the previous chapter, a problem like non- fundamentalness may arise in the presence 
of anticipated fiscal shocks. Leeper et al. (2011) include the spread between municipal 
bonds and treasury bonds in Blanchard and Perotti’s (2002) study to overcome such a 
problem. Fisher and Peters (2009) address the issue using prices of military suppliers as 
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an instrument for military spending. Mountford and Uhlig (2009) analyze the effects of 
anticipated fiscal shocks by assuming that the impulse responses of fiscal variables are 
zero for the initial periods but positive after the initial periods.

Some recent studies (Ravn et al., 2007; Kim, 2009; Ilzetzki et al., 2009; Beetsma et al., 
2008) employ (structural- form) panel VAR models as follows:

 B0 yi
t 5 ci 1 B(L)yi

t 1 ui
t

 E(ui
t) 5 0, E(ui

tui
tr) ; Su, i 5 1. . .I, t 5 1. . .T  (23.16)

where I is the number of countries, and ci indicates the individual fixed effect that 
controls country- specific effects not captured in the model. Using cross- sectional 
information based on the panel VAR model, they group countries with distinct char-
acteristics (that is, fixed vs. floating exchange rate regime and industrial vs. developing 
countries) and analyze how the effects are different for groups of countries with distinct 
characteristics.

8 OPEN ECONOMY POLICIES

Exchange Rate Policy

Some previous studies investigate the effects of foreign exchange intervention using VAR 
frameworks. Kim (2003, 2005) identifies shocks to foreign exchange intervention by 
imposing SR non- recursive restrictions. As monetary policy is interrelated with foreign 
exchange intervention, Kim (2003, 2005) jointly identifies shocks to foreign exchange 
intervention and monetary policy shocks as follows:

 eF
t 5 a1ReR

t 1 a1EeE
t 1 uFP

t

 eR
t 5 a2MeM

t 1 a2Fe
F
t 1 a2EeE

t 1 uMS
t  (23.17)

where F and E show the indicator of foreign exchange intervention (or foreign exchange 
reserves) and nominal exchange rate, respectively, and FP stands for foreign exchange 
policy.

The first equation shows the foreign exchange policy. Foreign exchange reserves (or 
foreign exchange intervention) are set after observing the contemporaneous values of 
the exchange rate (as the policy is usually performed to stabilize the exchange rate). 
The second equation represents the monetary policy. Monetary policy may respond 
to the exchange rate to stabilize the exchange rate and monetary aggregate, as in the 
non- recursive model that separates money demand and money supply. In addition, con-
temporaneous interactions between two policies are allowed. Foreign exchange policy 
may react to the monetary policy to mitigate the effect of the monetary policy on the 
exchange rate. If not sterilized, foreign exchange policy affects monetary policy.

In these studies, the foreign exchange intervention function, in addition to the mone-
tary reaction function, is also calculated based on impulse responses. On the other hand, 
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Kim (2007) uses VAR models with sign restrictions to identify the exchange rate regime 
based on the degree of exchange rate stabilization policy implied from the impulse 
response function.

Other studies analyze the effects of exchange rate shocks. In a highly managed 
exchange rate regime, changes in the exchange rate themselves can be regarded as 
policy actions. Therefore, examining the effects of exchange rate shocks can be con-
sidered an analysis of the effects of exchange rate policy actions. Kamin and Rogers 
(2000), Kim and Ying (2007) and Kim and Kim (2011) examine the effects of exchange 
rate shocks in the VAR framework to determine the effects of exchange rate policy 
actions. Kim and Ying (2007) and Kim and Kim (2011) use SR recursive models in 
which the exchange rate is allowed to be contemporaneously affected by all variables 
in the model. Such identifying assumptions can be justified as follows. If the exchange 
rate is determined in the market to some extent, the exchange rate is likely to reflect 
instantaneously all the information on the state of the economy. If the exchange rate 
is fully determined by the policy authority, the policy authority is likely to set the 
exchange rate after observing all possible contemporaneous information on the state 
of the economy.

Capital Controls

Some previous studies use the VAR framework to analyze the effectiveness of capital 
controls. They include the index indicating the degree of capital controls in the VAR 
model and examine the effects of shocks to the capital control index on various 
 variables,  such as capital flows (for example, De Gregorio et al., 2000; Cardoso and 
Goldfajn, 1997; Carvalho and Garcia, 2008; various studies in Asian Development 
Review, 2012). 

A more controversial aspect of these studies is whether such an analysis can properly 
analyze the effectiveness of capital controls. One important objective of capital controls 
is to reduce the volatility of capital flows in the presence of various push and pull factors. 
However, in the basic VAR model, the effects of push and pull factors under high versus 
low degree of capital controls are treated the same. Merely examining the effects of 
shocks to the capital control index under such an assumption is not fully satisfactory.

Given the limitation of previous studies, Choi and Kim (2012) analyze the effective-
ness of capital controls using the threshold VAR model as follows:

 Yt 5 c (1) 1 A(L)(1)Yt 1 (c (2) 1 A(L)(2)Yt)It(St $ g) 1 ut (23.18)

where It(St $ g) is an indicator function whose value is 1 if the degree of capital control, 
St, is larger than the threshold value g, and 0 otherwise. Choi and Kim (2012) convert 
the reduced form into the structural form to examine how the effects of shocks to various 
determinants of capital flows are different under high versus low degree of capital con-
trols to infer the effectiveness of capital controls.6
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9 CONCLUSION

This chapter reviews how VAR models are applied to macroeconomic policy analysis. 
The literature is developed by introducing alternative identification methods and models. 
The VAR model was initially proposed with an SR recursive method, but various alter-
native identification methods, such as SR non- recursive restrictions, LR restrictions, 
and sign restrictions, were later introduced. The basic VAR models were extended to 
allow for a large number of variables (as in large- scale Bayesian VAR and FAVAR), 
time variations (as in time- varying VAR, regime- switching VAR, and threshold VAR), 
and cross- sectional information (as in panel VAR). The literature originated from the 
applications to monetary policy analysis, but it was also extended to other macro policy 
analyses, such as fiscal policy and exchange rate policy. In the future, new identification 
methods and models will be continuously introduced, which will be applied to various 
macro policy applications.

NOTES

1. Refer to Reichenstein (1987) and Leeper and Gordon (1992).
2. However, Hanson (2004) suggests that commodity price does not capture inflation expectation. On the 

other hand, Beaudry and Devereux (1995) develop a theoretical model to match the price puzzle by regard-
ing the price puzzle as the true effects of monetary policy.

3. There are two interpretations: (1) such relations are applied only to contemporaneous interactions in the 
structural form equation; (2) they are applied to the relationship between the reduced form residuals and 
structural shocks. 

4. Kim (2013) suggests that monetary policy shocks identified by Uhlig’s (2005) method produce other puz-
zling responses. This may imply that the identified shocks may not be truly exogenous monetary policy 
shocks despite these two puzzles being avoided by construction. 

5. Faust (1998) analyzes the effects of monetary policy shocks on output in the structural VAR models, in 
which the number of identifying restrictions is smaller than the traditionally required number of identi-
fying restrictions by excluding unsure identifying restrictions. The method of Faust (1998) preludes the 
methodology of sign restrictions. Refer to Chapter 22 in this volume.

6. An alternative method is to exploit cross- sectional information. Structural shock transmission can be com-
pared for countries of high versus low degree of capital controls. Refer to Miniane and Rogers (2007) for 
monetary policy transmission and Kim (2009) for fiscal policy transmission.
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24 Calibration and simulation of DSGE models*
Paul Gomme and Damba Lkhagvasuren

cal·i·bra·tion (kăl9ə- brā9shən) n. The process of restricting parameters in an economic model so 
that the model is consistent with long run growth facts and microeconomic observations.

1 INTRODUCTION

Many interesting macroeconomic models are either sufficiently complex that they must 
be solved computationally, or the questions being asked are inherently quantitative and 
so they should be solved computationally. The first group includes almost any empiri-
cally relevant version of the neoclassical growth model.1 The second group includes such 
basic questions as business cycle fluctuations: How well does the neoclassical growth 
model do in producing variation in macroaggregates (like output, consumption, invest-
ment and hours worked) that ‘look like’ those seen in the data. These are quantitative 
questions for which qualitative answers are insufficient. Calibration is an effective tool 
for imposing discipline on the choice of parameter values that arise in such models, 
taking what would otherwise be a numerical example into the realm of an empirically 
relevant exercise with parameters tightly pinned down by either long- run growth facts, 
or microeconomic observations. As such, calibration is a useful part of the macroecono-
mist’s toolkit.

This chapter is concerned with measurement as it pertains to calibration.2 Kydland 
and Prescott (1982) provided the foundations for the calibration procedure; key subse-
quent developments have been made by Prescott (1986), Cooley and Prescott (1995) and 
Gomme and Rupert (2007). This chapter builds chiefly on Gomme and Rupert. Like this 
earlier paper, our goal is to provide a sufficiently careful and detailed description of our 
procedures for others to be easily able to replicate our work. To further facilitate rep-
lication, the underlying data and manipulations are available at http://alcor.concordia.
ca/~pgomme.

