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Over the past few weeks, a terrible affliction has been spreading across the world.
Otherwise healthy and productive members of society have been infected with this
devastating illness that causes them to fire up Excel, Python or R and start extrapolating
the latest numbers of confirmed CoVID-19 cases in their town, state, country or even the
entire world!

All joking aside, the severity of the current SARS-CoV-2 epidemic is undeniable and it is
only natural that people will deal with the added stress in their lives (and extra free time
due to lockdown procedures) in various ways.

A particularly afflicted demographics has been my own, that of Physicists, resulting in the
rise of a small cottage industry of blog posts, LinkedIn publications and even arXiv papers
with their best attempts at modeling the spread of the disease, with little or no
understanding of dynamics underlying epidemic spreading. Once again, the immortal
words of Simon DeDeo have been proven true:
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Truth sometimes comes 140 character at a time

Invariably, our fearless followers of John Snow (not the one you’re thinking of) end up
with some variation of this plot comparing the cumulative number of cases or deaths in
various countries as a function of time with a straight exponential growth rate.

Financial Times, March 29, 2020

Extrapolation to unrealistic numbers, forecasts about when a country might overtake
another, considerations about the success or failure of containment measures and
various other shenanigans ensue.

Bringing order to a chaotic world has always been the driving force of Human progress
and it can be argued that this is simply its latest incarnation: The Numerati trying to use
their modeling and Data Science skills to make sense of the world around them. A trend
that has led in recent years to impressive progress in Machine Learning, Artificial
Intelligence, and Data Science. Unfortunately, while there are good reasons to expect the
early stages of epidemic spread to be exponential, there are many practical factors
conspiring against the efficacy of simple curve fitting and a little background knowledge
about traditional epidemic modeling can go a long way.

What follows is my personal perspective, as an individual with some real world
experience in epidemic modeling during previous pandemics and shouldn’t reflect on
any group or institution I might be affiliated with.

2/17

https://en.wikipedia.org/wiki/John_Snow
https://www.ft.com/coronavirus-latest
https://www.urbandictionary.com/define.php?term=Numerati
http://www.bgoncalves.com/research.html


Mathematical description fo the
Susceptible-Infected model

Compartmental Models
Mathematical modeling in Epidemiology has a long and rich history, dating as far back as
the 1920s with Kermack–McKendrick theory. The basic idea is deceptively simple: we can
divide the population into different compartments representing the different stages of
the disease and use the relative size of each compartment to model how the numbers
evolve in time.

In the discussion below, I introduce several simple models and scenarios to help
illustrate the issues with simply trying to do curve fitting on the empirical numbers. You
can find the notebook I wrote to implement the models and generate the figures over at
the GitHub repository I made specifically for this post:

DataForScience/Epidemiology101

Contribute to DataForScience/Epidemiology101 development by
creating an account on GitHub.

github.com

SI Model
Let’s start by taking a look at the simplest possible epidemic model: The
Susceptible-Infected model. Here we split our population into two compartments, the
healthy compartment (usually referred to as Susceptible) and the Infectious
compartment. The dynamics is also simple, when a healthy person comes in contact with
an infectious person s/he becomes infected with a given probability. And, in this simple
example, when you are infected, you remain infected forever. Mathematically, this is
often written as:

which is just a fancy way of saying that the loss in the
number of healthy people is the same as the gain in the
ranks of the infected. More specifically:

N is simply the total population size
β is the rate of infection
It/N is the fraction of infected people and it
represents the probability that a susceptible
person will encounter an infected one.

Not surprisingly, this is not a very interesting model: given enough time everyone
becomes infected:
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The transition in
the SI model

Infectious fraction of the total population as a function of time.

This simple model considers only one way to transition between compartments: From S
to I through the interaction (contact) between S and I. A compact way to represent this is:

SIR Model
More realistic epidemic models can be developed by adding further compartments and
transitions. The most common such model is the Susceptible-Infectious-Recovered model:

SIR Model
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The transitions in the SIR
model

Susceptible-Infectious-Recovered model

Fixed total population

Here we have a new compartment, Recovered, that represents the people who have had
the disease in the past and have since recovered, becoming immune. The presence of
Recovered slowly reduces the number of infectious individuals as they are allowed to
recover.

In terms of transitions this can be written as:

Where the second line represents a spontaneous (non-
interacting) transition from Infectious to Recovered at a fixed
rate μ.

