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Abstract

Background: In classical mathematical epidemiology, individuals do not adapt their contact behavior during epidemics.
They do not endogenously engage, for example, in social distancing based on fear. Yet, adaptive behavior is well-
documented in true epidemics. We explore the effect of including such behavior in models of epidemic dynamics.

Methodology/Principal Findings: Using both nonlinear dynamical systems and agent-based computation, we model two
interacting contagion processes: one of disease and one of fear of the disease. Individuals can ‘‘contract’’ fear through
contact with individuals who are infected with the disease (the sick), infected with fear only (the scared), and infected with
both fear and disease (the sick and scared). Scared individuals–whether sick or not–may remove themselves from circulation
with some probability, which affects the contact dynamic, and thus the disease epidemic proper. If we allow individuals to
recover from fear and return to circulation, the coupled dynamics become quite rich, and can include multiple waves of
infection. We also study flight as a behavioral response.

Conclusions/Significance: In a spatially extended setting, even relatively small levels of fear-inspired flight can have a
dramatic impact on spatio-temporal epidemic dynamics. Self-isolation and spatial flight are only two of many possible
actions that fear-infected individuals may take. Our main point is that behavioral adaptation of some sort must be
considered.
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Introduction

‘‘The plague was nothing; fear of the plague was much more

formidable.’’

Henri Poincare

Motivation
In classical mathematical epidemiology–the tradition of ordi-

nary differential equations with perfect mixing (mass action

kinetics) beginning with the 1927 Kermack-McKendrick model–

individuals do not adapt their contact behavior during epidemics

[1–3]. They do not endogenously engage, for example, in social

distancing (protective sequestration) based on disease prevalence.

Rather, they simply continue mixing (often uniformly) as if no

epidemic were under way. This may be a reasonable assumption

for non-lethal infections such as the common cold, but for lethal

diseases such as AIDS, it is known to fail; and for other lethal

disease threats, like pandemic influenza or bioterrror smallpox, it

seems likely to. People may be expected to adapt their contact

patterns, and this will feed back to alter epidemic dynamics.

Homo EconomSickus
Economists have begun to address this issue, introducing the

notion of prevalence elastic behavior into epidemic models. For

example, as AIDS prevalence grows in a community, people may

reduce their number of sexual partners [4]. Predictably, economic

epidemiology, as this subfield is called, posits optimizing behavior on

the part of individuals. In effect, it models how canonically rational

individuals would behave given some level of disease prevalence.

They behave as homo economicus would behave given the associated

health risks and costs of protection (e.g., vaccine-seeking). A term

used for the resulting dynamics is rational epidemics. This literature

includes elegant mathematical work, and captures—in the notion

of prevalence elasticity—a clearly important phenomenon.

Boundedly Rational Epidemics
However, prevalence is treated as a kind of exogenous signal

(suspiciously like a perfectly competitive price) to which agents
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respond with some elasticity. They do not interact directly with

one another to gain information on prevalence or in deciding how

to behave. The approach, therefore, seems ill-suited to capture

cases where endogenous epidemics of fear inspire widespread adaptations

unrelated to prevalence. As an example, in 1996, millions of Indians

fled Surat province to escape pneumonic plague. Yet, not a single

case of pneumonic plague was actually confirmed. Prevalence of

the disease itself, in other words, was zero.

We do not purport to define the term ‘‘fear.’’ Readers should

feel free to interpret it as ‘‘concerned awareness,’’ for example.

The point is that we are modeling a behavior-inducing

transmissible signal distinct from the pathogen itself. For

expository purposes, ‘‘fear’’ will do. For those interested in the

substantial literature on emotional contagions generally, see [5].

The model developed here handles cases where the fear is

contagious, even when the pathogen is not (e.g., anthrax). Indeed,

it handles cases where the event in question is not a pathogen at

all, such as a chemical or radiological event, or natural disaster,

such as an earthquake or volcano.

A second problem with the literature is that, even models that do

include prevalence-dependent behavior assume behavioral chang-

es that are depressive in their effect on the epidemic - protective self-

isolation (sequestration) being the most common. However,

research on mass behavior during crises (and even epidemics

specifically) records another behavioral response that is common -

flight. Unlike protective sequestration, flight has the potential to

increase long-range mixing across spatial regions, exacerbating

epidemics. In the model introduced here, we expand the

behavioral response repertoire of agents infected with fear to

include both flight and protective self-isolation.