In order to make the presentation as ‘hands- on’ as possible, section 2 presents the 
model, the neoclassical growth model which forms the foundation of New Classical 
and New Keynesian models. The heart of the chapter is in section 3, which presents the 
calibration of the neoclassical growth model. The first order of business is to choose 
functional forms for preferences and technology. These choices are guided, in part, by 
long- run growth considerations. A second key issue is how broadly economic activity 
should be measured. Cooley and Prescott (1995) think of economic activity very broadly, 
including not only private market activity but also government and household activity. 
Gomme and Rupert (2007) focus more narrowly on private market activity. However, 
as argued in section 3.2, for Cooley and Prescott to aggregate economic activity across 
the private market, government and household, it must almost certainly be true that 
each of these sectors has the same technology. This chapter follows Gomme and Rupert, 
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 focusing narrowly on private market activity since it involves fewer imputations.3 It is 
important to remember that if the Cooley and Prescott aggregation is correct, then the 
Gomme and Rupert measurement should give the same answer as Cooley and Prescott: 
the converse is not true. Much of the remainder of section 3 describes the nitty gritty 
details of constructing various calibration targets. The chapter describes how to actu-
ally construct more calibration targets than are necessary to calibrate the neoclassical 
growth model. Section 3.12 describes how to actually calibrate the model, which involves 
making sure that in steady state, the model is consistent with the calibration targets. It 
is important to remember that calibration is a process for mapping a set of calibration 
targets into an identical number of model parameters; it is not simply setting parameter 
values.

The model is solved and simulated in section 4. Rather than the usual real business 
cycle practice of comparing two tables of second moments – one for the US data, the 
other for model- generated data – Solow residuals as measured from the US data are fed 
into the model as the set of technology shocks. The model is, then, evaluated on its ability 
to generate time series that are similar to those in the data. The model does reasonably 
well in replicating the time series behavior of output, consumption and average labor 
productivity; it does rather poorly with respect to hours, investment and capital.

2 THE ECONOMIC ENVIRONMENT

The organizing framework is the neoclassical growth model that lies at the heart of New 
Classical and New Keynesian models. The presentation is kept relatively brief since 
this model should be familiar to most macroeconomists. It should be understood that 
the variables chosen by households differ from those chosen by firms, and that these 
differ from aggregate or per capita quantities; in the presentation, no distinction is made 
between these three sets of variables in the interests of conserving on notation.

Also in the interests of a clean presentation of the model, growth is omitted. There are 
two logical ways for growth to appear: as labor- embodied technological progress, and 
in the form of investment- specific technological change.4 As shown in King et al. (1988) 
and Gomme and Rupert (2007), including growth is important for delivering certain 
parameter restrictions in both preferences and technologies. These parameter restrictions 
are discussed below.

2.1 Households

The problem of the representative household is

 max E0a
`

t50
btU(ct,,t) , 0 , b , 1 (24.1)

subject to a budget constraint,

 ct 1 xt 5 (1 2 tn)wtnt 1 (1 2 tk)rtkt 1 tt, (24.2)

the law of motion for capital,
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 kt 1 1 5 (1 2 d)kt 1 xt, 0 # d # 1, (24.3)

and a constraint on time,

 nt 1 ,t 5 1. (24.4)

The household’s preferences are defined over contingent time sequences for consump-
tion, ct, and leisure, ,t. In the budget constraint, (24.2), the real wage is wt while the 
rental rate for capital is rt. Labor income is taxed at the rate tn while capital income is 
taxed at the rate tk.5 Hours of work are denoted nt while kt is the household’s beginning- 
of- period holdings of capital. The household receives a lump- sum transfer of tt from the 
government. Finally, xt is the household’s investment and d is the depreciation rate of 
capital.

2.2 Firms

Firms face a sequence of static problems. Each period, a firm hires labor and rents 
capital to maximize its real profits:

 max
kt, nt

F (kt, nt; zt) 2 wtnt 2 rtkt (24.5)

where F  is a constant- returns- to- scale production function, and zt is a shock to 
technology.

In the New Keynesian literature, it is common to assume two sectors, one for 
final goods, the other for intermediate goods. The final goods sector is perfectly 
competitive and uses only intermediate goods. The intermediate goods sector is char-
acterized by monopolistic competition, and production employs labor and maybe 
capital. The reason for the two- sector set- up is because most New Keynesian models 
include sticky price setting which means that at least some firms must be price setters. 
The  complications of the New Keynesian set- up are suppressed in the interests of 
clarity.

2.3 Government

The only role for government is to levy distorting factor income taxes, lump- sum rebat-
ing the proceeds. In particular, there is no government spending and the government 
issues no debt. Its budget constraint is

 tt 5 tnwtnt 1 tkrtkt. (24.6)

3 CALIBRATION

At this stage, the task is to choose functional forms, then find calibration targets that can 
be used to assign values to the parameters of the model.
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3.1 Functional Forms

To be consistent with balanced growth, the momentary utility function, U, needs to be 
homogeneous of some degree in consumption, c. For the most part, the real business 
cycle literature uses

 U(c,,) 5 e (c,w)1 2 g

1 2 g if g [ (0,1)< (1, `) ,
lnc 1 w ln, if g 5 1.

 (24.7)

The utility specification is referred to as ‘constant relative risk aversion’. Above, U  is 
homogeneous of degree (1 2 g)  in c; in other words, this utility function satisfies bal-
anced growth restrictions. In the New Keynesian literature, it is more common to see

 U(c, n) 5 lnc 2 w
n11x

1 1 x
 (24.8)

where 1/x is the Frisch labor supply elasticity.
The production function is specified to be Cobb–Douglas:

 F(k, n; z) 5 zkan12a, 0 # a # 1. (24.9)

In the literature, the Cobb–Douglas functional form is often justified as being consistent 
with the following facts:

1. capital’s share of output exhibits no secular trend;
2. the return to capital similarly has no secular trend;
3. the real wage rate does have a secular trend.

Swan (1964), Phelps (1966) and King et al. (1988) show that any constant- returns- to- 
scale production function is consistent with these facts. What makes the case for Cobb–
Douglas more compelling is to incorporate investment- specific technological change; 
Gomme and Rupert (2007) make explicit arguments made in Kydland (1995) and 
Greenwood et al. (1997), and the interested reader is directed to these works for details.

Finally, the productivity shock is assumed to follow a first- order autoregressive process:

 lnzt 5 r lnzt21 1 et, et , N(0,s2). (24.10)

The set of parameters to be calibrated (assigned values) is summarized in Table 24.1. 
Since there are nine parameters, procedurally calibration involves the use of nine 

Table 24.1 Parameters to be calibrated

Preferences: b, w, g or x
Technology: d, a , r, s
Government: tn , tk
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 calibration targets. These targets are typically taken from two sources: microeconomic 
evidence, and long- run growth facts. Long- run growth facts have already implicitly been 
used to restrict the production function to be Cobb–Douglas, as well as to restrict the 
utility function. There is an embarrassment of riches since there are more potential cali-
bration targets than parameters.6 The properties of the technology shock, r and s, can 
be inferred from the properties of the Solow residual; see section 3.10. The tax rates, tn 
and tk, can be obtained directly from National Income and Product Accounts (NIPA) 
as described in section 3.8. The remaining five parameters can be calibrated using some 
subset of:

1. factor income shares using data from NIPA;
2. depreciation and capital stock data reported by the Bureau of Economic Analysis 

(BEA);
3. the investment–output ratio;
4. the capital–output ratio;
5. microeconomic evidence concerning risk aversion;
6. microeconomic evidence regarding the labor supply elasticity;
7. the allocation of time from US time use surveys;
8. the real return to capital.

The remainder of this section discusses the measurement of the above calibration targets.

3.2 How Broadly to Measure Economic Activity

An issue that immediately arises is how broadly one should measure economic activity 
for the purposes of calibration. Perhaps the best known paper on calibration is that of 
Cooley and Prescott (1995). They construe economic activity very broadly, encompass-
ing both private market activity, government production, and home activity. Cooley 
and Prescott include capital in all these sectors, plus the stock of inventories and the 
value of land, in their measure of the capital stock; output likewise includes output 
produced by this capital stock. In measuring income flows, Cooley and Prescott must 
impute capital income flows to government capital since National Income and Product 
Accounts (NIPA) does not include a measure of government capital income. For similar 
reasons, they must impute income flows to the stock of consumer durables. Oddly, they 
do not impute labor income flows for the housing sector, although these flows are largely 
missing from NIPA. Likewise, Cooley and Prescott’s measure of time spent working 
only includes market time; see the discussion in section 3.7.

An alternative approach is that exemplified by Gomme and Rupert (2007) who 
measure economic activity more narrowly, focusing on private market activity, when it 
comes to calibration. If Cooley and Prescott are justified in their aggregation, it should 
not matter whether one takes the broad or narrow approach to measuring economic 
activity. To see this point, let sectoral outputs be given by

 YM 5 K a
MN 12a

M  (24.11)

 YG 5 K a
G N 12a

G  (24.12)

HASHIMZADE 9780857931016 CHS. 24-25+IND (M3110).indd   579HASHIMZADE 9780857931016 CHS. 24-25+IND (M3110).indd   579 01/07/2013   10:3401/07/2013   10:34



580  Handbook of research methods and applications in empirical macroeconomics

 YH 5 K a
HN 12a

H , (24.13)

where an M subscript denotes private market activity, G government activity, and H 
the household sector. For the Cooley and Prescott aggregation to be valid, it must be 
the case that all three production functions have the same capital share parameter, a; 
otherwise, they surely would not be able to write the aggregate production function as

 Y 5 (KM 1 KG 1 KH)a (NM 1 NG 1 NH)12a. (24.14)

To find a value for capital’s share, a, it should not matter whether one uses (24.11), as 
Gomme and Rupert do, or (24.14), as Cooley and Prescott do. Since Cooley and Prescott 
must impute various income flows while Gomme and Rupert do not, it seems more 
straightforward to follow the narrow approach of Gomme and Rupert.