Or, mathematically, as:

which makes it clear that the growth in the number of
Recovered depends only on the current number of Infectious
individuals. It should also be noted that this model implies a
constant population size:

A similar expression could be written for the SI
model as well.

If we now integrate the full SIR model, we find:
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Fraction of the population in each compartment as a function of time

A few things should be noticed about this plot:

The number of Susceptible individuals can only decrease
The number of Recovered can only increase
The number of Infectious individuals grows up to a certain point before reaching a
peak and starting to decline.
The majority of the population becomes infected and eventually recovers.

If we zoom in on just the behavior of the Infectious compartment, we find:
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SIR Infectious compartment

Meaning that a significant fraction of the population can be infected at the same time,
potentially causing (depending on the severity of the infection) the Healthcare system to
become overwhelmed. When you hear about “flattening the curve” this is the curve that
they are referring to.

The Conversation/CC BY ND
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From the mathematical expression of the SIR model above, a few interesting results can
be easily obtained. If we focus on the early days of the epidemic spreading, we can
assume that the fraction of Susceptible individuals is still ~1 and find:

The exponential that everyone is trying to fit! Here,

is pronounced “R naught” and is the Basic Reproduction
Number of the disease. This simple number defines
whether or not we have an epidemic. If Rₒ<1 the disease dies
off, otherwise, it grows exponentially!

One intuitive way of interpreting the Rₒ is as the average number of new
infections produced by a single infectious individual. If a person is able to spread the
disease to at least another one before recovering, then the epidemic can continue,
otherwise, it dies off.

This is what we need to determine and it depends on many different factors that are
characteristic of the virus, as Kate Winslet eloquently put it in the 2011 movie,
Contagion.

The current best estimates of the Rₒ value for SARS-CoV-2, the coronavirus that causes
CoVID-19 is around 2.5.

The value of Rₒ also plays a fundamental role in determining the course of the epidemic.
If we consider the second equation describing the SIR model:

We find that the derivative of the number of
infectious becomes negative whenever:

This is the point at which we have reached the
peak and the epidemic starts dying off. This is the
point at which the population starts having enough of what is known as
Herd immunity for the disease to be unable to spread further. Whenever
vaccines are available, vaccination programs are designed to help the
population reach herd immunity without having to get a significant
fraction of the population infected.

Rₒ also determines the final fraction of the entire population that will be unaffected by
the disease:

Where S_infinity refers to the total fraction of healthy
(and never infected) individual after the epidemic has
had time to follow its course completely. This expression
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Confirmed cases

isn’t amenable to closed form solution, but can be used to numerically estimate the value
of S_infinity. The SIR figure above was generated by using Rₒ=2 and we see that
S_infinity~0.2 which can be easily verified by plugging these numbers in this expression.

Practical considerations
So far, our analysis of epidemic models has focused on the ideal scenario which seems to
justify the approach of fitting exponential curves as a simple way of trying to forecast the
course of the epidemic. Unfortunately, the real world is significantly more complex in a
variety of ways.

Asymptomatic and mildly infectious cases
One of the limitations of the approach described so far is that it makes a few unrealistic
assumptions:

There is no incubation or latent period. An incubation period delays the entire
epidemic timeline. An issue that is not significant for our purposes here.
There is a single type of infectious individual. In the real world, different immune
systems respond differently to the virus resulting in some people being completely
asymptomatic (no symptoms whatsoever) and mildly infectious cases. In the case
of CoVID-19 the number of asymptomatic cases is thought to be 40% or higher.

Both of these difficulties can be addressed by adding new compartments and transitions
to our basic SIR model without much difficulty. However, they pose significant challenges
when dealing with the official published numbers.

In the early days of the epidemic, only the more severe cases (non-asymptomatic and
non-mild) cases get sick enough to search medical help and be officially diagnosed. This
naturally leads to a delay in detection of the first cases in a given city or country and an
over-estimation of the severity of the disease as more severe cases are more likely to die.