In summary, most infectious disease modeling ignores adaptive

behavior. Models have begun to include prevalence elastic

behavior [6]. It typically damps the epidemic. In Part I, we

introduce a differential equation model where fear can spread

independent of prevalence. Then spatial flight is added to the

behavioral repertoire. This extension is implemented as an Agent-

Based Model (ABM) in Part II. The full model shows how even a

small amount of flight can amplify epidemic severity. To begin, we

present the no-flight version.

Analysis

Part I: The Basic No Flight Model
For expository purpose, we imagine two contagion processes: one

of disease proper, and one of fear about the disease. (Bear in mind

that the model in fact does not require that the event sparking the

fear epidemic be a disease, contagious or otherwise. It could be a

radiological, or seismic event, for example.) Individuals contract

disease only through contact with the disease-infected (the sick).

However, individuals can contract fear through contact with the

disease-infected (the sick), the fear-infected (the scared, or worried

well), or those infected with both fear and disease (the sick and

scared). Scared individuals—whether sick or not—may withdraw

from circulation, and return to circulation having recovered from

fear, all of which affects the course of the disease epidemic proper.

Agents can occupy one and only one of seven states at any time.

The model’s (seven dimensional) state space is shown below:

S: Susceptible to pathogen and fear

IF: Infected with fear only

IP: Infected with pathogen only

IPF: Infected with pathogen and fear

RF: Removed from circulation due to fear

RPF: Removed from circulation due to fear and

infected with pathogen

R: Recovered from pathogen and immune to fear

Let b denote the per-contact disease transmission rate, and let a
denote the per-contact fear transmission rate. If we now imagine a

susceptible individual (i.e., neither sick nor scared) having contact

with one who is both sick and scared, then the transmission rates of

fear, infection, and various combinations are given in Table 1. For

instance, the probability that the first individual (neither sick nor

scared) contracts neither bug nor fear is 1{að Þ 1{bð Þ, and so

forth.

Finally we specify below the parameters controlling the rate at

which individuals self-isolate due to fear and recover from fear and

return to circulation:

lF: Rate of removal to self-isolation of those infected

with fear only

lP: Rate of removal from infection with pathogen

lPF: Rate of removal to self-isolation of those infected

with fear and pathogen

H: Rate of recovery from fear and return to circulation

With all of this in place, the model can be implemented as a

classical well-mixed ordinary differential equation (ODE) system.

The appropriate generalization of the standard Kermack-McKen-

drick set-up is formalized in the equations of Figure 1A.

As a prelude to the analytic discussion, let us trace through some

simple state transitions. For instance, individuals susceptible to the

bug and fear, S, flow into the Infected (with pathogen only) pool IP

at rate b 1{að ÞSIP and into the pool infected with fear only IF at

rate 1{bð Þa SIF . Similarly, those who self-isolated out of fear

only, denoted RF (removed through Fear) return to the S pool at

rate HRF, where a constant H would yield exponential decay of

individual fear, ceteris paribus. A time-dependant H is considered below.

This most elementary form of the model assumes constant

population as all the right-hand sides sum to zero, and clearly

subsumes the classic SI and SIR models. In parallel with this

mathematical model, we also built an equivalent ABM, to be used

as the basis for the with-flight extensions discussed below. All the

following points pertaining to the differential equations also apply

to the parallel ABM.

Fear and Disease Uncoupled
Setting a (fear) equal to zero (and barring removals) yields the

standard S-curves (i.e., a declining susceptible S-curve and a rising

disease infection S-curve. In turn, if we reverse things, setting

disease transmission (b) to zero, and fear transmission (a) to a

positive value, we generate a pure fear epidemic with no

underlying disease. The Salem witch hunt would be one example,

though there are innumerable further ones.

Table 1. Transmission Probabilities.

Get scared Not get scared

Get sick a b 1{að Þb
Not get sick a 1{bð Þ 1{að Þ 1{bð Þ

doi:10.1371/journal.pone.0003955.t001

Coupled Contagion
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Fear and Disease Coupled
These results seem reasonably predictable, and are symmetrical

to one another: at bw0 and a~0, we get S-curves of disease.