Further, there are good reasons for thinking that the three sectors are not suffi-
ciently similar to aggregate as in (24.14). For example, the home production literature 
emphasizes that there is an inherent asymmetry between the market and home sectors: 
the market sector produces goods that are used in the home sector (namely, invest-
ment goods including durables), but the home sector does not produce goods that are 
used by the market sector; see Benhabib et al. (1991) and Greenwood and Hercowitz 
(1991).

3.3 Capital’s Share of Income

In principle, one of the easiest parameters to calibrate is a, capital’s share of income. 
Given that the production function is Cobb–Douglas, and assuming that factor 
markets are competitive, factors are paid their marginal products. Capital’s share of 
income can, then, be computed as total payments to capital divided by income. In prac-
tice, the calculation is far from straightforward, as already suggested by the discussion 
of the different approaches of Cooley and Prescott (1995) and Gomme and Rupert 
(2007).

A further issue relates to the treatment of proprietors’ income and indirect taxes less 
subsidies. The problem is that both go into measured GDP, and both have capital and 
labor income components that cannot easily be separated out. To see how to proceed, 
write out market income as:

 YM 5 YKM 1 YNM 1 YAM (24.15)

where YAM denotes ambiguous market income, namely proprietors’ income plus indirect 
taxes less subsidies, YKM is unambiguous capital income, and YNM is unambiguous labor 
income. Some portion of ambiguous income needs to be allocated to capital income, 
the rest to labor income. The practice in the literature is to assume that the fraction of 
ambiguous income that should be allocated to capital is the same fraction as income is 
allocated to capital for the rest of the economy. This idea is, perhaps, clearer when stated 
as an equation,

 YKM 1 aYAM 5 aYM, (24.16)
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where a is the (unknown) capital share. The left- hand side is total capital income, includ-
ing a fraction of ambiguous income; the right- hand side is capital income as a share of 
total income. Equation (24.16) can be rewritten as

 a 5
YKM

YKM 1 YNM
. (24.17)

As discussed above, one complication is that market income flows are ‘contaminated’ 
by housing income flows. Fortunately, National Income and Product Accounts (NIPA) 
includes data on the housing sector. Capital market income is given by

 YKM 5 Rental Income 2 Housing Rental Income

 1 Net Interest Income 2 Housing Net Interest Income

 1 Corporate Profits 2 Housing Corporate Profits

 1 Gross National Product 2 Net National Product

 Consumption of Fixed Capital

 2 (Government Gross Value Added 2 Government Net Domestic Product)

 Government Consumption of Fixed Capital

 2 (Housing Gross Value Added 2 Net Housing Value Added).

 Housing Consumption of Fixed Capital  (24.18)

In (24.18), consumption of fixed capital (with appropriate adjustments to remove flows 
associated with the government and housing sectors) reflects compensation to capital for 
depreciation.

Labor market income is:

 YNM 5 Compensation of employees 2 Housing compensation of employees

 2 Government compensation of employees. (24.19)

Capital’s share of income is, then, computed via (24.17).

3.4 The Depreciation Rate

The Bureau of Economic Analysis (BEA) reports total depreciation for various cat-
egories of capital goods, as well as capital stocks. The depreciation rate can, then, be 
obtained by dividing (nominal) depreciation by the (nominal) capital stock. The depre-
ciation rate on market capital uses data on private equipment and software and private 
non- residential structures.

For those interested in modeling the home sector, the corresponding categories for 
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computing the depreciation rate for home capital are: private residential fixed assets 
(structures), and the stock of consumer durables.

Depreciation rates are reported below for market and home capital, as well as their 
chief components.

3.5 Great Ratios

Two of the so- called ‘great ratios’ are the investment–output and capital–output ratios. 
Given the discussion of the measurement of capital’s share of income, a, it makes sense 
that output should correspond to private output (that is, excluding government), net 
of housing. Investment, then, should include investment in private non- residential 
structures, and in equipment and software. Inventory investment is excluded from 
total investment because very few macroeconomic models explicitly model inventories. 
Output corresponds to the sum of private investment and consumption of non- durables 
and services.

Measuring the capital–output ratio is fraught with not only similar issues to those for 
investment, but others unique to the measurement of capital. Specifically, what exactly 
comprises private market capital? It seems clear that the stock of non- residential struc-
tures, and equipment and software should be included. It should be noted, however, that 
the Bureau of Economic Analysis (BEA)’s inclusion of software in ‘capital’ is a relatively 
recent decision. One can make a case for inventories on the basis that National Income 
and Product Accounts (NIPA) includes changes in the stock of inventories as part of 
investment. A case can also be made for including land. The problem with land is that 
its value is computed as a residual from the flow of funds accounts by the Board of 
Governors of the Federal Reserve System, and the value of land for the US as a whole is 
sometimes found to be negative. In any event, the Board of Governors no longer reports 
the value of land.

Putting aside these issues, a further problem with capital is that its measurement has 
been subject to somewhat infrequent but large revisions, as reported in Herman (2000). 
For broadly defined measures of capital, in 1997 the BEA revised their estimates of the 
capital stock up by as much as 30 per cent. Alternative measures of the US capital stock, 
like those of Maddison (1995) give estimates that are even larger. In light of these issues 
regarding the measurement of capital, using the capital–output ratio as a calibration 
target seems unwise.

3.6 Microeconomic Evidence

Microeconomic evidence can be brought to bear on two calibration targets: the coeffi-
cient of relative risk aversion, and the labor supply elasticity. Since Hall (1978), empirical 
work on consumption has used an intertemporal Euler equation to estimate key param-
eters of the utility function. Using this approach, Dynan (1993) reports estimates of the 
elasticity of intertemporal substitution near 0.1, or a coefficient of relative risk aversion 
of 10. In contrast, Gruber (2006), using Consumer Expenditure Survey data on total 
non- durable consumption, estimates a value of around 2, which implies a coefficient of 
relative risk aversion of 0.5. Using aggregate data, Attanasio and Weber (1995) find an 
elasticity of intertemporal substitution of either 0.34 or 0.48 – a coefficient of relative risk 
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aversion of roughly 3 or 2. These finds are generally in line with evidence surveyed by 
Mehra and Prescott (1985); they conclude that the coefficient of relative risk aversion is 
positive, and restrict its value to be no larger than 10, although the bulk of the evidence 
points to a smaller value. In the literature, it is fairly common to implicitly set g 5 1 by 
assuming logarithmic utility.

Micro evidence on the labor supply elasticity typically use data on men. Typically, this 
labor supply elasticity is found to be small but positive. Altonji (1986) estimates an elas-
ticity no larger than 0.35, MaCurdy (1981) no larger than 0.5. Pencavel (1986) surveys 
the empirical literature; he finds that estimates of the male labor supply elasticity are 
less than 1/3. For the logarithmic case, (24.7) implies a (steady state) Frisch labor supply 
elasticity given by 1 2 h

h . For the largest estimated labor supply elasticity, 0.5, the Frisch 
labor supply elasticity means that steady state hours are 2/3 of the time endowment; 
smaller labor supply elasticities correspond to larger fractions of the time endowment. 
As shown in section 3.7, these fractions are not consistent with US time use evidence. 
When the utility function is given by (24.8), it seems common to assume a Frisch labor 
supply elasticity of 1, which would imply x 5 1. There is nothing intrinsic to (24.8) to 
preclude setting the labor supply elasticity parameter equal to that estimated by labor 
economists, then using the parameter w to ensure that hours worked are consistent with 
the time use survey evidence.

3.7 Time Use Surveys

One of the most comprehensive measurements of time use in the US is the periodic time 
use surveys which were taken in 1965, 1975, 1985, 1995, and most recently the American 
Time Use Survey (ATUS), 2003–2006. Based on the American Time Use Survey (ATUS), 
Gomme and Rubert (2007) report that individuals aged 16 and older spend 25.5 per cent 
of their discretionary time (that is, excluding time for sleeping and other personal care) 
working in the market. This fraction is considerably smaller than the value of 1/3 typi-
cally used in the literature. Gomme and Rubert compute a higher fraction, 31.5 per cent, 
for individuals aged 16–64. However, since the majority of macroeconomic models are 
of a representative agent, there seems to be no good reason to exclude retirees from the 
calculation of the fraction of time spent working.

Curiously, Cooley and Prescott (1995) calibrate to a working time fraction of 1/3. 
Given their broad notion of economic activity as including the home sector, it would 
make sense for them to include both time spent working in the market and time spent 
working at home. For the 161 population, Gomme and Rupert (2007) find that an 
average of 24 per cent of discretionary time is spent performing housework; for those 
aged 16–64, it is 25.1 per cent. Arguably, then, Cooley and Prescott should have cali-
brated to an average work time of 49.5 per cent (the 161 population) or 56.6 per cent 
(the 16–64 population).