Published numbers are also typically cumulative, making the total numbers appear
larger. A simple way of extracting a measure of the number of possible confirmed cases
from our simple SIR model is to count how many people have been removed from the
Susceptible compartment. Defining ϕ to be the fraction of infectious cases that do get
tested, we have:

As a result, the numbers that get published depend directly
on the fraction of cases that are severe enough to both lead
to medical attention and be tested:
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Confirmed cases in the SIR model

The number of (observed) Recovered individuals will then follow a similar trajectory,
although with a few days lag due to the natural time line of the disease:

Observed recovered number of cases
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Naturally, with novel diseases it takes time to develop and distribute accurate tests. If we
further consider that the testing fraction ϕ is time dependent as well, then it is easy to
see how a lot of the features observed in the time line of confirmed cases are caused by
local policies and test availability:

Effect of time dependent testing rate

In this figure we compare the number of real infectious cases (in purple), the result of
uniform testing (dashed orange line) and dynamic testing rates (solid orange line). For
clarity, we plot the different curves in a logarithmic scale (the change from one horizontal
grid line to the next corresponds to a factor of 10x) and include an exponential fit line
(thin blue line) as a guide to the eye that represents the overall exponential trend.

Dynamic lags
Another important factor to consider is the temporal evolution that is intrinsic to the
disease progression. A healthy individual comes in contact with an infectious person and
becomes infected. Her infection will last for a specific number of days, meaning that the
current number of infectious individual is the sum of everyone who got infected today,
yesterday, the day before, etc… and hasn’t had time to recover yet.

This implies that there is a natural lag between the peak of new infections and the peak
in the total number of infectious individuals that is proportional to the duration of the
infectious period.
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Lag between the peak in new infections and in the number of currently infections individuals

One important consequence of this lag is that even if the number of new infections today
is smaller than it was yesterday and the day before, it will take several days before the
effects are noticeable as a reduction in the total number of infected cases.

Lockdown procedures
As the epidemic has progressed, many countries around the world, starting with China,
have tried to implement lockdown or quarantine procedures to try to contain the spread
of the disease. These measures have proven unpopular with the public due to their
social and economic consequences, so it is important to understand the effect they have
in stopping the epidemic spreading.

Let’s imagine the perfect containment scenario. I wave a magic wand and every one
stays home, exactly 6 feet away from each other at all times and no new infections can
be generated. In our SIR framework, this corresponds to suddenly setting Rₒ=0 or simply
eliminating the interaction transition from the model. The results are stunning:

12/17

https://en.wikipedia.org/wiki/National_responses_to_the_2019%E2%80%9320_coronavirus_pandemic


Perfect containment strategy. Strategy is implemented at the time indicated by the vertical dashed line
and maintained as long as necessary for the number of infectious individuals to reach zero.

While no new infections are generated, the total number of infected individuals still
remains high for several weeks as the currently affected people gradually recover from
the disease.

Naturally, no containment strategy is perfect, but let’s say we do a pretty good job and
instead of driving the Rₒ to 0 we managed to drive it to 0.5. As we’ve shown above,
whenever Rₒ<1 the epidemic starts to die off, but it takes significantly longer than in the
ideal scenario and results in a larger number of total infections:
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Imperfect containment strategy. Strategy is implemented at the time indicated by the vertical line and
maintained for as long as necessary for the number of infected to reach zero. Thin solid lines

correspond to the previous perfect scenario and are shown for comparison.

If however, for some reason, the social or economic costs of the lockdown are deemed
to be too costly and the quarantine is lifted prematurely we simply return to the
previous, unrestrained, epidemic spreading scenario:

Imperfect containment strategy. Strategy is implemented at the time indicated by the vertical
shaded area. Dashed and thin solid lines correspond to the no-intervention and imperfect

lockdown scenarios, respectively, and are shown for comparison.

As we can see, a prematurely broken lockdown quickly results in a second wave of the
epidemic leading to almost  as many total cases as if there had been no intervention
whatsoever. However, it does still have the benefit of keeping the peak number of sick
individuals below what would normally be and a “spreading out” of the epidemic curve:
In other words, the flattening of the curve that will help prevent the overwhelming of
the healthcare system .

For clarity, let’s also take a look at just the number of infectious cases
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Imperfect containment strategy. Strategy is implemented at the time indicated by the vertical shaded
area. Dashed and thin solid lines correspond to the no-intervention and imperfect lockdown scenarios,

respectively, and are shown for comparison.

It is not for a poor Physicist such as myself to opine on whether or not the current world
wide shutdown is worth it economically or socially. The best I can do is help you
understand better its practical effects.

Structured populations
This post is already extremely long, but I would like to consider one extra point.
Compartmental models, by their very nature make significant simplifications and
assumptions. One fundamental assumption is that the underlying population is well
mixed: every individual is in potential contact with any other individual. While this is
clearly false for any large population, it is often a good enough approximation for
qualitative analysis of epidemic dynamics.