Reverse these settings b~0,aw0ð Þ and we get the strictly

analogous pair of S-curves for fear. Surely one would expect that

if we set a~b, the disease and fear epidemic S-curves should

coincide. Is this what happens? Not always, as shown in Figure 2,

with a~bw0.

Ceteris paribus, the fear epidemic is faster then the bug epidemic.

Why? The reason is that there are more pathways by which to

contract fear than there are to contract bug. One can contract

disease from contact with either of two pools: IP or IPF. But one can

contract Fear by contact with any one of three pools: IB, IBF, or IF.

Obviously, once there is any fear, the latter three is a bigger set

with which contact is more likely. This is a numerical example

showing the possibility of an important asymmetry. But it is simply

an existence result. What is the general relationship?

Reproductive Rates of Fear and Disease
One measure of epidemic speed is the basic reproductive

number: R0. This is defined as the expected number of secondary

cases from a typical infectious individual during the entire period

of their infectiousness in a completely susceptible population. The

basic reproductive number of either the pathogen or fear can be

found by calculating the spectral radius of the next generation

operator. Diekmann et al. describes this procedure for estimating

R0 about the disease-free equilibrium [7]. The basic reproductive

number of the pathogen as a function of the transmission

coefficient and rates of recovery or withdrawal from contact from

the above system of equations is:

R0 pathogenð Þ~ b lPzlPF{alPFð Þ
lP lPzlPFð Þ ð1Þ

Two types of individuals are infectious with the pathogen, IP

and IPF. The average residence time in each of these states is 1=lP

and 1= lPzlFð Þ, respectively. Individuals in these states will infect

others at a rate of b per unit time. R0(pathogen) can be interpreted

as a weighted sum of the product of b and the residence times in

the two infectious states weighted by the fraction of those that

become infected by the pathogen who transit to IP 1{að Þ and

IPF að Þ.

Figure 1. (A&B): Classical SIR differential equations formulation and flowchart.
doi:10.1371/journal.pone.0003955.g001

Coupled Contagion

PLoS ONE | www.plosone.org 3 December 2008 | Volume 3 | Issue 12 | e3955



The basic reproductive number of fear is given by:

R0 fearð Þ~max
a

lF

,
ba

lPzlPF

� �
ð2Þ

The first term above, a=lF , is the product of the transmission

coefficient of fear, a, and the duration of the infectious period of

fear, 1=lP. This is the classical form of the basic reproductive

number for a pathogen in an SIR model with a closed population.

The second term of equation 2 is greater than the first term only

when the ratio of the infectious period of fear (1=lF ) to the

infectious period of those with pathogen and fear, 1=lPzlPF , is

less than the transmission coefficient of the pathogen, b. In this

case, the basic reproductive number of the pathogen exceeds the

basic reproductive number of fear.

In the case where a~b and lF ~lP~lPF ~l we find that fear

spreads faster than disease, as R0 fearð Þ~a=lwR0 pathogenð Þ~
a=2l (a and l are both non-negative). When all three rate

constants and the transmission coefficients differ from one another,

the basic reproductive number of fear exceeds the basic

reproductive number of the pathogen precisely when:

aw

blF lPzlPFð Þ
lF zlPFð Þ lPzlPFð Þ{blF lPF

ð3Þ

In the absence of fear or pathogen, these models collapse to SIR

or SIRS models in pathogen or fear. So, in the absence of

transmissible fear, a~0, the R0(pathogen) equation 1 reduces to

the classical R0 of b=lP. In the absence of pathogen, the model

collapses to an SIRS model of fear due to the recovery of

individuals to the susceptible state and R0(fear) is a=lF . In spatially

extended settings where fear may inspire long-range migration, the

possibility of fear propagating faster than bug will prove highly

consequential.

Plausible Behavioral Mechanism for Multiple Waves of
Infection in 1918

Finally, multiple waves of infection of the sort that occurred in

1918 are easily generated in this model. For example, it suffices to

let H~min 1, t=að Þb
h i

, with a = 150 and b = 8. In the idealized

run of figure 3, susceptible individuals (blue-curve) self-isolate

(yellow curve) through fear as the infection of disease proper grows

(red curve). Emboldened by the falling disease incidence, these

susceptibles return (prematurely) to circulation (the blue hump).