3.8 Taxes

The calculation of tax rates follows the methodology of Mendoza et al. (1994) and Carey 
and Tchilinguirian (2000); see also Gomme et al. (2011). Auray et al. (2011) construct 
tax rates for the US and a subset of the EU The first step is to compute the tax rate on 
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general household income, denoted th (as distinct from the tax on earnings, tn), as the 
ratio of total household taxes divided by total household income:

th 5
Personal Current Taxes

Net Interest 1 Proprietors’ Income 1 Rental Income 1 Wages and Salaries
 (24.20)

Next, the tax rate on earnings is obtained as

 tn 5
Labor Income Taxes

Labor Income
 (24.21)

where

 Labor Income Taxes 5 th [Wages and Salaries 1 (1 2 a)Proprietors’ Income]

 1 Contributions for Government Social Security, (24.22)

and

 Labor Income 5 [Wages and Salaries 1 (1 2 a)Proprietors’ Income]

 1 Employer Contributions for Government Social Security (24.23)

In the above, a is capital’s share of income; section 3.3.
Finally, the capital income tax rate is given by

 tk 5
Capital Income Taxes

Capital Income
 (24.24)

where

 Capital Income Taxes 5 th [Net Interest 1 a Proprietors’ Income 1 Rental Income]

  1 Corporate Income Taxes 1 Real Estate Property Taxes

  1 State Local Other Taxes, (24.25)

and

 Capital Income 5 Net Operating Surplus 1 Consumption of Private Fixed Capital

  1 (1 2 a)  Proprietors’ Income, (24.26)

where it is understood that the income flows, including net operating surplus, are meas-
ured net of their corresponding housing income flows. ‘State and Local Other Taxes’ 
includes items like licensing fees.
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3.9 The Return to Capital

As in Gomme et al. (2011), the after- tax return to capital can be computed from National 
Income and Product Accounts (NIPA) data by dividing after- tax private market capital 
income by the corresponding capital stock:

 Rt 5 c a (After-tax Capital Income) /4
Market Capital Stock

b4

2 1 d 3 100% (24.27)

where

 After-tax Capital Income 5 Net Operating Surplus 2 (1 2 a)Proprietors Income

 2 th [Net Interest 2 a Proprietors Income 2 Rental Income]

 2 Taxes on Corporate Income 2 Business Property Taxes

 2 State and Local Other Taxes. (24.28)

Since income is reported at an annual rate, the division of income by 4 (24.27) in 
expresses income at a quarterly rate.

3.10 The Solow Residual

Given data on hours of work, the capital stock and output, and armed with an 
estimate of a, capital’s share of income, the Solow residual can be computed from 
the aggregate production function, (24.9). Denote the Solow residual by Zt. To 
obtain the  properties of the productivity shock in (24.10), namely the autoregres-
sive  parameter, r, and the standard deviation of the innovation, s, run the following 
regression:

 lnZt 5 b0 1 b1 lnZt21 1 b2t 1 ut. (24.29)

The time trend, t, is included to remove secular growth. The estimate of b1 corresponds 
to r while the standard error of the residual corresponds to s.

The results of estimating (24.29) over the period 1954Q1 to 2010Q4 are:

 lnZt 5 0.3252
(0.1145)

1 0.9555
(0.0158)

lnZt21 1 3.4144 3 105

(8.04823105)
t, (24.30)

standard errors in parentheses. The standard deviation of the residual is 0.00861.

3.11 Calibration Targets: Summary

Table 24.2 summarizes the implications of the calculations above for the calibration 
targets. In order to provide a single source of targets, Table 24.2 includes targets relevant 
for those interested in modeling the home sector, as well as a disaggregation of the depre-
ciation rates into their constituent components (for the market sector, between structures 
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and equipment and software; for the home sector, between structures (housing) and 
consumer durables).

A few comments are in order. First, the depreciation rate for market structures is sub-
stantially lower than that of equipment and software. The overall market depreciation 
rate is, clearly, a weighted average of the two components where the weights are given 
by the relative sizes of the two capital stocks. As shown in Gomme and Rupert (2007), 
while the market structures–output ratio is relatively constant in the post- World War II 
period, that of equipment and software has moved up by roughly 10 percentage points.

Second, while the after- tax return to business capital is somewhat higher than the 4 per 
cent real return that the bulk of the macroeconomics literature calibrates to, the pre- tax 
return is much higher. The conventional justification for using a 4 per cent return is that 
it represents a rough average of stock market returns, around 7 per cent according to 
Mehra and Prescott (1985), and the return to a risk- free bond, 0.8 per cent again accord-
ing to Mehra and Prescott. Recall, though, that the return to business capital computed 

Table 24.2 Calibration targets

Target Value

Risk aversion 1 – 2
Frisch labor supply elasticity 1.0
Time:
 Market, 161 0.255
 Market, 16–64 0.315
 Home, 161 0.24
 Home, 16–64 0.251
Capital’s share of income 0.2852
Depreciation rates:
 Market 0.0718
  Structures 0.0289
  Equipment & Software 0.1460
 Home 0.0612
  Housing 0.0159
  Durables 0.2070
Investment–output ratio 0.1617
Capital–output ratio 1.6590
Labor tax rate 0.2417
Capital tax rate 0.4002
Return to capital:
 Pre- tax 9.4115
 After- tax 4.9869
Technology shock:
 Autoregressive parameter 0.9555
 Standard Deviation of the residual 0.00861

Notes: Average time allocation are based on calculations by Gomme and Rubert (2007) from the 2003–06 
American Time Use Survey. Capital’s share of income, the depreciation rates, the ratios, tax rates and 
properties of the technology shock are based on the data for the period 1954Q1 to 2010Q4; see the estimates 
in (24.30). The return to capital is average over 1954Q1 to 2009Q4.
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above includes income flows that correspond to income from the stock market as well 
as bonds. What is potentially missing is intangible capital. Omitting intangible capital – 
which presumably earns a return measured in NIPA – biases up the measured return to 
business capital. However, as reported in Gomme et al. (2011), the average return to the 
S&P 500 is somewhat higher than the return to business capital, despite the fact that the 
prices of the stocks making up the S&P 500 should be pricing in the value of intangible 
capital.

Third, the properties of the technology shock are fairly similar to those of Prescott 
(1986): an autoregressive parameter of 0.95 and a standard deviation of the innovation 
of 0.00763.

3.12 Calibration in Action

A model period is set to be one quarter. Recall from Table 24.1 that there are 9 param-
eters to be calibrated. Some of these parameters can be set directly from Table 24.2. These 
include: d, the depreciation rate, based on the depreciation rate of market capital; a, capi-
tal’s share of income; r and s, the properties of the technology shock (see the estimates in 
(24.30)); and the tax rates on labor income, tn, and capital income, tk. For the purposes 
of this demonstration, the New Classical calibration will be followed, and the coefficient 
of relative risk aversion is set to 2. The remaining parameters are b, the discount factor, 
and w, which determines the importance of leisure in preferences. These parameters 
should be calibrated to ‘high quality’ targets, and so are chosen so that the model’s steady 
state delivers the observed fraction of time spent working, 25.5 per cent, and an annual 
real return to capital of 4.9869 per cent. A reasonable alternative to the return to capital 
would be the investment–output ratio. Given the discussion above concerning conceptual 
issues in obtaining the capital–output ratio, as well as the large – if infrequent – revisions 
to broad definitions of capital, either the return to capital or the investment–output ratio 
should be strictly preferred as calibration targets over the capital–output ratio.

The equations characterizing a solution to this model consist of:

 U1 (ct,1 2 nt)F2 (kt, nt; zt) 5 U2 (ct,1 2 nt) (24.31)

 U1 (ct11,1 2 nt11) 5 bEt{U1 (ct11,1 2 nt11) [(1 2 tk)F1 (kt11, nt11; zt11) 1 1 2 d ]}
 (24.32)

 ct 1 kt11 5 F(kt, nt; zt) 1 (1 2 d)kt (24.33)

Imposing the functional forms above, in steady state, these equations read:

 
1
c

(1 2 a) ak
nba

5
w

1 2 n
 (24.34)

 1 5 b c (1 2 tk)aan
k
b12a

1 1 2 d d  (24.35)

 c 1 dk 5 kan12a (24.36)
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These equations can be solved for c, n, k, w and b, imposing the additional restrictions 
that

 n 5 0.255 (24.37)

 (1 2 tk)aan
k
b12a

1 1 2 d 5 1.049869
1
4 (24.38)

Doing so results in the following steady state values and parameter values:

 k 5 5.7659, h 5 0.255, c 5 0.5142, b 5 0.9879, w 5 2.5205. (24.39)

In steady state, output is 0.6206. This calibration implies that the steady state 
 consumption–output ratio is 0.8285, and that the annual capital–output ratio is 2.3228.

4 SIMULATION

While first- order perturbation methods are quite popular for solving dynamic general 
equilibrium models, here the model is solved by a policy function iteration method (also 
known as a projection method, or finite element method); see Coleman (1990) for details. 
This algorithm solves the Euler equations and constraints exactly at a set of grid points 
for the state variables, with linear interpolation between grid points.

In the business cycle literature, standard practice is to produce one table of second 
moments for the US economy and a second such table for the model economy (reporting 
the average over many replications for the model economy). Here, instead, the model is 
simulated once using the measured innovations to the technology shock (Solow resid-
ual). Time series for the model are, then, compared to corresponding series from the US 
data. In order to remove the secular trend from the data, apply the natural logarithm to 
the data, then apply the Hodrick and Prescott (1997) filter. The simulated data is simi-
larly filtered.

Constructing quarterly time series is, at times, fraught with difficulties. The prin-
cipal problem is that some time series are only available annually, at least over part 
of the desired sample period of 1954Q1 to 2010Q4. Details concerning the various 
necessary manipulations can be gleaned from the Matlab/Octave file that constructs 
the data for this chapter, or by referring to Gomme and Rupert (2007) and Gomme 
et al. (2011).

Figure 24.1a shows a remarkably good ‘fit’ between the model’s prediction for the 
path of output and that actually observed. This fit can also be seen in the scatter plot in 
Figure 24.2a where each dot represents a combination of actual and simulated output at 
some particular period of time. In particular, the scatter plot indicates a positive associa-
tion between actual and simulated, and a fairly tight fit, as indicated by the fact that the 
points are reasonably tightly clustered along the 45 degree line.

The story is much the same for consumption, as seen in Figure 24.1b, although the 
model produces considerably less volatility in consumption since the mid- 1980s than is 
in the data. Nonetheless, there is a high correlation between the actual and simulated 
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consumption series, as seen in Figure 24.2b, although the correlation is not as tight as 
for output.