However, if we try to overextend this kind of models, we quickly discover that countries
and cities are not homogeneous populations. Countries are made up of states, states are
constituted by cities and rural areas, etc.
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Schematic representation of the epidemic in between neighboring populations.

Within each population, the epidemic will proceed as we have described above but when
we combine multiple populations the results are much less clear. Let us consider two
populations, say two neighboring cities. The epidemic starts in one of them and through
commuting or traveling, eventually, one infectious individual will infect the neighboring
city, resulting in a timing difference between the two populations. If we naively treat
these multiple populations as a single one (as when looking only at state or country
totals) the resulting curve is strongly affected by the timing difference between the two
populations, resulting in epidemic curves that bare little to no similarity to the simple
examples we’ve analyzed so far, making any time of exponential fitting an idle pursuit
with little to no practical use.

Resources
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If you’ve made it this far, congratulations. You now know more about epidemic modeling
than most fearless curve fitters out there and hopefully you won’t commit the same
mistakes they’re making.

And if you’re still craving for more, Part II of this blog series is already published:
Epidemic Modeling 102: All CoVID-19 models are wrong, but some are useful  and you
should check it out.

All the code necessary to implement the models described above and generate the
figures used can be found in this posts GitHub repository:

DataForScience/Epidemiology101

Contribute to DataForScience/Epidemiology101 development by
creating an account on GitHub.

github.com

If you enjoyed this post, you might also enjoy my weekly newsletter where I share the
latest news and developments in Machine Learning and Data Science as well as any
future blog posts I write.

Discover Medium

Welcome to a place where words matter. On Medium, smart voices and original ideas
take center stage - with no ads in sight. Watch

Make Medium yours

Follow all the topics you care about, and we’ll deliver the best stories for you to your
homepage and inbox. Explore

Become a member

Get unlimited access to the best stories on Medium — and support writers while you’re
at it. Just $5/month. Upgrade
AboutHelpLegal
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2. All CoVID-19 models are wrong, but some are useful

medium.com/data-for-science/epidemic-modeling-102-all-covid-19-models-are-wrong-but-some-are-
useful-c81202cc6ee9

What follows is my personal perspective, as an individual with some real world
experience in epidemic modeling during previous pandemics and shouldn’t reflect on
any group or institution I might be affiliated with.

So, without further ado…

Models vs the real world
As George E. P. Box, a statistician, famously said “all models are wrong, but some are
useful”. This is perhaps never more true than during a crisis. Information is limited, often
wrong, but decisions must be made and implemented based on what is known at the
time.

It is also during an ongoing crisis that models play their most fundamental role, that of
allowing us to explore scenarios and work through the consequences of our decisions:
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XKCD: “Remember, models aren’t for telling you facts, they’re for exploring dynamics. This model
apparently explores time travel”

However, care must be taken to avoid mistaking the model for the reality. After all, “ the
map is not the territory”. The development of a model, regardless of the domain of
application, typically follows a common pattern:

A simplified version of the world is created, to which a specific modeling approach can be
applied, resulting in a working model. The simplifications made can be due to a variety of
factors such as the lack of specific data, excessive complexity, intractability, among
others. The modeling approach chosen is both influenced by and helps drive the
assumptions that are made, often resulting in the stereotypical overabundance of
Physicists concerned about Spherical Cows or trying to apply Ising Spins to every
possible problem.

Once a working model is obtained, we can use it to explore scenarios, the consequences
of specific decisions, etc. Finally, it is by studying the scenarios that are outputted by our
models that decisions are taken in the Real World. Graphically, we have:
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Naturally, this is a simplified and schematic view (and a model in and of itself) to help
illustrate the various points at which our modeling efforts can go awry, leading the
results of our models to differ from what we actually observe in the real world.

While in many cases, mismatches between the model and reality can be traced back to
errors made during the process, they can also be due to the fact that our model was
successful and it resulted in appropriate measures being taken to prevent the
undesirable scenarios it predicted. This is specially true in the case of highly visible
models that are used to guide government decisions and interventions such as in the
case of an ongoing pandemic like the one we’re living through now:

“The most important function of epidemiological models is as a simulation, a way to see
our potential futures ahead of time, and how that interacts with the choices we make
today. With COVID-19 models, we have one simple, urgent goal: to ignore all the
optimistic branches and that thick trunk in the middle representing the most likely
outcomes. Instead, we need to focus on the branches representing the worst outcomes, and
prune them with all our might. Social isolation reduces transmission, and slows the spread
of the disease. In doing so, it chops off branches that represent some of the worst futures.
Contact tracing catches people before they infect others, pruning more branches that
represent unchecked catastrophes.” — Zeynep Tufecki, The Atlantic
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It is this kind of misunderstanding that leads to public distrust in scientific models in
particular and Science in general.