But, this offers fuel to the remaining embers of infection (at time

100), and a second wave ensues. This reflects the counterintuitive

and crucial insight of the original Kermack-McKendrick model,

that the epidemic threshold is not the infective level, but rather the

susceptible one. Authorities in 1918 did not have the benefit of this

insight, and in a number of cities lifted quarantines prematurely,

with the same effect: multiple waves.

Part II: Spatial Propagation in the Agent-Based
Computational Model with Flight

As noted earlier, most research in epidemiology does not take

into consideration the possibility of behavioral adaptations that are

prevalence-dependent (see above). Those models that do include

prevalence-dependent behavior almost exclusively assume behav-

ioral changes that are depressive in their effect on the epidemic,

protective self-isolation (sequestration) being the most common.

However, research on mass behavior during crises, and even

epidemics specifically, records another common behavioral

Figure 2. Here we provide the coupled case with a = b = 0.0008. One would expect that if we set a = b, the disease and fear epidemic S-curves
should coincide, but this is not the case. Fear (the green curve) precedes disease (the red curve).
doi:10.1371/journal.pone.0003955.g002

Coupled Contagion

PLoS ONE | www.plosone.org 4 December 2008 | Volume 3 | Issue 12 | e3955



response—flight. Historical cases of flight from epidemics are

numerous, dating back at least as far as Medieval Europe, where

the morality of fleeing from the Plague was a central and divisive

topic among early modern Jesuits [8]. In the 19th century, large

scale flight was a common behavioral response to urban epidemics

of cholera and yellow fever. For example, more than 25,000

residents (almost half the population) fled Memphis when yellow

fever struck in summer 1878, and as the fever spread through the

South the highest incidence was in cities directly along railroad

lines leading out of Memphis [9]. Within days of cholera’s

appearance in Cairo in 1831, the Nile ‘‘swarmed with craft of

every description filled with refugees from the stricken city’’ as a

mass exodus began [10]. Cholera arrived in North America for the

first time in 1832, carried by Irish immigrants fleeing the epidemic

in Ireland. As it spread rapidly through the Midwest and

Northeast of the United States, flight was common: ‘‘the

appearance of cholera in even the smallest hamlet was the signal

for… headlong flight, spreading the disease throughout the

surrounding countryside’’ [11]. Flight was also a response to 20th

century epidemics such as polio, influenza, and plague. In some

cases, fear alone was sufficient to cause flight (even in the absence

of any confirmed disease) and ‘‘sociogenic’’ illness—for example in

Surat India in 2006, and Melbourne Australia in 2005 [12].

The potential for flight as a behavioral response to disease

prevalence has important consequences for epidemic modeling.

Unlike protective sequestration, flight has the potential to increase

mixing in the short term, and across spatial regions (even if it

ultimately removes individuals from circulation locally). In the

model developed below, we expand the behavioral response

repertoire of agents infected with fear to include both flight and

protective self-isolation. For now, a specific behavioral response is

a characteristic of each individual—some agents always flee when

afraid, others hide. We explore the impact of differing levels of

flight on the epidemic dynamics.

Of course, one could in principle formulate this as a high

dimensional meta-population ODE model with many patches and

coupling coefficients. (Formulation as a reaction diffusion system

on a spatial continuum might also be possible.) However, with the

inclusion of both self-isolation and flight, the result would be a

fairly opaque ODE system. As noted earlier, we built an ABM that

mimics the 7D differential equation system discussed above. Now

we extend it to include space and flight, in addition to all the

features of the earlier ODE model. The extended agent-based

version will prove very transparent, and quickly yields the main

result: even a small level of flight can dramatically affect contagion dynamics.

Set-up
The agent model with self-isolation and flight takes place on a

2D lattice (i.e., a large checkerboard) where time is discretized into

many brief periods. During each time period agents typically move

a short distance in a random walk and then contact a random local

agent (if any are near). That contact spreads both the bug and the

fear according to a and b. However, an agent who has contracted

fear may or may not adapt its movement and contact behaviors.