The fit between actual and simulated investment is weaker than that seen for 
output and consumption. Figure 24.1c shows that not only is simulated investment 
more volatile than actual investment, the correlation between the two series is much 
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Figure 24.1 Actual and simulated data, time series
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weaker. These observations are also borne out in the scatter plot, Figure 24.2c. The 
behavior of investment feeds into that of capital; see Figure 24.1d. The scatter plot, 
Figure  24.2d,  shows essentially no correlation between the actual and simulated 
capital stocks.

It is well known from the business cycle literature that models like the one in this 
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Figure 24.2 Actual and simulated data, scatter plot
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chapter deliver too little variability in hours worked. Figure 24.1e confirms this observa-
tion. Further, Figure 24.2e shows that there is no correlation between actual and simu-
lated hours.

The model does reasonably well in mimicking the time series pattern of average labor 
productivity, output divided by hours; see Figure 24.1f. The correlation between actual 
and simulated productivity is fairly high; see Figure 24.2f. Given that the model does so 
poorly in predicting the time path of hours worked, its success with respect to productiv-
ity is, perhaps, surprising.

5 CONCLUDING REMARKS

This chapter presented, in detail, how to construct calibration targets. To make it 
easier for others to work with this data, a Matlab/Octave program file is available 
for download at http://alcor.concordia.ca/~pgomme. This program not only reports 
calibration targets, it also generates a basic set of data and computes business cycle 
moments.

The chapter described how to actually calibrate the neoclassical growth model. Since 
there are more potential calibration targets than parameters, there is some discretion in 
choosing calibration targets. It was argued that well- measured, high- quality calibration 
targets should be used whenever possible.

Finally, the model presented simulations of the model, comparing the model’s pre-
dicted macroeconomic time series with those of the US.

NOTES

* We received helpful comments from Stéphane Auray and David Fuller. The research assistance of Saeed 
Zaman is gratefully acknowledged. Gomme received financial support from Fonds de Recherche Société 
et Culture Québec.

1. Except in very special cases, the neoclassical growth model does not allow for closed- form solutions 
(that is, ones that can be worked out by hand). Perhaps the best known of these is when utility is loga-
rithmic in consumption, separable between consumption and hours worked, the production function is 
Cobb–Douglas, and depreciation is 100 per cent. These restrictions are very special, and in the case of 
depreciation, clearly at odds with the data.

2. Measurement is also important in establishing the basic facts to be explained. A basic set of data and busi-
ness cycle moments are included with the accompanying Matlab/Octave program file, available at http://
alcor.concordia.ca/~pgomme.

3. As discussed in section 3.2, Cooley and Prescott (1995) must impute government capital income since it is 
missing from National Income and Product Accounts (NIPA). They should also impute labor income to 
owner occupied housing (the capital income is already in NIPA), but do not. Given their broad interpre-
tation of economic activity, in calibrating their model, Cooley and Prescott should include time spent on 
housework, but do not. As discussed in section 3.7, individuals spend a considerable amount of time on 
housework.

4. Except in the special case of a Cobb–Douglas production function, disembodied technological change is 
not consistent with balanced growth.

5. The tax on capital is measured net of the capital consumption allowance.
6. The surplus of calibration targets could be handled using formal econometric techniques that take advan-

tage of the ‘over identification’ of the parameters.
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 25 Simulation and estimation of macroeconomic 
models in Dynare
João Madeira

1 INTRODUCTION

This chapter provides a brief guide to using Dynare. Dynare is free software (available 
at http://www.dynare.org/) able to simulate and estimate Dynamic Stochastic General 
Equilibrium (DSGE) models. Dynare is available for Windows, Mac and Linux. Matlab 
version 7.0 (R14) or above is required to run Dynare. As a free alternative to Matlab it 
is also possible to run Dynare on GNU Octave version 3.0.0 or above. No additional 
toolboxes are necessary but having Matlab’s ‘optimization toolbox’ installed allows for 
additional options when using some commands. Dynare’s current development team 
consists of Stéphane Adjemian, Houtan Bastani, Michel Juillard, Frédéric Karamé, 
Junior Maih, Ferhat Mihoubi, George Perendia, Marco Ratto and Sébastien Villemot.

1.1 Installation

Start by downloading (or execute the installer directly from the website) the latest version 
of Dynare for Matlab (Windows) from http://www.dynare.org/. Unzip the compressed 
file which is now on your computer. The default destination folder is ‘c:\dynare\4.x.y’ 
where ‘x’ and ‘y’ represent the version number upgrade. This directory contains several 
sub- directories: ‘doc’, ‘dynare11’, ‘examples’, ‘matlab’ and ‘mex’. The next step is to 
add the Dynare ‘matlab’ subdirectory to the MATLAB path. To do this go to Matlab’s 
“File” menu and select the “Set Path” entry, then click on “Add Folder ”, and select the 
‘matlab’ sub- directory of your Dynare installation. Finally click on “Save”. One must 
verify that there is no directory coming from another version of Dynare on the Matlab 
path other than the one that one intends to use.

For Octave installation instructions please consult Dynare’s current manual, Adjemian 
et al. (2011) or the Dynare Wiki.

1.2 Dynare Invocation

The first step is to write a file containing the description of the economic model and the 
computing tasks required (for example, simulation or estimation of the model). To do 
this go to Matlab’s “File” menu and select the “New” entry, then click on “M- File”. 
Once the model file is written (details on how to do this are contained in the remaining 
sections of this chapter) one must save it with the filename extension ‘.mod’. Dynare can 
then be invoked by writing dynare filename.mod in Matlab’s “Command Window”. 
Take care to make sure that the folder (you can have it located in any directory on your 
computer) containing the model file is in the Matlab “Current Directory” window. You 
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can do this by clicking in the “Current Directory” window, or typing the path directly in 
the “Current Directory:” box on the toolbar of Matlab.

When Matlab has concluded the computing tasks required it will show the figures 
(such as priors/posterior distributions of the model’s parameters or impulse response 
functions) corresponding to the command(s) used in the ‘.mod’ file. You will see several 
results displayed in the “Command Window”; these could include outputs such as, 
depending on the command(s) used, parameter estimates or the model’s theoretical 
moments. The results seen in the “Command Window” will be stored in a ‘filename.
log’ Text Document. In the “Workspace” window you can find several other Dynare 
output results. In particular, the MATLAB workspace will contain the following output 
variables: ‘M_’ (structure containing various information about the model), ‘options_’ 
(structure contains the values of the various options used by Dynare during the com-
putation) and ‘oo_’ (structure containing the various results of the computations). The 
‘M_’, ‘oo_’ and ‘options_’ structures are saved in a file called ‘filename_results.mat’. The 
figures, ‘.log’ and ‘_results.mat’ files will be automatically saved in the folder containing 
the ‘.mod’ file used (as can be seen in Matlab’s “Current Directory” window).

2 SIMULATION OF DSGE MODELS

This section explains the basics of how to write a model file in Dynare and use it to simu-
late DSGE models. The first subsection will describe a simple DSGE model, consisting 
of a standard Real Business Cycle (RBC) model similar to that presented by King and 
Rebelo (1999), Romer (2011) and Campbell (1994) and the second subsection will show 
how to implement it in Dynare.1

2.1 A Basic Real Business Cycle Model

2.1.1 The model
Consider an economy with a continuum of infinitely lived agents and firms on the inter-
val [0,1]. The social planner maximizes the expected value of the representative house-
hold utility function:

 U 5 Eta
`

i50
bi(logCt1 i 1 v logLt1 i) (25.1)

subject to the economy’s aggregate budget constraint:

 Yt 5 Ct 1 It 1 Gt (25.2)

and the household’s time endowment:

 Lt 1 Nt 5 1, (25.3)

where Ct is consumption, Lt is leisure, Yt is output, It is investment, Gt is government 
expenses and Nt is hours worked. The parameter v . 0 measures the utility from leisure 
and 0 , b , 1 is the household’s subjective discount factor.
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The aggregate production function is given by:

 Yt 5 AtKa
t (gtNt) 12a (25.4)

and the stock of capital (Kt) evolves according to:

 It 5 Kt11 2 (1 2 d)Kt (25.5)

where Kt is capital and At is Total Factor Productivity (TFP) which follows a station-
ary process. The parameter a is the capital share of output, g represents a deterministic 
labour augmenting technological process and d is the depreciation rate of capital.

The social planner problem can be solved by first replacing (25.4) and (25.5) in (25.2) 
and then replacing (25.2) and (25.3) in (25.1). We then take the first order conditions with 
respect to Kt11 and Nt:

 
1
Ct

5 bEt e 1
Ct11

[MPKt11 1 (1 2 d) ] f  (25.6)

 
MPNt

Ct
5

v
1 2 Nt

. (25.7)

where MPKt and MPNt stand respectively for the marginal productivities of capital and 
labour:

 MPKt11 5 aAt11K a21
t11 (gt11Nt11) 12a (25.8)

 MPNt 5 (1 2 a)gtAtK
a
t (gtNt)2a. (25.9)

Since the non- stationary technology process gt induces a common trend in output, 
capital, investment, marginal productivity of labour, consumption and government 
expenditures, it is convenient to express the model in terms of the detrended variables 
|Yt 5 (Yt/g

t), |Kt 5(Kt/g
t) , |It 5 (It/g

t) , MPNt 5 (MPNt/g
t), |C

t 5 (Ct/g
t)  and |Gt 5 (Gt/g

t) .  
The model’s equations are then changed in the following way:

 Y|t 5 C|t 1 I|t 1 G|t (25.10)

 Y|t 5 AtK
|a

t N 12a
t  (25.11)

 I|t 5 gK|t11 2 (1 2 d) K|t (25.12)

 g 

1
 

|Ct
5 bEt e 1

|Ct11
[MPKt11 1 (1 2 d) ]f  (25.13)

 
MPNt

|Ct
5

v
1 2 Nt

 (25.14)
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 MPKt11 5 aAt11K
|a21

t11 N 12a
t11  (25.15)

 MPNt 5 (1 2 a)AtK
|a

t N2a
t . (25.16)

Finally we conclude the description of our model by specifying the stochastic processes 
for the exogenous variables At and G|

t. TFP and government spending are both assumed 
to follow a first- order autoregressive process:

 ln(At) 5 (1 2 ra) ln(A) 1 ra ln(At21) 1 ua
t  (25.17)

 ln(G|

t) 5 (1 2 rg) ln(G|) 1 rg ln(G|

t21) 1 ug
t . (25.18)

Where ua
t  and ug

t  represent independent shocks with normal distributions of mean zero 
and respective standard deviations sa and sg.