My hope is that this (and many other posts out there) can help the general public to
understand the underlying assumptions, power, and limitations of scientific models and
how they can be put to good use.

Susceptible-Infectious-Recovered (SIR) Model
Now that we have established both the advantages and limitations of using models to
understand the world, we can start exploring how to improve the simple models we
introduced in the previous post.

SIR Model

The SIR model is one of the simplest and best known epidemic models. Its popularity is
due, in no small part, to its ability to establish a perfect balance between simplicity and
usefulness. It is still relatively amenable to mathematical and analytical exploration while
at the same time it is able to capture the fundamental features of the epidemic process:
healthy (Susceptible) people become infected when coming in contact with Infectious
individuals only to eventually Recover after a certain period of time. The process is
illustrated schematically in the figure at the top of this section.

This model can be written mathematically using a simple set of partial differential
equations:

Which can be numerically integrated to obtain the values of each compartment as a
function of time, just as done in the previous blog post:
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Susceptible-Infectious-Recovered model

Fraction of the population in each compartment as a function of time

While this kind of equations can be useful to explore analytical results for simple models
like the SIR model, they quickly become unwieldy for more complex models. However, it
is easy to note how they have a one-to-one correspondence with the illustration above:

Interactions correspond to terms involving two compartments and the total
number of individuals in the population:

Interaction term

While spontaneous transitions correspond to terms involving just a single
compartment:
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Spontaneous term

The sign of each term is determined by whether the equation we are considering
corresponds to the “source” or “target” compartments. Notably, “agent”
compartments are not affected unless they are also “targets”.

This one-to-one correspondence between transitions and terms allows us to simply
“draw up” arbitrarily complex models that can be trivially implemented using generic
code (like the one in EpiModel.py) without having to write out and debug all the rules “by
hand”.

In the rest of the discussion we will focus on discussing the assumptions and details of
the various models while avoiding as much as possible the use of complex mathematical
expressions.

Incubation Period
One of the main limitations of the SIR model is the fact that the infection develops
instantaneously without any incubation period what so ever. You’ll recall from recent
news that this is not a very realistic scenario and the incubation or latent period is one of
the most important factors that must be understood in order to contain an epidemic: For
how long must a suspected case be kept under watch until we can be certain that the
person will not become infectious?

We can address this limitation by adding one extra step (compartment) to our epidemic
model: The Exposed (or Latent) compartment. When a Susceptible person comes in
contact with an infectious one s/he moves to the Exposed from which s/he transitions to
the Infectious compartment at a fixed rate ε. While in the Exposed compartment the
person is said to be “incubating” the disease, possibly even starting to develop
symptoms, but is not yet able to infect other individuals. The resulting model is known as
the Susceptible-Exposed-Infectious-Recovered (SEIR) model:

SEIR Model

Here we have 4 distinct compartments connected by one interacting transition and two
spontaneous ones:
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SEIR Transitions

And the evolution of the various compartments is simply:

Here we highlight that the addition of the extra compartment didn’t change the total
number of people who become infected, but it does have a strong impact on the
temporal evolution of the epidemic, significantly delaying and widening the peak of
infectious cases. It effectively “flattens” the curve:
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Epidemic peak comparison between the SIR and SEIR models.

It should be clear how this has a direct impact on the likelihood of the healthcare system
being overwhelmed and the necessary duration of any quarantine measures imposed: a
lower peak reduces the stress in the healthcare system, while a longer duration
implies that longer period of social distancing is necessary.

Temporary Immunity
Another fundamental assumption underlying the SIR model is the idea that Recovered
persons are permanently immune from the disease. While this is the case with many
common diseases, there have been some reports of CoVID-19 patients being re-infected
after recovery.

Re-infection in such a short period of time is unlikely (even temporary immunity typically
lasts for a few months or years) and these cases are more likely to be due to faulty tests,
but it is certainly a possibility that should be considered.