The model has three types of agents, representing three different

characteristic responses to fear. The first type, ‘‘fleers,’’ respond to

fear by selecting a new location some distance from their current

position on the lattice and moving there as fast as possible. For the

runs reported here, this is the site 15 sites south of the agent’s

current location. We are measuring corner-to-corner spread. This

distance is 120!2, so 15 sites is roughly 9% of the diagonal

distance. This is far too small for any single fleer to be driving the

main spread results, and should allay any such concern. Upon

reaching the goal location this agent will recover from fear and his

Figure 3. In the idealized run of figure 3, susceptible individuals (blue-curve) self-isolate (black curve) through fear as the infection
of disease proper grows (red curve). Emboldened by the falling disease incidence, these susceptibles return (prematurely) to circulation (the
blue hump). But, this offers fuel to the remaining embers of infection (at time 100), and a second wave ensues.
doi:10.1371/journal.pone.0003955.g003
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movement rule reverts to a random walk (with radius of one site).

The second type, ‘‘hiders,’’ respond to fear by removing

themselves from circulation for a specified number of iterations

(during which they neither move nor contact other agents). The

third type, ‘‘ignorers,’’ never change their movement or contact

behavior.

Parameters of the model include the size of the lattice, the total

population of agents, the distribution of agent types, movement

and contact radii, the transmission rates of fear and bug, the

duration of sickness, the distance fled, and the duration

sequestered. The parameters used for all of the simulation

experiments discussed in this section are: 1800 agents on a

1206120 lattice, alpha = 0.11, beta = 0.1, lambda = 0.015, illness

duration = 100 periods, and fear duration = 800 periods. A model

run ends when no more agents are infected.

Results and Discussion

The results from this agent model highlight the importance of

flight as a topic for research—even a small amount of flight can

have a dramatic impact on epidemic dynamics.

First, to establish a baseline, we consider a simple form of the

model in which fear propagates, but no one adapts their behavior

in response. All agents are ‘‘ignorers’’. Parameterized in this way,

the model produces quintessential SIR curves, such as those shown

in figure 4.

In a 30-run analysis, the average epidemic duration with all

agents set to ‘‘ignorers’’ is 742.1 periods (SE 9.5), and average total

incidence is 99.9%. (See the leftmost bars of Figures 5a and b,

respectively)

In the next version of the model we replace the population of

‘‘ignorers’’ with a population of ‘‘hiders.’’ Replacing the population

with ‘‘hiders’’ drastically reduces incidence to an average of 27.8%

and stops the epidemic earlier (in an average of 647 rounds). A

population who systematically hides from an incoming epidemic will

suffer many fewer cases of disease. See the middle bars of Figure 5a

and b below.

Next, we introduce flight, but only a small amount—90% of

agents still respond to fear by hiding (removing themselves from

circulation); the remaining 10% flee. How does this small

proportion of flight affect incidence and duration of the epidemic?

As Figure 5 shows, even this small amount of flight dramatically

increases the size and speed of the epidemic (comparing the

rightmost bars of 5a and b to the middle ones). Average incidence

in the population is 64% and the average epidemic duration is 595

time periods. This small proportion of fleeing agents causes the

population to suffer more than 2.3 times as many disease cases as

in the all-hiders configuration.

Of course, the 10% of agents who are fleeing are also not

hiding. By remaining in circulation, even ignoring (neither fleeing

nor hiding) agents should have an inflammatory effect on the

epidemic. So, is it the flight or simply the increased circulation

from non-hiding which is driving the previous result? To answer

this question, we ran the simulation with 90% ‘‘hiders’’ and 10%

‘‘ignorers.’’ As Figure 6 illustrates, the results from these runs differ

noticeably from the runs with actual flight: we observed an average

incidence of 32% and an average epidemic duration of 640 time

periods. Flight has a substantial impact above and beyond

increasing the number of ‘‘non-hiders’’.

Not only does flight increase incidence dramatically, but it also

increases the rapidity and geographic scope of the epidemic. One

way to measure the geographic spread of the bug is to begin the

epidemic with an index case in one corner of the 2D lattice, and

observe if and when the bug reaches the far diagonal corner.