2.1.2 Steady state
In a stochastic setting models need to be linearized before being solved. To do this 
Dynare needs to know the model’s steady state. Dynare can solve for the steady state 
of a model (see the examples in Collard, 2001 and Griffoli, 2007) using numerical 
methods but it is usually only successful if the initial values entered are close to the 
true steady state. Since this can prove difficult even for simple models, I normally 
prefer to enter the steady state solution by hand in Dynare or to write a Matlab 
program to find the model’s steady state. In the case of the Real Business Cycle 
model described in this section it is simple to find the model’s steady state or balanced 
growth path of the economy (in which output, capital, investment, marginal produc-
tivity of labour,   consumption and government expenditures all grow at a constant 
common  rate, the exogenous growth rate of the labour augmenting technological 
process).

Let’s start by normalizing A 5 1. In the steady state all the variables of the detrended 
model are constant (for example, Y|t11 5 Y|t 5 Y|):

 Y| 5 C| 1 I| 1 G| (25.19)

 Y| 5 K|aN 12a (25.20)

 I| 5 gK| 2 (1 2 d)K| (25.21)

 g 

1
 C|

5 b
1
C|

[MPKt 1 (1 2 d) ] (25.22)

 
MPN

C|
5

v
1 2 N

 (25.23)

 MPK 5 aK|a21N 12a (25.24)

 MPN 5 (1 2 a)K|aN2a (25.25)
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Given values for the parameters b,a,g,d, steady state labour N and sg 5 G|/Y| it is easy 
to calculate exact values for the steady state of the remaining variables. One can simplify 
(25.22) to obtain:

 MPK 5
g 

b
2 (1 2 d)  (25.26)

After this it is easy to calculate steady state capital by solving (25.24) for K| :

 K| 5 a MPK
aN12a

b 1
(a 2 1)

 (25.27)

Then it becomes simple to obtain Y|, I| and MPN from (25.20), (25.21) and (25.25). 
Steady state government expenditures are given by G| 5 sgY|. Consumption can now 
easily be calculated by using (25.19):

 C| 5 Y| 2 I| 2 G| (25.28)

Finally, using (25.23), it is very simple to solve for v:

 v 5  
MPN

C|
(1 2 N)  (25.29)

2.1.3 Log- linearization of the model
There is no closed form solution to the equations for this model (an exact analytical 
solution is possible only in the special case of full depreciation of capital and when 
agents have log utility). An alternative solution method is needed. The strategy is there-
fore to look for an approximate analytical solution by transforming the model into 
a system of log- linear difference equations in the unknowns. Log- linearization trans-
forms the domain with a log function, and then approximates with a first order Taylor 
expansion in the neighbourhood of the steady state balanced growth path. Because in 
economics the relevant functions in many cases are locally more like exponential func-
tions (such as in growth models) than linear functions, log- linearization provides the 
best of both worlds – closeness of exponential approximations, and tractability of linear 
approximations.

Log- linearization is employed as follows. Let Xt be a strictly positive variable, X  its 
steady state and xt 5 log(Xt) 2 log(X)  the logarithmic deviation. First notice that, for x 
near zero, log(1 1 x) . x, thus:

 xt 5 log(Xt) 2 log(X) 5 log(Xt/X) 5 log(1 1 % change) . %change.

Also notice that you can write Xt 5 X(Xt/X) 5 Xelog (Xt /X) 5 Xext. Taking a first order 
Taylor approximation around the steady state x 5 0 yields:

 Xext . Xe0 1 Xe0 (xt 2 0) . X(1 1 xt).

By the same logic, you can write:
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 XtYt . X(1 1 xt)Y(1 1 yt) . XY(1 1 xt 1 yt 1 xtyt)

where xtyt . 0, since xt and yt are both numbers close to zero. Let’s now look at an 
example. Take the production function:

 Y|t 5 AtK
|a

t N 12a
t .

Log- linearizing the above expression yields:

 Y|(1 1 y|t) 5 AK|aN 12a (1 1 at 1 ak|t 1 (1 2 a)nt)

where lower case letters denote variables in log deviation from the steady state. 
Simplifying this expression results in:

 |yt 5 at 1 ak|t 1 (1 2 a)nt.

The Dynare guides by Collard (2001) and Griffoli (2007) focus on examples of models 
entered in the original non- linear form. My preference, however, is to write the model 
in log- linear form, expressing variables as percentage deviations from the steady state 
(the initial values for the model’s variables are therefore zero). This also seems to be the 
favourite choice of many researchers (for example, 46 of the total of 53 models available 
in the Macro Model Data Base of Wieland et al. 2012, are entered in linear form).

The log- linearized equations of the basic RBC model described in this section are 
presented below. As in the production function example, I will use lower case letters to 
denote variables in log deviation from the steady state. Log- linearization of equations 
(25.10)–(25.18) yields:

 Y| y|t 5 C|c|t 1 G| g|t 1 I| i| t (25.30)

 y|t 5 at 1 ak|t 1 (1 2 a)nt (25.31)

 I|i|t 5 gK|k|t11 2 (1 2 d) K|k|t (25.32)

 c|t 5 Et c|t11 2
MPK

MPK 1 (1 2 d) mpkt11 (25.33)

 mpnt 2 c|t 5
N

1 2 N
nt (25.34)

 mpkt11 5 at11 1 (a 2 1) k|t11 1 (1 2 a)nt11 (25.35)

 mpnt 5 at 1 ak|t 2 ant (25.36)

 at 5 raat21 1 ua
t  (25.37)

 g|t 5 rg g|t21 1 ug
t  (25.38)
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2.2 The Dynare Code

As mentioned previously the estimation and simulation of an economic model in 
Dynare involves writing a model file.2 This can be done by using an external or internal 
editor to Matlab (go to Matlab’s “File” menu and select the “New” entry, then click on 
“M- File”). Once the model file is written it must be saved with the filename extension 
‘.mod’.

It is useful to think of the structure of the ‘.mod’ file as having four distinct blocks:

1. the preamble which lists variables (endogenous and exogenous) and parameters;
2. the model which outlines the model’s equations;
3. the shocks which can be deterministic (temporary or permanent) or stochastic;
4. finally computation which instructs Dynare to undertake certain tasks (such as 

simulation, estimation or forecasting).

The first non- comment line (write two forward slashes ‘//’ before entering any com-
ments in Dynare, this can be useful to help others, and even oneself, to understand 
better the code written) in your Dynare code should be: “var” followed by the model’s 
variables’ names (all variables apart from the exogenous shocks) and culminating with 
a semicolon. The Dynare code will not run unless each entry is followed by a semicolon 
to suppress the output (note that an entry may occupy more than one line). The second 
line of code should be “varexo” followed by the names of the exogenous shocks. The 
next command should be “parameters” followed by the names of the model’s parameters 
(which also include the model’s steady state values when the model is entered in Dynare 
in linear form, as is the case here). Below this command one must specify the values of 
these parameters. Thus, the preamble for the RBC model outlined in this section is:

var y c i k n mpk mpn a g;
varexo e_A e_G;
parameters sg beta Nss alpha delta lambdaDT gamma rhoA rhoG 
MPKss Kss Yss Iss MPNss Gss Css v;

sg=0.2; // same as in Romer (2011); in King and Rebelo (1999) 
sg=0 

beta=0.984;// Same as in King and Rebelo (1999);
//Romer (2011) uses 1.5% real interest rate (r*),
//since MPKss=r*+delta then r*=(gamma/beta)- 1 this implies 
beta=gamma/(1.015)

NSS=0.2;// same as in King and Rebelo (1999); Romer (2011) 
uses 1/3

alpha=1/3;// same as in Romer (2011); alpha=0.333 in King and 
Rebelo (1999)

delta=0.025;// same as in Romer (2011) and as in King and 
Rebelo (1999)

lambdaDT=0.4;// same as in King and Rebelo (1999); Romer 
(2011) uses 0.5 

gamma=1+(lambdaDT/100);
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rhoA=0.95;// same as in Romer (2011); King and Rebelo (1999) 
use 0.979

rhoG=0.95;// same as in Romer (2011)
MPKss=(gamma/beta)- (1- delta);
Kss=(MPKss/(alpha*(Nss^(1- alpha))))^(1/(alpha- 1));
Yss=(Kss^alpha)*(Nss^(1- alpha));
Iss=gamma*Kss- (1- delta)*Kss;
MPNss=(1- alpha)*(Kss^(alpha))*(Nss^(- alpha));
Gss= sg*Yss;
Css=Yss- Iss- Gss;
v=(MPNss/Css)*(1- Nss);

The values for the structural parameters b,a,g,d, steady state labour N, sg 5 G|/Y|, ra 
and rg are similar to those found in the literature. I have entered comments to compare 
the values chosen to those used by Romer (2011) and King and Rebelo (1999).