By simply adding a spontaneous transition from the Recovered compartment back to the
Susceptible compartment, we obtain the SEIRS (can you guess what the letters stand for?
�):
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SEIRS Model

This seemingly innocuous addition to the model has a very important effect . By
allowing Recovered individuals to once more become Susceptible, we replenish the group
of people that can once again be infected. The end result is that the epidemic never
burns itself out (its fuel is never exhausted) and the disease becomes endemic, with a
constant fraction of the population remaining infected!

Endemic final state of the SEIRS model

The rate ρ at which immunity is lost has a determinant effect in the progress of the
epidemic and the rise of endemicity. If ρ is sufficiently small (immunity is longer lasting)
we can even have several epidemic peaks before the steady state of a fixed fraction of
the population is reached.
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https://en.wikipedia.org/wiki/Endemic_(epidemiology)


Exposed and Infectious population in the SEIRS model

The appearance of the peak is due to the fact that the temporary immunity afforded by
the disease is sufficiently long to allow the epidemic to follow most of its course before
the number of Susceptibles starts to increase again, adding fuel to the fire.

Asymptomatic Cases
In many diseases, a significant fraction of infected individuals remain asymptomatic
throughout the course of the disease. In the case of seasonal Influenza, this number is
typically around 33%, while for CoVID19 the number is thought to be 40% or higher, thus
significantly skewing the total number of cases.

Asymptomatic individuals are often less infectious than those displaying symptoms by
some fraction rᵦ. We can model their effect by splitting the Infectious compartment in
two: a Symptomatic, Is, and an Asymptomatic, Ia. A fraction pₐ of all of those Exposed
become asymptomatic while the remaining (1-pₐ) develop symptoms. Our model is then:
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https://www.medrxiv.org/content/10.1101/2020.02.03.20020248v2


As we now have two Infectious compartments we must also redo our Rₒ calculation.
Fortunately, the modification is simple: since we have split the original Infectious
compartment in two, our value of β is simply the weighted average of the original and
the reduced β.

We can easily verify that if rᵦ is 1 we recover
the original SIR value, while if rᵦ is 0 (the
asymptomatic and completely non-infectious)
we reduce the original Rₒ by a factor of (1-pₐ)
as we effectively have that much smaller
Infectious population.

In order to maintain the same value of Rₒ we simply calculate the value of β as:

This approach makes it easier to compare the results
from both models since they both have the same
value of Rₒ.

As we add more and more compartments to our
models, the smaller the population of each individual
compartment becomes.
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Compartmental structure of the Symptomatic/Asymptomatic model

We can easily verify that the value of Rₒ remains the same as before by looking at the
Recovered and Susceptible curves at the end of the epidemic. On the other hand, we now
have 3 distinct infected compartments, 2 of which are Infectious and peak at the same
time and a few days after the Exposed population:

Peak comparison between the three infected compartments
12/15



Here we should note that we explicitly decided to keep the recovery rate, μ for both
Symptomatic and Asymptomatic individuals. Had we chosen them to be different then
the peaks would occur at different times and the expression for Rₒ would have to be
revised even further.

Mortality rate
Finally, we look at the effect of explicitly considering mortality. We assume that only
symptomatic cases die from the disease or, similarly, that any asymptomatic individuals
that do die from the disease are not counted as such. If we assume that a fraction pd of
symptomatic cases end up dying, our model becomes:

So we now have 6 compartments and a total of 7 transitions and 6 parameters, denoting
how the more details we include the more complex the model becomes and the more
parameters must be specified. In the early days of an epidemic most, if not all, of these
parameters are partially or completely unknown. As the epidemic progresses, more and
more information is gathered and more detailed models can be used. This constant
refinement also helps improve the reliability of the scenarios we are able to analyze and
the decisions made.

If we assume that 10% of the symptomatic cases eventually die, we have:

It should be noted that 10% mortality rate is huge and unrealistic for the kind of
diseases we are considering. The reason we choose such a large number is to make the
effects obvious when plotting.
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By including the possibility of Death, the number of Recovered individuals is naturally
reduced, despite the fact that none of the disease parameters have been changed. If we
focus on just the relationship between the most significant compartments we have:

The total number of dead can be easily estimated. We know that for our set of
parameters, 80% of the population eventually becomes infected. Of those, 60% are
symptomatic and of those, 10% eventually die, so we expect that the total number of
fatal cases to be 4.8% as shown in the plot above.

This value is significantly smaller that the actual mortality rate for the symptomatic cases.
This is due to the fact that the number of recovered is inflated by the milder
asymptomatic cases.
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