Figure 7 shows that epidemics rarely spread fully across the lattice

Figure 4. We consider a simple form of the model in which fear propagates, but no one adapts their behavior in response. All agents
are ‘‘ignorers.’’ Parameterized in this way, the model produces quintessential SIR curves.
doi:10.1371/journal.pone.0003955.g004
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Figure 5. (A&B): Epidemic duration and total incidence under three different parameter settings. Each bar in the chart represents an
average across 30 simulation runs for a given parameter setting, with standard error range. When all agents hide, the epidemic is shorter and has
substantially lower incidence that with no adaptive behavior. When a small percentage of agents flees (with the majority hiding), however, incidence
goes up substantially even as the duration falls farther.
doi:10.1371/journal.pone.0003955.g005

Coupled Contagion
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Figure 6. (A&B): A comparison of epidemic duration and total incidence with 10% ‘‘fleers’’ versus 10% ‘‘ignorers.’’ As before, each bar
in the chart represents an average across 30 simulation runs for a given parameter setting, with standard error range. The runs with 10% ‘‘ignorers’’
have similar incidence to runs with 100% ‘‘hiders,’’ and similar duration to runs with 100% ‘‘ignorers.’’ By contrast, the runs with 10% ‘‘fleers’’ have
much higher incidence and lower duration.
doi:10.1371/journal.pone.0003955.g006

Coupled Contagion
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Figure 7. The percentage of runs (out of 30) for each parameter setting in which the epidemic spreads fully across the landscape,
from an index case in one corner of the lattice all the way to the opposite corner.
doi:10.1371/journal.pone.0003955.g007

Figure 8. In rare cases where the epidemic spreads fully across the lattice without flight, it takes much longer to do so than in cases
with flight. Without flight the epidemic takes roughly 600 time periods to cross the lattice.
doi:10.1371/journal.pone.0003955.g008

Coupled Contagion
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with no flight—but almost always spread fully across the lattice

with even a small amount of flight. Specifically, when merely 10%

flee, the epidemic reaches the far corner an average of 92% of the

time. However, when no agents flee, the epidemic only reaches the

far corner 17% (all hiders) or 27% (90% hide / 10% ignore) of the

time.

Furthermore, in rare cases where the epidemic spreads fully

across the lattice without flight, it takes much longer to do so than

in cases with flight, as shown in Figure 8. Without flight the

epidemic takes roughly 600 time periods to cross the lattice. When

fight is allowed, the average run takes 340 time periods to traverse

the lattice, almost twice as fast.

For an illustration of how flight spreads the epidemic quickly

across the lattice, increasing both incidence and speed, see

Figure 9. Blue dots represent susceptibles (infected with neither

fear nor pathogen); yellow dots, infected with fear alone; orange

dots, acting on fear; red dots, infected with pathogen; white dots,

recovered.

In the first screen shot (9a), with no flight, yellow agents

(infected with fear) form a moving buffer zone between the

epidemic of pathogen and the susceptible agents. The latter thus

have an opportunity to remove themselves from circulation

because they are likely to contract fear before they are exposed to

the pathogen (as per our earlier discussion of the fear R0), The

second screenshot shows how a small amount of flight enables a

few infected fleeing agents to pierce this buffer zone, introducing

the pathogen quickly into the susceptible pool.

These specific quantitative results are summarized in Table 2.

They are, of course, dependent on the specific parameters used

above. But the larger qualitative point is robust. Behavioral

adaptation need not damp the force of an epidemic. If flight is

admitted, this form of ‘‘social distancing’’ can increase both the

speed and size of an epidemic.

This exposition invites a great deal of further work, including

development of the multi-patch (meta-population) ODEs with

flight, full sensitivity analysis of the agent-based model, further

‘‘dialogue’’ between the two approaches, and calibration to

historical cases.

However, the present effort clearly enforces the overarching

point that infectious disease models must incorporate behavioral adaptation.

In the development above, the adaptive repertoire is quite narrow,

including only self-isolation and flight. But it can obviously be

broadened substantially. Moreover, the model—while explored for

contagious disease here—can be applied to a wide range of cases

where momentous contagions of fear eventuate from events that

are not themselves contagious, such as toxic chemical plumes or

floods, fires, and earthquakes.
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doi:10.1371/journal.pone.0003955.t002
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presentation may be found on the NIH MIDAS Portal. (www.epimodels.

org). This paper has benefited from numerous discussions with colleagues

at Brookings, The Santa Fe Institute, and Johns Hopkins University. For

his assistance, the authors thank Matthew A. Raifman.
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