Writing the model block is very straightforward, since Dynare enables the user to do 
this by entering the model’s equations in a manner similar to the way they are written in 
an academic paper. This block starts with the instruction “model;” and concludes with 
“end;”. Because the model’s equations have already been log- linearized in the previous 
subsection it is necessary to write the term “(linear)” next to the command “model”. To 
write the model block it is important to be aware of a few notational conventions. A 
variable x with a t subscript is simply written as “x”. A variable with a t 1 n subscript 
is written as “x(1n)”. Similarly, a variable with a t 2 n subscript is written as “x(−n)”. 
Hence, the model block (consisting of equations 25.30 to 25.38) is as follows:

model (linear);
Yss*y=Css*c+Gss*g+Iss*i;
y=a+alpha*k(- 1)+(1- alpha)*n;
Iss*i=gamma*Kss*k- (1- delta)*Kss*k(- 1);
c=c(+1)- (MPKss/(MPKss+(1- delta)))*mpk;
mpn- c=(Nss/(1- Nss))*n;
mpk=a(+1)+(alpha- 1)*k+(1- alpha)*n(+1);
mpn=a+alpha*k(- 1)- alpha*n;
//exogenous shocks
a=rhoA*a(- 1)+e_A;
g=rhoG*g(- 1)+e_G;
end;

In Dynare, the default convention is that the timing of a variable reflects when this 
variable is decided. For example, k|t is a predetermined variable in the RBC model in the 
previous section (because it reflects investment decisions made previously, in the case of 
the model considered here capital is the result of investment decisions implemented at 
date t 2 1) and is thus written as “k(−1)”.

To specify the shocks block one needs to declare only the non- zero elements of the 
covariance matrix. Start with the command “shocks;” and conclude with “end;”. For the 
RBC model considered here this block can be written as follows:
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shocks;
var e_A;
stderr 0.01;
var e_G;
stderr 0.01;
end;

The model is then solved and simulated using the “stoch_simul;” command:

stoch_simul (irf=40,hp_filter=1600) a g y c i k n mpk mpn;

This command will compute the model’s impulse response functions (IRFs) and 
various descriptive statistics (moments, variance decomposition, correlation and auto-
correlation coefficients). I made use of some options of the “stoch_simul;” command. 
The option “irf 5 integer” allows one to choose the number of periods plotted in the 
IRFs. The default value is 40. The figure Dynare creates for the IRFs to a 1 per cent 
productivity shock is shown in Figure 25.1.

Notice that Dynare plots the variables being decided at date t. For this reason the 
initial value of the capital stock is displayed as jumping on impact (the variable plotted 
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Figure 25.1 RBC model’s IRFs to a 1 per cent productivity shock
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is k|t11 and not k|t). If a list of variables is specified after “stoch simul()” then results 
are displayed only for those variables and in the order in which they are listed (for this 
reason the order of variables in the impulse response functions is the same as that of the 
list).

The option “hp_filter 5 integer” produces theoretical moments (variances, covari-
ances, autocorrelations) after HP filtering the data (the default is to apply no filter to 
the data), just as in Table 2 of King and Rebelo (1999). This is a very useful option 
because in order to isolate the business cycle component of economic time series many 
researchers employ the HP filter. So, one must apply the HP filter to the model’s 
theoretical moments if one wants to compare them to those of HP filtered data from 
aggregate time series (such as the moments reported in Table 1 of King and Rebelo, 
1999). The integer is a number corresponding to the smoothing parameter in the 
HP filter. For quarterly data (which is typically the frequency of interest for econo-
mists studying business cycles) Hodrick and Prescott (1981) recommended a value of 
1600.

3 MODEL ESTIMATION

In this section we will look at how to estimate the DSGE model outlined in the previous 
section using Bayesian techniques as in Smets and Wouters (2003; 2007). To undertake 
Bayesian estimation it is necessary to have at least as many shocks as there are observable 
variables. Since the model outlined in the previous section has two exogenous shocks (to 
productivity and government expenses) the dataset used can contain two time series at 
most. To estimate the model I used a dataset consisting of seasonally adjusted quarterly 
US real GDP growth and real investment (so that the time series used are stationary). 
These same time series were used in Smets and Wouters (2007) but I updated the dataset 
to include observations for more recent years. Following Galí et al. (2011), I estimated 
the model for the period 1966Q1 to 2007Q4 due to concerns that the non- linearities 
induced by the zero lower bound on the federal funds rate could distort the estimates for 
some of the parameters (whereas Smets and Wouters, 2007, estimated their model with 
data from 1966Q1 to 2004Q4).

The corresponding measurement equations are:

 dlGDPt 5 l 1 [y|t 2 y|t21 ], (25.39)

 dlINVt 5 l 1 [ i|t 2 i|t21 ], (25.40)

where dl stand for log difference and l is the common quarterly trend growth rate to 
real GDP and investment. The parameter l is related to the steady state of the model 
economy as follows: g 5 1 1 l

100.
As in the prior section writing the model file in Dynare for estimation purposes starts 

with declaring the model’s variables and parameters. This is done exactly as previously 
described and the preamble block looks very similar (the only difference is that the 
growth rate of real GDP and investment were added to the endogenous variable list in 
the first line of the code since the parameter l was already previously listed):
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var y c i k n mpk mpn a g dy dinve;
varexo e_A e_G;
parameters sg beta Nss alpha delta lambdaDT gamma rhoA rhoG 
MPKss Kss Yss Iss MPNss Gss Css v;

sg=0.2; // same as in Romer (2011); in King and Rebelo (1999) 
sg=0

beta=0.984;// Same as in King and Rebelo (1999);
//Romer (2011) uses 1.5% real interest rate (r*),
//since MPKss=r*+delta then r*=(gamma/beta)- 1 this implies 
beta=gamma/(1.015)

Nss=0.2;// same as in King and Rebelo (1999); Romer (2011) 
uses 1/3

alpha=1/3;// same as in Romer (2011); alpha=0.333 in King and 
Rebelo (1999)

delta=0.025;// same as in Romer (2011) and as in King and 
Rebelo (1999)

lambdaDT=0.4;// same as in King and Rebelo (1999); Romer 
(2011) uses 0.5 

gamma=1+(lambdaDT/100);
rhoA=0.95;// same as in Romer (2011); King and Rebelo (1999) 
use 0.979

rhoG=0.95;// same as in Romer (2011)
MPKss=(gamma/beta)- (1- delta);
Kss=(MPKss/(alpha*(Nss^(1- alpha))))^(1/(alpha- 1));
Yss=(Kss^alpha)*(Nss^(1- alpha));
Iss=gamma*Kss- (1- delta)*Kss;
MPNss=(1- alpha)*(Kss^(alpha))*(Nss^(- alpha));
Gss=sg*Yss;
Css=Yss- Iss- Gss;
v=(MPNss/Css)*(1- Nss);

Again, the second step is writing the model block (to which the measurement equa-
tions must be added) of the Dynare code. Therefore the model block now includes equa-
tions 25.30 to 25.40 and looks as follows:

model (linear);
Yss*y=Css*c+g+Iss*i;
y=a+alpha*k(- 1)+(1- alpha)*n;
Iss*i=gamma*Kss*k- (1- delta)*Kss*k(- 1);
c=c(+1)- (MPKss/(MPKss+(1- delta)))*mpk;
mpn- c=(Nss/(1- Nss))*n;
mpk=a(+1)+(alpha- 1)*k+(1- alpha)*n(+1);
mpn=a+alpha*k(- 1)- alpha*n;
//exogenous shocks
a=rhoA*a(- 1)+e_A;
g=rhoG*g(- 1)+e_G;
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//measurement equations
dy=lambdaDT+(y- y(- 1));
dinve=lambdaDT+(i- i(- 1));
end;

As in Smets and Wouters (2007) I normalize the exogenous government spending 
process. I do this by defining a new variable g|*t 5 G|g|t. In this way it is easier to choose a 
reasonable prior for the standard deviation and it will make it easier to compare the esti-
mate for sg obtained for the RBC model described in the prior section with that obtained 
by Smets and Wouters (2007). As Justiniano et al. (2008) point out, this is ‘a practical 
way to impose correlated priors across coefficients, which is desirable in some cases’ and 
frequently helps ‘improve the convergence properties of the MCMC algorithm’.

I now must declare which variables are observable for the estimation procedure. This 
is done using the command “varobs” followed by the names of the observable variables 
used in the estimation:

varobs dy dinve;

The next step is to declare the parameters to be estimated. I choose to estimate values 
for g,a,ra,rg,sa and sg (the remaining parameters I maintain fixed in the estimation 
procedure since it would be difficult to identify well all parameters from the data). This 
is done by writing “estimated_params;” followed by the parameters to be estimated (one 
in each line) and concluding with “end;”:

estimated_params;
lambdaDT, 0.4,0.1,0.8, NORMAL_PDF,0.4,0.10;
alpha, 0.33,0.01,1.0, NORMAL_PDF,0.3,0.05;
rhoA, 0.95,.01,.9999, BETA_PDF,0.5,0.2;
rhoG, 0.95,.01,.9999, BETA_PDF,0.5,0.2;
stderr e_A, 0.013,0.01,5, INV_GAMMA_PDF,0.1,2;
stderr e_G, 0.021,0.01,5, INV_GAMMA_PDF,0.1,2;
end;

To estimate the RBC model using maximum likelihood (as in Ireland, 2004) one 
would use the following syntax (fields listed between “[. . .]” are optional) for each 
estimated parameter: “parameter name, initial value [, lower bound, upper bound];” 
However, estimating the model with maximum likelihood resulted in an unrealistically 
high level (a 5 0.6125) for the capital share. This is a common problem when estimat-
ing DSGE models and for this reason the use of Bayesian methods has become very 
popular among macroeconomic researchers. In Bayesian estimation, each line is written 
according to the following syntax: “parameter name, [initial value [, lower bound, upper 
bound]], prior shape, prior mean, prior standard error [, prior third parameter, prior 
fourth parameter];” I choose prior distributions for the model’s parameters to be the 
same as those in Smets and Wouters (2007). The possible prior shapes are: “beta_pdf”, 
“gamma_pdf”, “normal_pdf”, “uniform_pdf”, “inv_gamma_pdf”, “inv_gamma1_pdf” 
and “inv_gamma2_pdf”. Note that “inv_gamma_pdf” is equivalent to “inv_gamma1_
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pdf”. For the “beta_pdf”, “gamma_pdf”, “normal_pdf”, “inv_gamma_pdf”, “inv_
gamma1_pdf” and “inv_gamma2_pdf” shapes one must specify values for the prior 
mean and prior standard error of the distribution. The prior third parameter is used for 
generalized beta distribution, generalized gamma and for the uniform distribution. The 
prior fourth parameter is used for the generalized beta distribution and for the uniform 
distribution. As one uses fields more towards the end of the list, all previous fields 
must be filled (use empty values if the parameters don’t apply). For instance, to specify 
a uniform distribution between 0 and 1 for a one would enter “alpha, 0.33,0.01,1.0, 
uniform pdf, , , 0,1;” since the uniform distribution only takes the third and fourth 
parameters as arguments.

Finally, the model is estimated using the “estimation ();” command:

estimation(optim=(‘MaxIter’,200),datafile=
rbc_model_data,mode_compute=4,

first_obs=71,nobs=172,presample=4,lik_init=2,mode_
check,prefilter=0,

mh_replic=250000,mh_nblocks=2,mh_jscale=1.08,mh_drop=0.2);
stoch_simul (hp_filter=1600,irf=40) a g y c i k n mpk mpn;

This command will display results from posterior optimization, graphs with prior, 
posterior and mode, marginal log data density, graphs of smoothed shocks, smoothed 
observation errors, smoothed and historical variables. After estimation with Metropolis 
iterations Dynare will display the mean and confidence interval from posterior simula-
tion and Metropolis–Hastings convergence graphs.

A result that I consider important to highlight is the marginal log data density. The 
marginal likelihood of the model gives an indication of the overall likelihood of the 
model given the data and reflects its prediction performance. It therefore forms a natural 
benchmark for comparing the overall fit of DSGE models. This can be done by comput-
ing the Bayes factor. The Bayes factor (BF) of model 1 against model 2 is the difference 
of their log marginal likelihoods. Kass and Raftery (1995) suggest that values of 2 logBF 
above 10 can be considered very strong evidence in favour of model 1. Values between 6 
and 10 represent strong evidence, between 2 and 6 positive evidence, while values below 
2 are ‘not worth more than a bare mention’.

I made use of some options of the “estimation();” command which are explained 
briefly in the paragraphs below:

The option “optim 5 (fmincon options)” allows one to set options for fmincon (a 
function available in Matlab’s optimization toolbox).

The option “datafile 5 filename” specifies the data file (which can be either a ‘.m’ 
file, a ‘.mat’ file or an ‘.xls’ file) to be used in the estimation process. The data file used 
‘rbc_model_data.m’ contains two vectors of observations: real GDP and real investment 
growth.3 This file must be located in the same folder as the ‘.mod’ file.

The option “mode_compute 5 integer” allows the user to choose the optimizer for the 
mode computation: 0 the mode isn’t computed (mode_file option must be specified); 1 
uses fmincon optimization routine (not available under Octave); 2 value no longer used; 
3 uses fminunc optimization routine; 4 (default value) uses Chris Sims’ csminwel; 5 uses 
Marco Ratto’s newrat; 6 uses a Monte- Carlo based optimization routine (see Dynare 
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Wiki for more details); 7 uses fminsearch, an optimization routine available under 
Matlab (if the optimization toolbox is installed) and Octave (if the optim package from 
Octave- Forge is installed).

The “first obs 5 integer” option allows one to choose the number of the first observa-
tion to be used (default: 1). Even though the observations in my data file start at 1946Q3 
with this option, I’m able to choose to use only a subsample of the data (in this case I 
wish to make use only of data from 1966Q1 onwards to make my results more easy to 
compare with those of Smets and Wouters, 2007).

The “nobs 5 integer” option allows the user to specify the number of observations 
to be used (default: all observations in the datafile). I chose a value of 172 so that 
Dynare uses data only up to 2007Q4 (while the datafile contains observations up to 
2010Q4).

The option “presample 5 integer” specifies the number of observations to be skipped 
before evaluating the likelihood (default: 0).

The option “lik_init 5 integer” specifies the type of initialization of the Kalman 
filter (default value: 1): 1 is for stationary models while 2 and 3 are for non- stationary 
models.

The option “mode_check” tells Dynare to plot the posterior density for values around 
the computed mode for each estimated parameter. This is helpful to diagnose problems 
with the optimizer.

If the “prefilter 5 integer” is set to 1 then the estimation procedure demeans the data 
(default: 0, that is no prefiltering).

The option “mh replic 5 integer” sets the number of replications for the Metropolis– 
Hastings algorithm. The default is 20 000. I opted to create a sample of 250 000 draws, as 
in Smets and Wouters (2007).

The option “mh_nblocks 5 integer” specifies the number of parallel chains for the 
Metropolis–Hastings algorithm (default: 2).

The “mh_jscale 5 double precision number” option is used to set the scale of 
the jumping distribution in the Metropolis–Hastings algorithm (the default is 0.2). The 
value used should be adjusted to yield an acceptance rate of approximately 23 per cent, 
the optimal rate proposed by Gelman et al. (1996). For the RBC model estimated in this 
section a value of 1.08 resulted in an acceptance rate of 23.2 per cent.

The “mh_drop 5 double precision number” specifies the fraction of initially generated 
parameter vectors to be dropped before using posterior simulations (default: 0.5). I chose 
a value of 0.2 as in Smets and Wouters (2007).

The posterior means and confidence intervals obtained are presented below:

parameters

prior 
mean

post. 
mean

conf. interval prior pstdev

lambdaDT 0.400 0.4238 0.3921 0.4548 norm 0.1000

alpha 0.300 0.3791 0.3152 0.4409 norm 0.0500

rhoA 0.500 0.9480 0.9257 0.9716 beta 0.2000

rhoG 0.500 0.9500 0.9389 0.9606 beta 0.2000
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standard deviation of shocks

prior 
mean

post. 
mean

conf. interval prior pstdev

e_A 0.100 0.4595 0.3805 0.5339 invg 2.0000

e_G 0.100 0.5411 0.4767 0.6009 invg 2.0000

The parameter estimates for the RBC model considered are very much in line with 
the values commonly used in the literature for calibration purposes (as can be seen by 
comparing them to those used in the previous section) and very similar to the estimates 
by Smets and Wouters (2007) for equivalent parameters (the respective posterior means 
found by these authors for g,a,ra,rg,sa and sg were 0.43, 0.19, 0.95, 0.97, 0.45 and 0.53).

If one wishes it is also possible to add the “stoch simul;” command at the end, as 
shown above. I normally choose to do this so that Dynare uses the estimated results 
to compute the model’s impulse response functions, theoretical moments, variance 
decomposition, matrix of correlations and coefficients of autocorrelation. For maximum 
likelihood estimation the parameters and the variance matrix of the shocks are set to the 
mode. For Bayesian estimation the parameters and the variance matrix of the shocks are 
set to the posterior mode computation in the case without Metropolis iterations or to the 
posterior mean after estimation with Metropolis iterations.

4 USEFUL RESOURCES

Dynare can also be used for many other applications which were not explored here, 
such as deterministic shocks (permanent and temporary), Bayesian VAR, forecasting, 
optimal policy or sensitivity and identification analysis. Besides the Dynare guides by 
Collard (2001) and Griffoli (2007), the document by Bhandari et al. (2010) available at 
the Thomas Sargent webpage (https://files.nyu.edu/ts43/public/research/AP_tom16.pdf) 
is also a valuable resource where users of Dynare can find examples of ‘.mod’ files for 
several of these applications. Other resources that I find to be of great use are the forums 
in the Dynare webpage. These forums allow users to ask questions and get feedback 
from Dynare developers and fellow researchers. It is often best to start by searching prior 
posts as it is likely that one’s query has been raised previously and that the forum already 
has answers for most issues a user may experience.

NOTES

1. The essential difference between the model presented here and that in King and Rebelo (1999) is the intro-
duction of exogenous government spending. The only difference relative to Romer (2011) and Campbell 
(1994) is that I ignore population growth (since in the following section I make use of per capita data to 
estimate the model).

2. The complete ‘.mod’ files (and the data) used to simulate and estimate the standard RBC model described 
here are available at: https://sites.google.com/site/joaoantoniorodriguesmadeira/home/dynare.

3. To obtain time series for real GDP and investment growth per capita I made use of data on the Civilian 
Population age 16 and over, Real GDP, the GDP price deflator and Fixed Private Investment. This data 
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was obtained from the St. Louis Fed website (http://research.stlouisfed.org/fred2/). Further details are 
provided in the ‘readme.doc’ and ‘rbc_model_data.xls’.
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